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ABSTRACT
This paper relates how a “simple” result in combinatorial
homotopy eventually led to a totally new understanding of
basic theorems in Algebraic Topology, namely the Eilenberg-
Zilber theorem, the twisted Eilenberg-Zilber theorem, and
finally the Eilenberg-MacLane correspondance between the
Classifying Space and Bar constructions. In the last case,
it was an amazing lucky consequence of computations based
on conjectures not yet proved. The key new tool used in this
context is Robin Forman’s Discrete Vector Fields theory.

Categories and Subject Descriptors
G [4]: Algorithm design and analysis—Algebraic Topology

General Terms
Algorithms, Design, Experimentation, Performance, The-
ory.

Keywords
Constructive Algebraic Topology, Fibrations, Eilenberg-
Zilber theorems, Classifying Spaces, Bar Construction,
Eilenberg-MacLane Spaces, Homotopy Groups

1. INTRODUCTION.
This paper is nothing but story telling, it narrates how

some new unexpected fundamental theoretical results have
been obtained in Algebraic Topology, produced by exper-
imental evidence after numerous computations. These re-
sults are complex, not yet fully proved, but the underly-
ing algorithms are entirely known, allowing us to implement
them and to use them successfully.

Without waiting for the missing proofs, using the algo-
rithms now available, deep modifications have been made to
the Kenzo program, a program for “hard” computations in
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Algebraic Topology, when spectral sequences are involved;
the new procedures are much shorter, simpler, more read-
able and, the last but not the least, much more efficient.
For example, the computing time of the homotopy group
π5(ΩS3 ∪2 D

3) is now obtained in five minutes, whereas
with the previous version, on the same laptop, one hour
and thirty-five minutes were necessary.

With an interesting side-effect. The Kenzo program is
currently too complex to be proved. It allows us to produce
some homology and homotopy groups otherwise unreach-
able, and these groups remain of course questionable: are
these results “reasonably” sure? A common criterion con-
sists in using two different programs to check whether the
respective results are the same. It happens our programs
of Effective Homology remain, twenty years after the first
implementations, the only programs able to process these
calculations of Algebraic Topology. The kernel of the new
version of the Kenzo program, based on this new tool called
Discrete Vector Fields, and the previous one mainly based
on the Basic Perturbation Lemma, are totally different. So
that the check based on calculations using two different pro-
grams is now done, and the result is positive.

The paper is divided in Sections as follows.
In Section 2, Constructive Algebraic Topology, we recall

the nature of the computational problem in “classical” alge-
braic topology, and describe the general nature of the solu-
tion designed 25 years ago, leading to a series of computer
programs, the last one being the Kenzo program [8].

Section 3 is a brief exposition of the notion of Discrete
Vector Field, due to Robin Forman [11]. A vector field is
a possible tool to generate constructive homological reduc-
tions. Homology equivalences are the very heart of classical
algebraic topology; constructive homological reductions are
the heart of constructive algebraic topology.

The Cradle Theorem, Section 4, is an elementary result in
combinatorial homotopy; its proof was expected a routine
exercise, which surprisingly required Forman’s tool, this no-
tion of discrete vector field, and revealed also the power of
this tool in a totally new domain.

The Cradle Theorem, so proved, made obvious how the
very basic Eilenberg-Zilber theorem [10] (1950!) could also
make profit of appropriate discrete vector fields, producing
a new direct elegant proof, when the constructive classical
one is rather technical, six pages of complex calculations
in [9, Section 6]. The key point of the new construction,
very simple, is briefly explained in Section 5.

There exists also a twisted Eilenberg-Zilber theorem [7],
playing the same role with respect to the initial one as a



general fibration, sometimes called a twisted product, with
respect to a trivial product. It happens the vector field
technique solves at once the non-twisted and the twisted
Eilenberg-Zilber theorems, with exactly the same construc-
tion. This is sketched in Section 6.

It is possible to describe a classifying space, the base
space of a universal fibration, as an infinite twisted prod-
uct. Therefore, taking account of the previous results, it is
not amazing the discrete vector field technology can also be
used in this case, which gives an efficient method computing
the effective homology of a classifying space, in particular
the effective homology of the Eilenberg-MacLane spaces, the
key tool to compute the homotopy groups. It is the subject
of Section 7, where an old result conjectured by Eilenberg
and MacLane in 1953, which was not proved until 1993, is
now easily obtained by a totally new method. More precisely
the algorithm producing the reduction wished by Eilenberg
and MacLane is now available as a consequence of a simple
discrete vector field, allowing us to immediately and eas-
ily implement this solution. This remarkable discrete vector
field is enough to validate the calculations based on this vec-
tor field. But many expected further properties, mainly for
coherence with the involved algebraic structures, remain to
be proved.

