
Remote Access to a Symbolic Computation
System for Algebraic Topology: A Client-Server

Approach�

Mirian Andrés, Vico Pascual, Ana Romero, and Julio Rubio

Departamento de Matemáticas y Computación, Universidad de La Rioja
{miriam.andres, vico.pascual, ana.romero, julio.rubio}@dmc.unirioja.es

Abstract. Kenzo is a Symbolic Computation system created by Serger-
aert for computing in Algebraic Topology. It is programmed in Common
Lisp and this programming language also acts as user interface. In this
paper, a prototype to provide remote access for Kenzo is presented. This
has been accomplished by using Corba technology: clients have been de-
veloped both in Java and Common Lisp (the server is always in Common
Lisp, being a wrapper of the original Kenzo program). Instead of using
one CORBA IDL to encode each data structure, our approach incorpo-
rates a generic way of transfering every data structure through XML
strings; specifically, by means of an XML extension of MathML. This re-
search should be understood as a first step towards building a distributed
computation system for Algebraic Topology.

Introduction

Nowadays, Internet appears as a suitable tool for performing scientific computa-
tions in a distributed collaborative way. One of the fields where this idea can be
applied is that of Symbolic Computation. Computer Algebra packages are being
extended to interconnect them. In fact, some Computer Algebra systems, such
as Distributed Maple, are already capable of performing distributed computing.

It is clear that this trend could be explored in any other Symbolic Computa-
tion system, in particular in systems devoted to algorithmic Algebraic Topology.
The leader systems in this field are EAT [5] and Kenzo [6]. Both systems are
written in the Common Lisp programming language and have obtained some
results (specifically, homology groups) which had never been determined before
using either theoretical or computational methods. Since the programs are very
time (and space) consuming, it would be interesting to begin a study about
the task of making them distributed. As a first step, we have considered the
possibility of providing a remote access for Kenzo.

The organization of this paper is as follows. The next section presents some
preliminary ideas which are needed for our task: some basic concepts in Algebraic

� Partially supported by SEUI-MEC, project TIC2002-01626.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3516, pp. 635–642, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



636 M. Andrés et al.

Topology, some aspects of Symbolic Computation systems (especially Kenzo and
EAT), and an explanation of the previous work. In Section 2 we describe the
prototype of remote access to Kenzo that we have developed, which makes use of
CORBA and XML. Section 3 presents some examples of the use of our programs.
The paper ends with a conclusions section and the bibliography.

1 Preliminaries

1.1 Notions of Algebraic Topology

In this section, some basic concepts of Algebraic Topology are introduced.

Definition 1. A chain complex C = (Cp, dp) is a family of R-modules {Cp}p∈ZZ
(R is a ring), with R-modules homomorphisms {dp}p∈ZZ (the differential appli-
cation) dp : Cp → Cp−1 such that dp−1 ◦ dp = 0.

We consider chain complexes formed by free ZZ-modules. The fact that Cp

is a free ZZ-module implies that it is generated, and therefore each element
of Cp can be expressed as a linear combination of the set of its generators:∑

λiσi, λi ∈ ZZ. An element σi of a basis is called a generator. A product λiσi

is called a term or monomial, and a sum of these terms is called a combination.

1.2 Symbolic Computation in Algebraic Topology

There are some Symbolic Computation systems for Algebraic Topology, EAT
and Kenzo being the most important ones. Created by Sergeraert and coworkers,
and written in Common Lisp, they can be used to compute homology groups of
infinite topological spaces, namely loop spaces.

We present here a simple example of computation with Kenzo, which con-
sists on computing the differential of the chain complex (delta 3) applied to the
combination 3 ∗ 4 + 2 ∗ 6 of degree 2. The solution obtained is the combination
(of degree 1) 3 ∗ 0 − 2 ∗ 2 + 2 ∗ 4.

> (dffr (delta 3) (cmbn 2 3 4 2 6))
(:cmbn 1 (3 . 0) (-2 . 2) (2 . 4))

The system allows the computation of more complicated results, for instance
homology groups of chain complexes, one of the fundamental problems of Al-
gebraic Topology. It is possible to obtain easily calculations that an expert on
topology would need a lot of time and effort to get.

Some important features of these systems are:

– Intensive use of functional programming to deal with infinite data.
– Organization in two layers of data structures. The first one corresponds

to the algebraic structures they work with, such as a chain complex. The
second one corresponds to the elements of these structures, as for example
a combination inside a chain complex.



Remote Access to a Symbolic Computation System for Algebraic Topology 637

– They have obtained some results which had never been determined before
using either theoretical or computational methods.

– However, the usability of Kenzo and EAT presents some barriers. Since their
user interface is Common Lisp itself (a not very extended programming
language), they do not provide a friendly front end.

This last aspect of Kenzo was one of the reasons why we tried to provide
a remote access for it, allowing in this way the use of other (better known)
languages to construct the user interface. Since our goal is distributed computing,
we try to do this in a scalable way, that is, in a way that would allow us in the
future to extend our remote access system in order to perform collaborative
computations among different computers.

