Research
Published papers
- Computing Higher Leray–Serre Spectral Sequences of Towers of Fibrations
A. Guidolin, A. Romero
To appear in Foundations of Computational Mathematics.
- Effective homological computations on finite topological spaces
J. Cuevas-Rozo, L. Lambán, A. Romero, H. Sarria
To appear in Applicable Algebra in Engineering, Communications and Computing.
- Computing invariants for multipersistence via spectral systems and effective homology
A. Guidolin, J. Divasón, A. Romero, F. Vaccarino
To appear in Journal of Symbolic Computation 104 (2021) 724–753.
- A new Kenzo module for computing the Eilenberg-Moore spectral sequence
A. Romero, J. Rubio, F. Sergeraert, M. Szymik
ACM Communications in Computer Algebra 54(2) (2020) 57–60.
- Computing multipersistence by means of spectral systems
A. Guidolin, A. Romero, J. Divasón, F. Vaccarino
Proceedings of ISSAC 2019, ACM (2019) 195–202.
- A Kenzo interface for algebraic topology computations in Sagemath
J. Cuevas-Rozo, J. Divasón, M. Marco-Buzunáriz, A. Romero
ACM Communications in Computer Algebra 53(2) (2019) 61–64.
- Using Krakatoa for Teaching Formal Verification of Java Programs
J. Divasón, A. Romero
Lecture Notes in Computer Science 11758 (2019) 37–51.
- An implementation of effective homotopy of fibrations
A. Romero, J. Rubio, F. Sergeraert
Journal of Symbolic Computation 94 (2019) 149–172.
- Effective computation of generalized spectral sequences
A. Guidolin, A. Romero
Proceedings of ISSAC 2018, ACM (2018) 183-190.
- A Bousfield–Kan Algorithm for Computing the Effective Homotopy of a Space
A. Romero, F. Sergeraert
Foundations of Computational Mathematics 17 (2017) 1335-1366.
- Effective homology of filtered digital images
A. Romero, J. Rubio, F. Sergeraert.
Pattern Recognition Letters 83 (2016) 23-31.
- SynapCountJ: A Tool for Analyzing Synaptic Densities in Neurons
G. Mata, J. Heras, M. Morales, A. Romero, J. Rubio
BIOIMAGING 2016: 25-31
- A Combinatorial Tool for Computing the Effective Homotopy of Iterated Loop Spaces
A. Romero, F. Sergeraert
Discrete and Computational Geometry 53 (2015) 1-15.
- Zigzag persistent homology for processing neuronal images
G. Mata, M. Morales, A. Romero, J. Rubio
Pattern Recognition Letters 62 (2015) 55-60.
Verifying a platform for digital imaging: a multi-tool strategy
J. Heras, G. Mata, A. Romero, J. Rubio, R. Sáenz
Lecture Notes in Computer Science 7961 (2013) 66-81.
Homotopy groups of suspended classifying spaces: an experimental approach
A. Romero, J. Rubio
Mathematics of computation 82 (2013) 2237-2244.
Effective homotopy of fibrations
A. Romero, F. Sergeraert
Applicable Algebra in Engineering, Communication and Computing 23 (2012) 85-100.
Computing the homology of groups: The geometric way
A. Romero, J. Rubio
Journal of Symbolic Computation 47 (2012) 752-770.
Programming before Theorizing, a case study
A. Romero, F. Sergeraert
Proceedings of ISSAC 2012, ACM (2012) 289-296.
Integrating multiple sources to answer questions in Algebraic Topology
J. Heras, V. Pascual, A. Romero, J. Rubio
Lecture Notes in Artificial Inteligence 6167
(2010) 331-335.
Computing the first Stages of the Bousfield-Kan Spectral Sequence
A. Romero
Applicable Algebra in Engineering, Communication and Computing 21 nº 3 (2010) 227-248.
Interoperating between Computer Algebra systems:
computing homology of groups with Kenzo and GAP
A. Romero, G. Ellis, J. Rubio
Proceedings of ISSAC 2009, ACM (2009) 303-310.
-
Computing Spectral Sequences
A. Romero, J. Rubio, F. Sergeraert
Journal of Symbolic Computation 41 nº 10 (2006) 1059-1079.
Remote access to a Symbolic Computation system for Algebraic Topology: a client-server approach
M. Andrés, V. Pascual, A. Romero, J. Rubio
Lecture Notes in Computer Science 3516 (2005) 635-642.
Preprints
- Defining and computing persistent Z-homology in the general case
A. Romero, J. Heras, J. Rubio, F. Sergeraert
http://arxiv.org/abs/1403.7086
- Discrete Vector Fields and Fundamental Algebraic Topology
A. Romero, F. Sergeraert
http://arxiv.org/abs/1005.5685
Effective homotopy in a Kan fibration
A. Romero, F. Sergeraert
Preprint.
Effective homotopy of the fiber of a Kan fibration
A. Romero, F. Sergeraert
Preprint.