Section 8 is a short report about the programming work so
made possible and a typical benchmark is quickly described.

Section 9 is devoted to future work.

2. CONSTRUCTIVE ALGEBRAIC TOPO-
LOGY.

Algebraic Topology tries to reduce topological problems,
often difficult, to some algebraic problems, hoped more
tractable. For example the Brouwer theorem states that
any continuous map on the closed n-ball f : Dn → Dn has a
fixed point. Algebraic topology reduces this problem to an-
other one: the identity map id : Z→ Z cannot be factorized
as a composition Z→ 0→ Z:

Z 0 Z
? ?

id

(1)

An impressive collection of Fields Medals have been at-
tributed to algebraic topologists: Serre, Thom, Milnor,
Smale, Novikov (Sergei), Quillen, Thurston, Donaldson,
Friedman, Kontsevich, Voevodsky. The subject is now so
important that it is sometimes unclear to decide whether
someone can be qualified as an algebraic topologist.

The basic tools of algebraic topology are methods asso-
ciating to topological spaces some invariants, such as ho-
mology groups, homotopy groups. Most textbooks of Alge-
braic Topology describe various methods “computing” these
groups, typically the numerous exact and spectral sequences.

It so happens a careful analysis shows these methods are
not algorithms. The computational problem of Algebraic
Topology consists on the contrary in obtaining “general”
algorithms able to compute the homology and homotopy
groups.

A theoretical method was quickly obtained by Edgar
Brown [6], but unfortunately concretely unapplicable, be-
cause of its complexity, even today, 55 years later. In
the eighties, different methods were proposed [17, 20]; only
one, due to Julio Rubio and the second author of this

text [18, 15], led to concrete programs allowing us to com-
pute some homology and homotopy groups so far unreach-
able. It is called Constructive Algebraic Topology, for “ordi-
nary” algebraic topology often suffers from non-effective ex-
istential quantifiers, on the contrary systematically required
effective in Constructive Logic.

Traditional methods in Algebraic Topology must often
handle intermediate objects which are not of finite type,
which therefore cannot be totally installed on a machine.
But the functional trick can be used to install instead on
your machine which we call locally effective implementa-
tions, as oracles able to answer any “local” question. Un-
fortunately Gödel and his friends explain such an imple-
mentation does not allow the user to compute the hoped-for
invariants from such strange fuzzy objects.

To overcome this last obstacle, we finally implement our
large objects as pairs connected by some “equivalences”:

[X,C∗(X)
ε⇐⇐⇒⇒ ECX∗ ] (2)

Here, X is some combinatorial topological object, not nec-
essarily of finite type, therefore coded as a “locally effective”
object. The chain complex C∗(X) is the algebraic object
defining its homological nature, also only locally effective.
For example, the definition of the homology groups H∗(X)
is direct from C∗(X), but Gödel taught us no general algo-
rithm can compute these homology groups from C∗(X).

The chain complex ECX∗ on the contrary is of finite type
(prefix E for effective) and elementary algorithms compute
its homology groups. Finally, the last but not the least, the
equivalence ε connects both chain complexes by a sophis-
ticated sort of homology equivalence. This equivalence in
particular ensures the homology groups of C∗(X) and ECX∗
are canonically isomorphic.

Unfortunately, no general algorithm can deduce ECX∗
and ε from X and C∗(X). When X is of finite type, such
an equivalence can be chosen trivial. If X is not of finite
type, sometimes, rarely, this equivalence can be deduced
from some appropriate particular results. Then, starting
from these particular cases, the general organization of Con-
structive Algebraic Topology allows the user to construct all
the reasonable spaces of Algebraic Topology as objects of the
type roughly described above at (2).

In this way, the computational problem of (simply con-
nected) algebraic topology is solved. This solution, thanks
to the powerful modern methods of functional programming,
can be easily implemented. The last version of the corre-
sponding program is the Kenzo program [8]. In particular
the Kenzo program implements constructive versions of the
famous Serre and Eilenberg-Moore spectral sequences; in
fact replacing them by a simpler but more efficient process
known as the Basic Perturbation Lemma [19, 5].