1.3 Previous Work

In a previous work, we considered reconstructing (part of) the system in Java,
a programming language very extended nowadays, especially in Internet. There
are big differences between this language and Common Lisp, so we considered
an intermediate step: we rebuilt (some fragments of) EAT in the programming
language ML, that is not so far from Common Lisp as Java. So, we have imple-
mented two prototypes to perform computations in Algebraic Topology in ML
and Java respectively.

The next step was to interoperate between them and the Common Lisp ver-
sion. To build our exchange language, we used XML [9], a metalanguage that
allows a flexible representation of the information. We considered MathML [7]
and OpenMath [8], two standards that give XML representations for mathemat-
ical objects (the second one also used to exchange mathematical objects between
symbolic computation systems). We represented simple data with MathML, and
for more complicated structures we defined our own DTD as an extension of that
of MathML. OpenMath was not used because content dictionaries are strictly
organised and we found it difficult to apply them in our case. With this exchange
format the three systems were able to interchange XML documents among them,
but only in a local non-distributed way (see [2]).

This was the starting point of this work, consisting on developing a remote
access for Kenzo, with a client-server architecture. We would have the Kenzo
program in a (server) machine, and several clients (with their own languages)
could access it from different computers. A client would invoke some calculations
in Algebraic Topology, the server would then process the computation and finally
send the result to the client.

2 Development of the Prototype

As mentioned before, our goal was to construct a prototype that allows an ac-
cess to the Kenzo program from different machines with other programming
languages. Our first idea was to try to reuse the system developed previously



638 M. Andrés et al.

and make it work with different computers. We had the XML exchange lan-
guage but this was an incomplete picture because an infrastructure that would
allow the interchange between the client and the server was necessary. It could be
CORBA [4], a middleware that allows pieces of programs, called objects, to com-
municate with one another regardless of programming languages and operating
systems, especially used in a local net. The objects of CORBA have an inter-
face written in IDL (an interface description language described in the CORBA
specification). For each object, this interface is the same for client and server
but the implementations in both sides can be written in different languages.

In a previous work (included as a poster in ISSAC 04 and presented in [3])
we have examined some of our first trials towards this remote access, and some
problems found. The main problem was to find a way to exchange the data in
Kenzo between client and server. In a first attempt, we tried to define an IDL
file for each of the structures we wanted to work with. For instance, an interface
for a momomial (one of the simplest data that appear in the program) could be
as presented below.

module kenzo
interface Monomial
//Attributes
readonly attribute long cffc;
readonly attribute string gnrt;
//Methods
void setMnm(in long cffc, in string gnrt);
long getCffc();
string getGnrt(); ; ;

It would be clearly a tedious task to construct an IDL for each type in Kenzo
(the program defines 15 classes and about 40 types; see [6]). If we worked in
this way, we would have an IDL explosion and the running of CORBA would
be complicated. Our prototype solved this problem with the combination of
CORBA and XML in a natural way, inserting two string attributes in the object
interface which will contain the XML representation of the call to the Kenzo
function and the result. We obtain in this way a generic IDL for every Kenzo
elements.

The IDL file we use to interoperate between client and server is showed
below. The two attributes obj and result will contain the XML representation
of the call to the Kenzo function we want to compute and its result. With
setObject the client is able to set the operation and its arguments (in XML).
When the client calls computeXML, the server obtains the XML representation
of the operation with getObject, computes it and inserts in result the XML
representation of the solution. Finally, getResult allows the client to recapture
the result of the operation.



Remote Access to a Symbolic Computation System for Algebraic Topology 639

module kenzo
interface XMLObject
//Attributes
readonly attribute string obj;
readonly attribute string result;
//Methods
void setObject(in string obj);
string getObject();
string getResult();
void computeXML(); ; ;

The use of this IDL file presents some advantages. It can be easily imple-
mented in both client and server, and the same interface can be used to exchange
all types of data (XML plays the leading-role to represent each structure). The
use of only one interface makes easier the running of CORBA, because for each
object the IDL file must be in both client and server sides. Besides, if we work
with Java or ML in the client, we can reuse the code we had written in the
previous work for the local system.

The exchange format used is an XML dialect, a proper extension of MathML
[7]. Some labels of MathML are used, such as <cn> for integers. However, the
data of MathML are simpler than those of Kenzo, so some other labels have
been created for other algebraic structures (for combinations we use <cmb>, for
monomials <mnm>. . . ). For instance, the combination (of degree 2) 4 ∗ 5 + 2 ∗ 6
is represented as follows:

<cmb>
<dgr>
<cn> 2 </cn>
</dgr>
<list>
<mnm>
<coef>
<cn> 4 </cn>
</coef>
<gnr>
<cn> 5 </cn>
</gnr>

</mnm>
<mnm>
<coef>
<cn> 2 </cn>
</coef>
<gnr>
<cn> 6 </cn>
</gnr>
</mnm>
</list>
</cmb>

With the showed interface, it is not difficult to implement the IDL methods in
the server. The main task consists on writting some “parsers”, functions that
translate XML strings to Kenzo objects and vice versa (some of them written
previously for the local system). With the IDL implementation built, the server
program is an easy sequence of orders to create the CORBA object and set it
ready to be required by the clients.

