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a b s t r a c t

In this paper, we present several algorithms related with the
computation of the homology of groups, from a geometric
perspective (that is to say, carrying out the calculations bymeans of
simplicial sets and using techniques of Algebraic Topology). More
concretely,we have developed some algorithmswhich,making use
of the effective homologymethod, construct the homology groups of
Eilenberg–MacLane spaces K(G, 1) for different groups G, allowing
one in particular to determine the homology groups of G.

Our algorithms have been programmed as newmodules for the
Kenzo system, enhancing itwith the following new functionalities:

• construction of the effective homology of K(G, 1) from a given
finite type free resolution of the group G;

• construction of the effective homology of K(A, 1) for every
finitely generated Abelian group A (as a consequence, the
effective homology of K(A, n) is also available in Kenzo, for all
n ∈ N);

• computation of homology groups of some 2-types;
• construction of the effective homology for central extensions.

In addition, an inverse problem is also approached in this work:
given a group G such that K(G, 1) has effective homology, can a
finite type free resolution of the group G be obtained? We provide
some algorithms to solve this problem, based on a notion of norm
of a group, allowing us to control the convergence of the process
when building such a resolution.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

When using homological algebra techniques to study group theory, two different (but related)
alternatives are possible (see Brown (1982) for details on the following discussion). One is algebraic
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and is based on the notion of resolution (replacing the group under study by an acyclic object in a
suitable category of modules). The other alternative is geometric in nature. It consists in finding a
contractible topological space with a free action of a group G. Then the space of orbits of the action
can be endowed with a convenient quotient topology, in such a way that we obtain an aspherical
space (that is to say, a space whose only non-null homotopy group is the first, fundamental one). The
homology of this space is, by definition, the homology of G, and it does not depend on the choosing
of the contractible space or of the action. Each aspherical space (unique up to homotopy type) is a
particular Eilenberg–MacLane space for G, and is generically denoted by K(G, 1).

If we move to computational mathematics, the preferred via chosen was the algebraic one, as
exemplified by the package HAP (Ellis, 2009) of the computer algebra system GAP (The GAP Group,
2008), which contains an impressive number of algorithms dealing with resolutions. The geometric
way has been up to now neglected from the algorithmic point of view. The reason is that the
contractible spaces to be constructed are very frequently of infinite type (even in cases where the
group G is not too complicated), apparently closing the possibility of a computational treatment.

This view changed drastically when Sergeraert introduced at the end of the 1980’s his theory
of effective homology (Sergeraert, 1994). His methods allow the programmer to deal with spaces of
infinite dimension, encoded in a lazy functional programming style, producing a complete revision
of Algebraic Topology from a constructive point of view (see Rubio and Sergeraert (2006) for recent
developments of this theory). Perhaps more important from a practical point of viewwas Sergeraert’s
construction of the Kenzo system, a Common Lisp program implementing the effective homology
methods (Dousson et al., 1999). Since then, the programmer can work on a computer with simplicial
sets, loop spaces, fibrations, classifying spaces and many other Algebraic Topology constructions,
computing, at the end, homology groups of complicated spaces (under the combinatorial form of
simplicial sets).

Taking into account this new situation, this paper represents a first step to take up again the
geometrical way of approaching group homology, by means of techniques from effective homology
and using, and extending, Kenzo as a computing platform.

Our proposal is not opposed to the algebraic view. Our aim is rather to take the best of both
worlds. Therefore, and as a first module, we programmed, in collaboration with Graham Ellis (see
Romero et al., 2009), an OpenMath link between HAP and Kenzo, allowing Kenzo to import from HAP
resolutions of groups. Once a resolution of a group G is internally stored in Kenzo, an algorithm allows
us to construct the Eilenberg–MacLane space K(G, 1), with effective homology. This provides not only
access to some homology groups of G, but also makes it possible to apply on the space K(G, 1) all the
powerful tools available in Kenzo, and construct in this way further spaces.