3. DISCRETE VECTOR FIELDS.
We add now a new tool to design the general organization

of constructive algebraic topology, known as the theory of
Discrete Vector Fields. Initiated by Robin Forman in his
landmark paper about the Discrete Morse Theory [11], it
is an elementary process to define and handle conveniently
some homotopy operators. The existential quantifiers for ho-
motopy operators in “standard” algebraic topology are most
often non-constructive; effectively constructing these oper-
ators is on the contrary the main task in constructive al-
gebraic topology, and this task is often made much easier



thanks to appropriate discrete vector fields. Milnor’s version
of the Morse theory [12] made an intensive use of differential
vector fields and Forman settled the appropriate translation
of these vector fields in combinatorial topology.

•

•

•

•

•

•

•

•

•

•

• •◦
(3)

The figure above displays a discrete vector field installed on
a simple cellular complex, a square divided in four squares.
This cellular complex needs 9 vertices, 12 edges and 4
squares. A discrete vector field is a collection of vectors,
each vector being simply a pair made of an n-cell, the target
of the vector, and an adjacent (n− 1)-cell, the source of the
vector. Here, 8 vectors are made of an edge and a vertex,
and 4 vectors are made of a square and an edge.

A differential vector field defines a flow, a continuous col-
lection of paths; a discrete vector field defines in the same
way (discrete) paths with an important difference: in gen-
eral, many different paths start from some origin; the picture
below should explain why this can happen.

• •

• • •

•
•• (4)

A discrete vector field is admissible if, for every cell σ, the
lengths of all the paths issued from this cell in the positive
direction are bounded by a fixed number λσ: infinite or
circular paths are forbidden.

If a discrete vector field is admissible, it defines a contrac-
tion of the initial cellular complex onto another one, made of
the critical cells, that is, those cells which are not involved in
the vector field. In the example of figure (3), only one cell is
missing, the initial vertex ◦ of the square, so that, not very
amazing, the whole square can be contracted on this unique
critical vertex.

We are mainly interested by the homological version of
this result.

Theorem 1. — Let V be an admissible discrete vector
field on a cellular complex X. Then V defines a homological
reduction ρ:

C∗(X) C∗(X
′)

f

g
hρ = (5)

The chain complex C∗(X) defines the homology groups of
the cellular complex X; the vector field defines a contracted
complex X ′ and the associated chain complex C∗(X

′). The
homological reduction ρ = (C∗(X), C∗(X

′), f, g, h) is made
of both involved chain complexes and three algebraic maps
f , g and h. The components f and g are chain complex
morphisms, the composition fg is the identity, the compo-
nent h is an “ideal” homotopy between gf and idC∗(X), that
is, satisfying idC∗X = gf + dh + hd, fh = 0, hg = 0 and
hh = 0. This is a convenient and efficient way to describe
C∗(X) ∼= C∗(X

′) ⊕ ker f , the complementary subcomplex
ker f being constructively proved acyclic. Both chain com-
plexes C∗(X) and C∗(X

′) are homologically equivalent, but
most often the big one C∗(X) carries additional structures
(simplicial, algebraic, . . . ) which could not be installed on
the small one C∗(X

′).

Also, even if the chain complex C∗(X) is not of finite type,
the small chain complex C∗(X

′) can be of finite type, so that
its homology groups are elementarily computable. This will
be the case in our main subject in Section 7.

4. THE CRADLE THEOREM.
Our organization of constructive algebraic topology pro-

duces effective versions of the Serre and Eilenberg-Moore
spectral sequences, see for example [4]. The next spectral
sequence to be processed is the Adams spectral sequence,
in fact a consequence of the more basic Bousfield-Kan spec-
tral sequence. Work about the last one is in progress, and
required in particular an elementary result of combinatorial
topology.

The first figure below describes how the ordinary square
[0, 1] × [0, 1] can be continually contracted onto three of its
faces, ({0, 1} × [0, 1]) ∪ ([0, 1]× {0}):

•

• (6)

If it is required to triangulate the square, the same process
can be combinatorially described as in the next figure above.
You must think the highest vector contracts the above tri-
angle onto two of its edges, then the same for the other
triangle. In other words we have replaced the differential
vector field defining the continuous lefthand contraction by
a discrete vector field defining the combinatorial righthand
contraction.