For the clients’ side, we also need to implement the parsers. It has been
done for Common Lisp and Java, reusing again our code. The client programs



640 M. Andrés et al.

use CORBA to connect with the server and invoke its operations. First, the
client builds the XML format of the operation wanted and assigns it to obj.
Next, it invokes computeXML of the server and the server gets the representation,
translates it to Lisp, computes it and assigns the XML of the solution to result.
Finally, with getResult the client gets the result, and then translates it to a
Kenzo object.

3 Examples

We consider now some examples with a Java client. It can be called in the
command line, and to facilitate the communication with the user we have also
written a Java applet.

As a first example, we consider the multiplication of a combination by an
integer, which is invoked as it is showed below. Once computed, the wanted
combination is showed on the screen.

C:\>java JavaClient "n-cmbn" "nil" 3 "cmbn" 2 4 5 2 6
Result: (Cmbn 2 (12 5) (6 6))

More complicated operations are those that require the ambient space where
the computation is carried out (first layer of data structures). In the previous
example, the operation is independent of the chain complex, so we define the
ambient as “nil”. However, the differential of a combination is defined in the
chain complex, so we must specify the ambient. To encode this space, Kenzo
uses functional programming, so this was a difficulty we found when representing
this ambient in XML. To solve it, we encoded the ambient space with the tree of

Fig. 1. Example: differential of a combination



Remote Access to a Symbolic Computation System for Algebraic Topology 641

calls that generates it. In this case, we compute the differential of a combination
in the chain complex (delta 3).

C:\>java JavaClient "dffr" "(delta 3)" "cmbn" 2 3 4 2 6
Result: (Cmbn 1 (3 0) (-2 2) (2 4))

We can also use the Java Applet to introduce the parameters in several text
boxes. In Figure 1 we include an image of the applet that corresponds to the
differential of a combination presented before.

4 Conclusions and Further Work

In this paper we have presented a prototype based on CORBA that provides
a remote access for Kenzo. The leading-role in the data exchange is played by
an XML format which is a proper extension of MathML. The inclusion of XML
inside a CORBA object allows the use of only one IDL for every structure in
Kenzo, which makes easier the implementation and the running of CORBA.
Moreover, with our IDL interface we can use the server program without any
change, with only a little work for the wrapper of the system that allows making
use of it from a CORBA object.

It is a small prototype that works only with few of all the algebraic structures
that appear in Kenzo. Besides, the programs are totally based in CORBA, a
technology designed for computers connected by a local net, so our system can
not be used directly to interoperate in Internet.

Obviously, one of our short-term goals is to complete the prototype, to offer
the total functionality of Kenzo. For this task, we only will have to design the
XML representation for each structure and the parsers to translate them, but
in the part of CORBA and IDL interfaces the work is already done, our XML
format is generic. Another short-term goal is to try other technologies that allow
us to work outside a local net.

The prototype built can be understood as a first step towards a distributed
computation system, where some other technologies such as Web Services [1]
(using for instance WSDL for the description of the object instead of IDL, and
SOAP for the exchange of messages) or Grid Computing could be considered.
The infrastructure could consist for example on several services cooperating in
the same calculation, coordinated by a specific Web Service. Even if this work
shows a first step in this direction, many difficult research questions should be
addressed to reach this goal.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Concepts, Architec-
tures and Applications. Springer, 2004.

2. Andrés, M., Garćıa, F. J., Pascual, V., Rubio, J.: XML-Based interoperability among
symbolic computation systems. In Proceedings WWW/Internet 2003, Vol. II, Iadis
Press (2003) 925-929.



642 M. Andrés et al.

3. Andrés, M., Pascual, V., Romero, A., Rubio, J.: Distributed computing in Alge-
braic Topology: first trials and errors, first programs. In e-proceedings IAMC 2004.
http://www.orcca.on.ca/conferences/iamc2004/abstracts/04002.html

4. Object Management Group: Common Object Request Broker Architecture
(CORBA). http://www.omg.org.

5. Rubio, J., Sergeraert, F., Siret, Y.: EAT: Symbolic Software for Effective
Homology Computation. Institut Fourier, Grenoble, 1997. ftp://ftp-fourier.

ujf-grenoble.fr/pub/EAT.
6. Dousson, X., Sergeraert, F., Siret, Y.: The Kenzo program. Institut Fourier, Greno-

ble, 1999. http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/.
7. Ausbrooks, R. et al.: Mathematical Markup Language (MathML) Version 2.0. 2003.

http://www.w3.org/TR/2001/REC-MathML2-20010221/.
8. Caprotti,O., et al (eds): The OpenMath standard. 2000. http://www.

openmath.org/standard

9. Bray, T. et al. (eds): Extensible Markup Language (XML) 1.0. 2003. http://www.
w3.org/TR/REC-xml/.


	Preliminaries
	Notions of Algebraic Topology
	Symbolic Computation in Algebraic Topology
	Previous Work

	Development of the Prototype
	Examples
	Conclusions and Further Work