This via is explored in this paper. We show two applications in Algebraic Topology, and another
one in Homological Algebra. As a first application, we develop a Kenzo package to compute, as objects
with effective homology, the generalized Eilenberg–MacLane spaces K(G, n) for any finitely generated
Abelian group G and for all n ∈ N. These objects are very important in Algebraic Topology, to study
and compute homotopy groups, throughWhitehead and Postnikov towers (seeMay (1967) and Rubio
and Sergeraert (2006)).

As a second topological application, we compute mechanically (for the first time, up to our
knowledge) some homology groups of 2-types, the second step (the first one consists of Eilenberg–
MacLane spaces) towards the difficult problem of characterizing homotopy types.

Our last application provides programs to deal with the effective homology of central extensions
of groups. The theoretical algorithms were known some time ago (see Rubio, 1997), but only now
the technological tools explained before allow us to tackle the problem of programming them. Let us
observe that this algebraic application has also positive consequences on topological problems, since
it enlarges the field of application of our 2-types package: we can also compute with 2-types whose
fundamental group is a central extension.

Finally, we have also approached an inverse problem: how to obtain a resolution of a group G from
the knowledge of an effective homology of K(G, 1). The results in this area are still partial, and more
research will be needed to get fully satisfactory algorithms, and to proceed to implement them as
Kenzo modules.



754 A. Romero, J. Rubio / Journal of Symbolic Computation 47 (2012) 752–770

The organization of the paper is as follows. The next section is devoted to preliminaries. Section 3
contains our main algorithm, which constructs the effective homology of K(G, 1) from a finite type
resolution of a group G, and then Section 4 collects some interesting fields of application of this
result. Section 5 explains how our algorithms have been translated to Common Lisp and comments
on experimental results. In Section 6 an inverse problem is considered: given a group Gwith effective
homology, it is (sometimes) possible to determine a resolution forG. The paper endswith conclusions,
open problems and the bibliography.

2. Definitions and preliminaries

2.1. Some fundamental notions about homology of groups

The following definitions and important results about homology of groups can be found inMacLane
(1963) and Brown (1982).

Definition 1. Given a ring R, a chain complex of R-modules is a pair of sequences C∗ = (Cn, dn)n∈Z
where, for each degree n ∈ Z, Cn is an R-module and dn : Cn → Cn−1 (the differential map) is an
R-module morphism such that dn−1 ◦ dn = 0 for all n.

Definition 2. Let C∗ = (Cn, dn)n∈Z be a chain complex of R-modules, with R a general ring. For
each degree n ∈ Z, the nth homology module of C∗ is defined to be the quotient module Hn(C∗) =

Ker dn/ Im dn+1. A chain complex C∗ is acyclic if Hn(C∗) = 0 for all n.

Definition 3. Let G be a group and ZG the free Z-module generated by the elements of G. The
multiplication in G extends uniquely to a Z-bilinear product ZG × ZG → ZG which makes ZG a
ring. This is called the integral group ring of G.

Definition 4. A resolution F∗ for a group G is an acyclic chain complex of ZG-modules

· · · −→ F2
d2

−→ F1
d1

−→ F0
ε

−→ F−1 = Z −→ 0

where F−1 = Z is considered a ZG-module with the trivial action and Fi = 0 for i < −1. The map
ε : F0 → F−1 = Z is called augmentation. If Fi is free for each i ≥ 0, then F∗ is said to be a free resolution.

Very frequently, resolutions come equippedwith a contracting homotopy h, which is a set of Abelian
groupmorphisms hn : Fn → Fn+1 for each n ≥ −1 (in general not compatible with the G-action), such
that

εh−1 = IdZ

h−1ε + d1h0 = IdF0

hi−1di + di+1hi = IdFi , i > 0.

The existence of the contracting homotopy for F∗ assures in particular the exactness of the resolution.