Theorem 2. (Cradle Theorem) — Let p, q be two
non-negative integers. Then a combinatorial contraction can
be defined Pp,q ⇒ Cp,q where:

∆m is the standard m-simplex
Pp,q = ∆p ×∆q

Hq = ∂∆q − int(∂0∆q)
Cp,q = (∆p ×Hq) ∪ ((∂∆p)×∆q)

Pp,q is the (p, q)-prism, the ordinary triangular prism be-
ing the (2, 1)-prism. The q-hat Hq is obtained by removing
from the boundary ∂∆q of the standard q-simplex, the inte-
rior of the face opposite to the vertex 0. Think this “hat” is
upside-down. Finally Cp,q is the (p, q)-cradle.

The square example before is the particular case p = q =
1. In this case, the 0-face ∂0∆1 is {1} with itself as inte-
rior (!), so that the 1-hat H1 is only the other end {0} of
the interval ∆1. The contraction P1,1 ⇒ C1,1 was sketched
before stating Theorem 2.

The (1,2)-cradle could be viewed as an actual rudimentary
cradle.

∆2

•

•

•

•

•

•

•

•

•

• ∆1

•

•

•

•

H2 (7)

Once the notion of discrete vector field is understood,
the particular cases of the reductions P1,1 ⇒ C1,1 and
P1,2 ⇒ C1,2 are not difficult, but the general case is not



so easy. You must design an appropriate sorting method to
organize by ordered pairs all the simplices not inside the cra-
dle, describing the combinatorial contraction onto the cra-
dle. Finally this requires an amusing game roughly described
in the next section for the close but more basic result known
as the Eilenberg-Zilber theorem.

For example, for p = q = 8, you have to sort in the ap-
propriate way 265,728 simplices of various dimensions in the
canonical triangulation of ∆8×∆8, requiring 4 seconds with
an efficient program. But the same program is out of mem-
ory to process the case p = q = 10, because of an unavoid-
able exponential complexity.

In fact studying this Cradle Theorem led us to a new com-
binatorial understanding of the essential Eilenberg-Zilber
theorem, to be sketched now.

5. A NEW PROOF FOR THE EILENBERG-
ZILBER THEOREM.

The Eilenberg-Zilber theorem [10] solves the following
problem. The general simplicial framework in combinato-
rial topology requires triangulated models for the topolog-
ical spaces to be processed. What about products? The
product of two 1-simplices is a square, which can be trian-
gulated as the union of two triangles. The exact correspon-
dence between a square and this collection of two triangles is
the particular case of the Eilenberg-Zilber theorem for the
bidimension (1, 1). If two simplicial sets X and Y are in
your environment, the product X ×Y has a natural decom-
position in prisms Pp,q = ∆p × ∆q and there remains to
triangulate these prisms; such a prism is naturally divided
in
(
p+q
p,q

)
(p+q)-simplices, and Eilenberg-Zilber describes the

exact connection between the chain complex generated by
the prisms and the one generated by the simplices after the
decomposition.

We will not give detailed explanations in this paper, but
we can explain the key idea, very simple, leading to our new
understanding of the Eilenberg-Zilber theorem.

A 1-simplex [0, 1] = I = ∆1 has two vertices with a canon-
ical order 0 < 1. The square ∆1×∆1 has four vertices, and it
is natural to consider the product order, which is not a total
order, the vertices (0, 1) and (1, 0) cannot be compared:

(0, 0)

(0, 1)

(1, 0)

(1, 1)

<

<

<

<

(0, 0)

(0, 1)

(1, 0)

(1, 1)

••

•

•

•
(8)

Observe the maximal chains correspond to the canonical
decomposition of the square in two triangles. This idea is
valid for any prism Pp,q. The (p+1)×(q + 1) vertices of Pp,q
inherit a natural product order, and a (p+ q)-simplex of the
canonical triangulation of the prism is exactly a maximal
chain for this product order. The picture below illustrates
the case (p, q) = (2, 1), the last one which can be illustrated
in our poor world with only three dimensions:

• (0, 0) < (0, 1) < (1, 1) < (2, 1)

• (0, 0) < (1, 0) < (1, 1) < (2, 1)

(0,0)

(1,0)

(2,0)

(0,1)

(1,1)

(2,1)

• (0, 0) < (1, 0) < (2, 0) < (2, 1)

In fact it is possible to illustrate by a simple “picture”
this decomposition in every bidimension (p, q); for example,

with obvious conventions, the righthand picture below is
a “drawing” of the 8-simplex σ = (0, 0)-(0, 1)-(1, 1)-(2, 1)-
(2, 2)-(3, 2)-(3, 3)-(4, 3)-(5, 3):

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

σ =•
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

∂3σ = (9)

There are
(

8
5,3

)
= 56 8-simplices of this sort. Their subsim-

plices must not be forgotten; for example the 3-face ∂3σ is
obtained in skipping the vertex #3, that is, the fourth one,
giving the other drawn 7-simplex; a (discrete) vector is also
sketched from ∂3σ to σ, to be used later. This convenient
plane representation of high-dimensional simplices is possi-
ble in general thanks to the product poset {0 . . . p}×{0 . . . q}.

In the case (p, q) = (1, 1) the reader could kindly admit
the following scheme describes the desired correspondence
between a square divided in two triangles and the brute
square:

•

•

•

•
• ⇒v

•

•

•

• (10)

The lefthand square, divided in two triangles, is provided
with a discrete vector field, made of a unique (!) vector v
pairing the edge σ = (0, 0)-(1, 1) with the triangle τ = (0, 0)-
(1, 0)-(1, 1). Think the lower triangle is collapsed on two
edges while the upper one is inflated. This is a vague inter-
pretation of the Eilenberg-Zilber theorem in the simple case
(p, q) = (1, 1).

The relation σ = ∂1τ is satisfied. In the framework of
product posets, this pairing is also described as follows:

•
•
•
•
•
v •

•
•
•

(11)

We see on this picture the source of the vector v is the
edge (two vertices) (0, 0)-(1, 1) and the target is the triangle
(three vertices) (0, 0)-(1, 0)-(1, 1).

Going back now to the figure (9) in the case of the bidi-
mension (5, 3), the pair made of ∂3σ and σ is also a vector of
the discrete vector field to be constructed in this case. More
precisely such a pair is constructed as follows. You run the
path describing a simplex from down-left to up-right; you
look for the first “event”, only the first one:

• If ever you run a diagonal •
• , then you decide this

simplex is the source of a vector of the discrete vector
field to be defined, the corresponding target being ob-

tained by replacing this diagonal by a bend • •
• . The

dimension of the last simplex is one more.

• Conversely, if ever you run a bend • •
• , (not a bend

•
• • ) then you decide this simplex is the target of a

vector of the discrete vector field to be defined, the
corresponding source being obtained by replacing this

bend by a diagonal •
• . The dimension of the last

simplex is one less.

In this way, almost all the simplices of Pp,q are divided in
disjoint pairs. Except those “without” any event, which re-
main “alone”, which necessarily have a simple form, such



as:

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

(12)

which corresponds to a “remaining” (4, 1)-prism in this case,
obtained by collapsing all the simplices inside it onto its
boundary, except one which on the contrary is inflated to fill
in the prism. Please admit this complex collapsing-inflating
process is totally described by the pairing so roughly de-
scribed. This very briefly sketched process is made rigor-
ous by the marvelous technique of the discrete vector fields,
which finally at once reproves the famous Eilenberg-Zilber
theorem [10]. In a way which, when implemented in our
computer programs, strikingly improved readability and ef-
ficiency.

Theorem 3. — Let X and Y be two simplicial sets.
Then a vector field VX,Y can be defined on the simplicial
product S(X × Y ) which defines the Eilenberg-Zilber homo-
logical reduction:

C∗(S(X × Y )) C∗(P (X × Y ))
f

g
hρEZ = (13)

S(X × Y ) is the presentation of the product X × Y as a
simplicial set, P (X × Y ) is the presentation of the same
product as a union of prisms, and both C∗(−)’s are the
respective associated chain complexes. The lefthand chain
complex carries a simplicial structure: the righthand one,
much smaller, cannot carries such a structure.