Given a free resolution F∗, one can consider the chain complex of Z-modules (that is to say, Abelian
groups) C∗ = (Cn, dCn)n∈N defined by

Cn = (Z ⊗ZG F∗)n, n ≥ 0

(whereZ ≡ C∗(Z, 0) is the chain complexwith only one non-nullZG-module in dimension 0, C0 = Z)
with differential maps dCn : Cn → Cn−1 induced by dn : Fn → Fn−1.

Let us emphasize the difference between the chain complexes F∗ and C∗ = Z⊗ZG F∗. The elements
of Fn (n ≥ 0) can be seen aswords


λi(gi, zi)where λi ∈ Z, gi ∈ G and zi is a generator of Fn (which is

a free ZG-module). On the other hand, the associated chain complex C∗ = Z ⊗ZG F∗ of Abelian groups
has elements in degree n of the form


λizi with λi ∈ Z and zi a generator of the free Z-module Cn.

Although the chain complex of ZG-modules F∗ is acyclic, C∗ = Z ⊗ZG F∗ is in general not exact and
its homology groups are thus not null. An important result in homology of groups claims that these
homology groups are independent of the chosen resolution for G.
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Theorem 5 (Brown, 1982). Let G be a group and F∗, F ′
∗
two free resolutions of G. Then

Hn(Z ⊗ZG F∗) ∼= Hn(Z ⊗ZG F ′

∗
) for all n ∈ N.

The hypothesis that F∗ and F ′
∗
are free can in fact be relaxed; it suffices for the modules F∗ and F ′

∗

to be projective. This theorem leads to the following definition.

Definition 6. Given a group G, the homology groups Hn(G) are defined as

Hn(G) = Hn(Z ⊗ZG F∗), n ∈ N

where F∗ is any free (or projective) resolution for G.

Let G be a group, how can we determine a free resolution F∗? One approach is to consider the Bar
resolution B∗ = Bar∗(G) (explained, for instance, in MacLane (1963)) whose associated chain complex
Z ⊗ZG B∗ can be viewed as the chain complex of the Eilenberg–MacLane space K(G, 1) (see Brown
(1982), for details). The homology groups of K(G, 1) are those of the group G and this space has a big
structural richness. But it has a serious drawback: its size. If n > 1, then K(G, 1)n = Gn. In particular,
if G = Z, the space K(G, 1) is of infinite type in each dimension. This fact is an important obstacle to
using K(G, 1) as a means for computing the homology groups of G. It would be therefore convenient
to construct smaller resolutions.

For some particular cases, small (or minimal) resolutions can be directly constructed. For instance,
let G be the cyclic group of orderm with generator t , G = Cm. The resolution F∗ for G

· · ·
t−1
−→ ZG

N
−→ ZG

t−1
−→ ZG−→Z −→ 0

where N denotes the norm element 1 + t + · · · + tm−1 of ZG, produces the chain complex of Abelian
groups

· · ·
0

−→ Z
m

−→ Z
0

−→ Z −→ 0

and therefore

Hi(G) =

Z if i = 0
Z/mZ if i is odd
0 if i is even and i > 0.

But in general it is not so easy to obtain a resolution for a group G, and in fact this problem provides
an interesting research field where many papers and works have appeared trying to determine
resolutions for different kinds of groups. As wewill see later, the GAP package HAP has been designed
as a tool for constructing resolutions for a wide variety of groups. On the other hand, our work shows
that the effective homologymethod, introduced in the following section, could also be helpful in order
to compute the homology of some groups.

2.2. Effective homology

We now present the general ideas of the effective homology method, devoted to the computation
of homology groups of spaces. See Rubio and Sergeraert (2002) and Rubio and Sergeraert (2006) for
more details.