Every pair made of a p-simplex α of X and a q-simplex
β of Y produces one prism Pα,β in P (X × Y ); this prism
can be triangulated and divided in

(
p+q
p,q

)
(p + q)-simplices

in S(X × Y ), as explained above. The reduction ρEZ =
(f, g, h), thanks to the properties required for its compo-
nents, expresses the large chain complex as the direct sum
of a subcomplex isomorphic to the small one and another
one constructively acyclic. In this way the preferred presen-
tation of the product can be freely used according to the
environment, each presentation having advantages and dis-
advantages.

6. THE TWISTED EILENBERG-ZILBER
THEOREM.

Jean-Pierre Serre was rewarded in 1954 by a Fields Medal.
His work about spectral sequences and homotopy groups of
spheres really was a revolution in Algebraic Topology. An
essential ingredient was the notion of fibration, initiated by
Hurewicz in 1935. In particular Serre proved most construc-
tions in Algebraic Topology can me modelled as generalized
fibrations. A fibration is a sort of twisted product, as it
is illustrated by the simplest fibration. The usual product
Z × S1 is an infinite stack of circles. The circle #n in this
stack can be viewed as a 1-simplex, an interval In, where
both ends are attached to the vertex n ∈ Z.

•3
•
• I3

Z

•4
•
• I4

⇒
•

•

3

4

(14)

In short, we have decided the identifications ∂0In = n and
∂1In = n. Now we suddenly decide, instead of the first

identification, a different one: ∂0In = n + 1, see the bold
arrows below:

•3
•
• I3

•4
•
• I4

•5
•
• I5

•

•

•

⇒

3

4

5

(15)

You understand in the first case, we have constructed
a trivial product Z× S1, while in the second case, the
“twisted” method produced a so-called twisted product,
which in this case is isomorphic to the real line. In the
first case, the “vertical projection” is the standard projec-
tion Z×S1 → S1 while in the second case, the obtained map
R→ S1 is isomorphic to the exponential map t 7→ e2πit. For
us, the only important point here is the following: only the
0-face operator has been modified to transform the trivial
product into a twisted one.

This technique has been systematically generalized to ar-
bitrary dimensions many years ago in [2], a landmark article
from which we extract this “image”, p.651 which gives the
axioms for a TCP (twisted cartesian product) B ×̃Y :

This describes the simplicial structure of the TCP when a
twisting function τ is defined, a function satisfying a few ap-
propriate properties. The reader understands we just want
to highlight that, in the general situation, the same remark-
able property is observed: for the most general combinato-
rial definition of a twisted product, it is enough to perturb

the ordinary 0-face of the trivial product, not the other
i-faces for i ≥ 1, a property not at all obvious a priori.

Now an extraordinary miracle. We repeat the illustra-
tion about the lovely vector field solving the Eilenberg-Zilber
problem:

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

∂3σ = •
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

σ = (16)

The vector sketched above starts from the 3-face of an 8-
simplex, going to this simplex. The key point is the face
index, 3 in this case. It is possible such a vector invokes a
1-face :

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

∂1σ
′ = •

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

σ′ = (17)

But it is definitively impossible such a “vector” comes from

a 0-face. The game based on diagonals •
• and bends • •

•

is such that the i-incidence relation between both involved
simplices is possible only with i > 0. This is the miracle,
because on the contrary, in a twisted product, the twisted
property is concerned only by the 0-face operator.

We cannot give the details in the setting of this article,
see the preprint [14], but because of this miracle, exactly



the same vector field can be used in the general case of a
twisted product, to obtain which is usually called the twisted
Eilenberg-Zilber theorem. Compare the efficiency of this
discrete vector field technique with the 9 years between the
references [10] and [7]; and also with the complexity of the
last article.

Theorem 4. Let X ×τ Y be some twisted product of two
simplicial sets X and Y . Then a vector field VX,Y can be
defined on the simplicial product S(X ×τ Y ) which defines
the twisted Eilenberg-Zilber reduction:

C∗(S(X ×τ Y )) C∗(P (X ×τ Y ))
f

g
hρτEZ =

The components S(X×τY ) and P (X×τY ) are the respec-
tive simplicial and prismatic presentations of the twisted
product X ×τ Y .

7. AN OLD RESULT CONJECTURED BY
EILENBERG AND MACLANE.

Another image, the statement of the main theorem of the
paper [9], where we have highlighted the word “conjecture”:

In the main applications, R in fact is a simplicial group,
a topological group with a compatible simplicial structure,
WN (R) is the classifying space of this group, the base space
of a universal fibration for the structural group R, and
BN (RN ) is the Bar construction of the same group, a sim-
pler process constructing only an “algebraic” version of the
classifying space. These objects are the heart of algebraic
topology, in particular the key objects to compute homotopy
groups. The problem is to homologically compare both ver-
sions WN (R) and BN (RN ) of the classifying space.

Which is called a reduction in this extract of [9] is in the
current terminology a homology equivalence, and which is
called a contraction is now called a (homological) reduction.

The difference between the main theorem of [9] and the
result conjectured is the following. The Theorem 20.1 states
that the map g induces an isomorphism in homology. The
fact of g being the injection of a contraction is much more
precise. It claims a homological reduction can be con-
structed:

WN (R) BN (RN )
f

g
hρ = (18)

Such a reduction ρ would express:

WN (R) = BN (RN )⊕ ker f

with ker f constructively acyclic. This is in particular the
key point to be able to use this machinery to produce algo-
rithms computing homotopy groups.

The only available proof of this conjecture [13] adds to [9]
the use of the Homological Perturbation Lemma [5], not
available in the fifties. The resulting algorithm is relatively

complex and has not yet been implemented. We obtain this
reduction, computationally and theoretically, via a totally
different process.

It happens such a reduction ρ was computationally con-
structed a few years ago, thanks to the previous work of Julio
Rubio, see [4], where the dual situation is studied in the more
difficult situation of loop spaces and Cobar constructions, to
obtain an efficient solution for the so-called Adam’s problem.
The same technique can be applied to classifying spaces and
Bar constructions, in which case Rubio’s construction pro-
duces an equivalence made of two reductions:

WN (R)
ρ1⇐⇐ BarR(WN (R)⊗τ R,Z)

ρ2⇒⇒ BN (RN )

Both reductions are made of triples ρ1 = (f1, g1, h1) and
ρ2 = (f2, g2, h2). In such a situation where the lefthand
term WN (R) is enormous with respect to the righthand
term BN (RN ), “often” a direct reduction ρ3 = (f3, g3, h3) :
WN (R) ⇒⇒ BN (RN ) can be constructed by the formulas
f3 = f2g1, g3 = f1g2 and h3 = f1h2g1. We have not yet
succeeded in understanding when such a method is correct,
but after numerous computer tries, it was obvious in this
case the ρ3 so obtained is the reduction which was desired
sixty years ago by Eilenberg and MacLane. The situation is
so complex we have not yet proved this result.

Now the structure of the big object WN (R), a classifying
space, is a sort of infinite twisted product:

WN (R) = · · · (· · · ((((R×τR)×τR)×τR)×τR) · · ·×τR) · · · (19)

Only a “sort” of infinite product, for the product process
is combined with a complex suspension process shifting the
dimensions, making the adjustment of our Eilenberg-Zilber
vector field rather problematic.

But finally we quickly found this vector field by a funny
process, helped by another nice property of these Discrete
vector fields. The hoped-for vector field should generate the
reduction (18). Key point: it happens that, if this is cor-
rect, then the vector field satisfying this property is entirely
determined by this reduction.

We explained above the reduction guessed by Eilenberg
and MacLane was firstly identified as a very indirect con-
sequence of Julio Rubio’s previous work, without any proof
to justify the result. Because of the reverse dependence re-
duction ⇒ vector field, it was tempting, instead of studying
directly the complex infinite product (19), to use this pro-
cess to obtain the vector field from the reduction not yet
proved, but experimentally known.

The guess was correct. Computational experiments fol-
lowing this idea quickly gave a remarkably simple vector
field, of the same sort as the Eilenberg-Zilber vector fields.
Reversing the process, implementing the vector field so ob-
tained as a general process, other calculations showed this
simple vector field really produces the reduction conjectured
by Eilenberg and MacLane, guessed by a dirty trick from
Julio Rubio’s equivalence.

Now the situation is much better. We clearly have the
right vector field, we have the right reduction, and the
process already used for proving in a different way the
Eilenberg-Zilber theorems should work also to obtain along
the same lines a complete proof for the reduction (18). Any-
way, because the reduction is obtained through a vector field,
it is enough to validate the computations obtained using
it. Are missing some compatibility properties between the
various involved algebraic structures, quite interesting, but
currently not necessary for our computations.