Definition 7. A reduction ρ between two chain complexes C∗ = (Cn, dCn)n∈N and D∗ = (Dn, dDn)n∈N
(which is denoted ρ : C∗ ⇒⇒D∗) is a triple (f , g, h) where: (a) the components f and g are chain
complex morphisms f : C∗ → D∗ and g : D∗ → C∗; (b) the component h is a homotopy operator
h : C∗ → C∗+1 (a graded group morphism of degree +1); (c) the following relations are satisfied:
fg = IdD; dCh + hdC = IdC −gf ; fh = 0; hg = 0; hh = 0.

These properties express that C∗ is the direct sumofD∗ and an acyclic complex. This decomposition
is simply C∗ = Ker f ⊕ Im g , with Im g ∼= D∗ and H∗(Ker f ) = 0. In particular, this implies that the
graded homology groups H∗(C∗) and H∗(D∗) are canonically isomorphic.
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Remark 8. A reduction is in fact a particular case of chain equivalence in the classical sense (see
MacLane (1963), page 40), where the homotopy operator on the small chain complex D∗ is the null
map.

Definition 9. A (strong chain) equivalence ε between two chain complexes C∗ and D∗, denoted by
ε : C∗ ⇐⇐⇒⇒D∗, is a triple (B∗, ρ1, ρ2) where B∗ is a chain complex, and ρ1 and ρ2 are reductions
ρ1 : B∗ ⇒⇒C∗ and ρ2 : B∗ ⇒⇒D∗.

Remark 10. We need the notion of effective chain complex: it is essentially a free chain complex C∗

where each group Cn is finitely generated, and a provided algorithm returns a (distinguished) Z-basis
in each degree n; in particular, its homology groups are elementarily computable (for details, see Rubio
and Sergeraert (2002)).

Definition 11. An object with effective homology X is a quadruple (X, C∗(X),HC∗, ε) where C∗(X) is a
chain complex canonically associated with X (which allows us to study the homological nature of X),
HC∗ is an effective chain complex, and ε is an equivalence ε : C∗(X)⇐⇐⇒⇒HC∗.

It is important to understand that in general the HC∗ component of an object with effective
homology is not made of the homology groups of X; this component HC∗ is a free Z-chain complex of
finite type, in generalwith a non-null differential,whose homology groupsH∗(HC∗) can bedetermined
by means of an elementary algorithm. From the equivalence ε one can deduce the isomorphism
H∗(X) := H∗(C∗(X)) ∼= H∗(HC∗), which allows one to compute the homology groups of the initial
space X . In this way, the notion of object with effective homology provides a method to compute
homology groups of complicated spaces by means of homology groups of effective complexes.

The effective homology technique is based on the following idea: given some topological spaces
X1, . . . , Xn, a topological constructor Φ produces a new topological space X . If effective homology
versions of the spaces X1, . . . , Xn are known, then one should be able to build an effective homology
version of the space X , and this versionwould allowus to compute the homology groups of X . A typical
example of this kind of situation is the loop space constructor. Given a 1-reduced simplicial set X with
effective homology, it is possible to determine the effective homology of the loop space Ω(X), which
in particular allows one to compute the homology groups H∗(Ω(X)). Moreover, if X is m-reduced,
this process may be iterated m times, producing an effective homology version of Ωk(X), for k ≤ m.
Effective homology versions are also known for classifying spaces or total spaces of fibrations, see
Rubio and Sergeraert (2006) for more information.

All these constructions have been implemented in the Kenzo system (Dousson et al., 1999),
a Common Lisp program which makes use of the effective homology method to determine homology
groups of complicated spaces; it has obtained some results (for example homology groups of iterated
loop spaces of a loop space modified by a cell attachment, components of complex Postnikov towers,
etc.) which had never been determined before. Furthermore, Kenzo implements Eilenberg–MacLane
spaces K(G, n) for every n but only for G = Z and G = Z/2Z (these spaces appear in different
constructions of Algebraic Topology), although in principle it is not designed to determine the
homology of groups and it does not know how to work with resolutions.

These ideas suggest that the effective homology technique and the Kenzo program should have
a role in the computation of the homology of a group G. To this end, we can consider the Eilenberg–
MacLane space K(G, 1), whose homology groups coincidewith those ofG. The size of this spacemakes
it difficult to calculate the groups in a direct way, but it is possible to operate with this simplicial set
making use of the effective homology technique: if we construct the effective homology of K(G, 1)
then we would be able to efficiently compute the homology groups of K(G, 1), which are those of
G. Furthermore, it should be possible to extend many group theoretic constructions to effective
homology constructions of Eilenberg–MacLane spaces. We thus introduce the following definition.

Definition 12. A group G is a group with effective homology if K(G, 1) is a simplicial set with effective
homology.

The problem is, given a group G, how can we determine the effective homology of K(G, 1)? If the
group G is finite, the simplicial set K(G, 1) is effective too, so that it can be considered with effective
homology in a trivial way. However, the enormous size of this space makes it difficult to obtain real
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calculations, and therefore even in this case we will try to obtain an equivalence C∗(K(G, 1))⇐⇐⇒⇒ E∗

where E∗ is effective and (much) smaller than the initial complex. Section 3 of this paper presents an
algorithm that computes this desired equivalence provided that the group G is endowed with a finite
type resolution.

3. Effective homology of a group from a resolution

This section is devoted to an algorithm computing the effective homology of a group G given
a (small) free ZG-resolution. This algorithm was the main theoretical result included in the work
Romero et al. (2009) and has been implemented in Common Lisp enhancing the Kenzo system.
We will see some examples of use of these new programs in Section 5. A brief description of
the construction of the algorithm is included in the following paragraphs. For more details, see
Romero et al. (2009).

Let G be a group and F∗ a free (augmented) finite type resolution forGwith a contracting homotopy
h. We want to construct the effective homology of the space K(G, 1), that is to say, a (strong chain)
equivalence C∗(K(G, 1))⇐⇐⇒⇒ E∗ where E∗ is an effective chain complex.

We begin by considering the Bar resolution B∗ = Bar∗(G) for G, with augmentation ε′ and
contracting homotopy h′ (the definition of these maps can be found in Brown (1982)). As B∗ and the
given resolution F∗ are free resolutions forG, it is well known (see Brown, 1982) that one can explicitly
construct morphisms of chain complexes of ZG-modules f : B∗ → F∗ and g : F∗ → B∗ which are
homotopy equivalences. Moreover, one can construct graded morphisms of ZG-modules

k : F∗ → F∗+1, k′
: B∗ → B∗+1

such that dFk + kdF = IdF −fg and dBk′
+ k′dB = IdB −gf .

We have therefore a homotopy equivalence (in the classical sense):

B∗

k′

�� f
++ F∗

g
kk

k
��

in which the four components f , g , k and k′ are compatible with the action of the group G.
If we now apply the functor Z ⊗ZG −, which is additive, we obtain an equivalence of chain

complexes (of Z-modules):

Z ⊗ZG B∗

k′

�� f
--
Z ⊗ZG F∗

g
mm

k
��

where both chain complexes provide us the homology of the initial group G, that is,

H∗(Z ⊗ZG B∗) ∼= H∗(Z ⊗ZG F∗) ≡ H∗(G).

In order to obtain a strong chain equivalence (in other words, a pair of reductions, following the
framework of effective homology), we make use of the mapping cylinder construction (see Weibel,
1994). This allows one to produce a (strong chain) equivalence

Z ⊗ZG B∗

ρ′

⇐⇐ Cylinder(f )∗
ρ

⇒⇒ Z ⊗ZG F∗.

The definitions of the different components of both reductions are included in Romero et al. (2009).
Now we recall that the left chain complex Z ⊗ZG B∗ is equal to C∗(K(G, 1)). On the other hand, if

we suppose that the initial resolution F∗ is of finite type (and small), then the right chain complex
Z ⊗ZG F∗ ≡ E∗ is effective (and small too), so that we have obtained the desired effective homology
of K(G, 1),

C∗(K(G, 1))⇐⇐⇒⇒ E∗.
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We have constructed in this way an algorithm computing the effective homology of a group,
formally described in Algorithm 1.