8. ABOUT COMPUTING TIMES.
These results are mainly algorithms. When the discrete

vector field proof for the Eilenberg-Zilber theorems was
discovered, implementing these theorems in our programs
through discrete vector fields significantly improved time
and space complexities.

It was therefore tempting, without waiting for the com-
plete proof of the reduction conjectured by Eilenberg and
MacLane, to modify the computation of the effective homol-
ogy of the classifying spaces in the Kenzo program, so far
following Julio Rubio’s algorithm. Furthermore, the new im-
plementation systematically using our discrete vector fields
is much simpler.

A typical example is the computation of the homotopy
group π5(ΩS3∪2D

3). It is elementary to prove the first non-
null homotopy group of ΩS3 = {continuous maps S1 → S3}
is π2(ΩS3) = Z, so that this makes sense to attach a 3-
disk D3 to this space by an attachment map S2 → ΩS3

of degree 2; let us call X2 = ΩS3 ∪2 D
3 the bizarre space

so obtained. The simplicial model of this space is not of
finite type, but thanks to the work of Julio Rubio about
the Adams problem, it is a space with effective homology,
and the Kenzo program can be used to apply the Whitehead
tower method.

To compute the fifth homotopy group, the following se-
quence of fibrations is constructed:

K(Z/2, 1) −→ X3 −→ X2 π2(X2) = Z/2
K(Z/2, 2) −→ X4 −→ X3 π3(X3) = Z/2
K(Z, 3) −→ X ′4 −→ X4 π4(X4) = Z/4 + Z

K(Z/2, 3) −→ X ′′4 −→ X ′4 π4(X ′4) = Z/4
K(Z/2, 3) −→ X5 −→ X ′′4 π4(X ′′4 ) = Z/2

Each fibre space K(G,n) is an Eilenberg-MacLane space,
which uses the first non-null homotopy group G of the base
space to construct a total space, an appropriate twisted
product, with this group cancelled or decreased. Finally
the Whitehead tower produces π5(ΩS3 ∪2 D

3) = π5(X2) =
π5(X3) = · · · = π5(X ′′4 ) = π5(X5) = H5(X5) = (Z/2)4. The
space X5 is 4-connected, which implies π5(X5) = H5(X5),
which homology group is computable. In particular, the
space of the continuous maps S5 → ΩS3 ∪2 D

3 has 16 con-
nected components.

On an ordinary laptop, with the previous version of the
Kenzo program, this computation needed 1h35m, while with
the new technique of discrete vector fields to obtain the ef-
fective homology of all these Eilenberg-MacLane spaces, now
the computation is done in 5 minutes. The time complexity
for this particular computation has been divided by 19. The
logfile shows also the space complexity has been divided by
2.3.

9. TO DO.
The various structures so obtained with the help of dis-

crete vector fields can reasonably be claimed the defini-
tive versions of the Eilenberg-Zilber theorems, ordinary or
twisted; the same for the reduction conjectured by Eilen-
berg and MacLane and also for the effective homology of the
Eilenberg-MacLane spaces or more generally for the classi-
fying spaces.

The underlying structures present in these structures are
very reach: in particular many algebra structures, coalge-

bra structures, module structures, comodule structures are
involved. It is the first time a direct reduction:

C∗(K(G,n))⇒⇒ Barn(C∗(K(G, 0)))

is obtained by a simple process, very simple to program, so
simple that when implemented, the corresponding programs
are immediately significantly improved. Studying the exact
algebraic coherence properties which are satisfied by these
reductions is an essential subject, where much work remains
to do.

These algorithms are simple but raise new problems of
recursiveness which cannot be explained in this brief re-
port. We cannot pretend our implementation is the best
one, maybe some significant progress can be again obtained
with regard to this question.

Using the same strategy, we have identified the vector
fields allowing us to construct a direct reduction:

Ωn(X)⇒⇒ C̃obarn(X)

but the situation is terribly more complicated, it is no longer
a matter of iterated Cobar constructions, the terrible A∞-
coalgebra structures are then involved, this is why the tilde
above the Cobar operator. Taking account of Forman’s con-
nection [11] between discrete vector fields and homotopy
types, this should finish in a very general and relatively
simple solution for the longstanding problem of geometri-
cal models of finite type for the homotopy types of iterated
loop spaces [1, 3, 16].
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