Algorithm 1 Computation of the effective homology of a group

Require: a group G and a free (augmented) finite type resolution F for Gwith a contracting homotopy
h.

Ensure: a (strong chain) equivalence ε : C∗(K(G, 1))⇐⇐⇒⇒ E where E is an effective chain complex.
1: B = BarResolution(G)

[Compute the Bar resolution of the group G and store it in the variable B]

2: f = 2ResolutionsRightZGMorphism(B, F)

[f : B → F is the morphism of chain complexes of ZG-modules between both resolutions]

3: g = 2ResolutionsLeftZGMorphism(B, F)

[g : F → B is the morphism of chain complexes of ZG-modules between both resolutions]

4: k = 2ResolutionsRightHomotopy(B, F)

[k : F∗ → F∗+1 is the graded morphism of chain complexes of ZG-modules such that dF k + kdF = IdF −fg]

5: k′
= 2ResolutionsLeftHomotopy(B, F)

[k′
: B∗ → B∗+1 is the graded morphism of chain complexes of ZG-modules such that dBk′

+ k′dB = IdB −gf ]

6: ρ = CylinderRightReduction(f )

[Computes a reduction ρ : Cylinder(f )∗ ⇒⇒Z ⊗ZG F∗ . Only the parameter f is necessary]

7: ρ ′
= CylinderLeftReduction(f , g, k′, k)

[Computes a reduction ρ ′
: Cylinder(f )∗ ⇒⇒Z ⊗ZG B∗]

8: ε = BuildHomotopyEquivalence(ρ ′, ρ)

[Constructs a (strong chain) equivalence from two reductions. The result is a reduction C∗(K(G, 1))⇐⇐⇒⇒ E∗]

All the functions included in Algorithm 1 are new functions which have been imple-
mented in Common Lisp enhancing the Kenzo system, with the exception of the function
BuildHomotopyEquivalence which was already included in Kenzo. As we will see in Section 5
the names of our real Lisp functions are not exactly the same as those included in this algorithm. Our
implementation follows in most cases Kenzo’s habit of using only the first consonants involved in the
description of a function; for the general algorithmwe have preferred to include a complete name for
being more intuitive. The same will be done for all algorithms in this paper.

The strong chain equivalence determined by Algorithm 1 makes it possible to determine the
homology groups of G, and, what is more useful, once we have K(G, 1) with its effective homology
we could apply different constructors and obtain the effective homology of the results. This could
allow one, for instance, to determine the homology of some groups (obtained from other initial groups
with effective homology) without constructing a resolution for them. Some fields of application of our
algorithm are introduced in the following section.

4. Applications

4.1. 2-types

Let A be an Abelian group and G a group acting on A; a 2-type for G and A is a (topological) space
with π1(X) = G, π2(X) = A, and πn(X) = 0 for all n ≥ 3; the computation of the homology groups of
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these spaces is a difficult problem in the field of group homology (Ellis, 1992). It is well known that a
2-type X for G and A corresponds to a cohomology class [f ] in H3(G, A), and there exists a fibration

K(A, 2) ↩→ X → K(G, 1).

The theoretical existence of this fibration can be made constructive as follows, when the action of
G on A is trivial. A cohomology class [f ] is given by a 3-cocycle f , which is a map f : K(G, 1)3 → A
(satisfying some properties). This map induces a simplicial morphism f : K(G, 1) → K(A, 3), which
can be composed with the universal fibration (see May, 1967) K(A, 2) ↩→ E → K(A, 3) in order to
construct the desired fibration. In this way, we obtain a twisting operator τf : K(G, 1)∗ → K(A, 2)∗−1
which allows one to express the total space X as a twisted Cartesian product

X = K(A, 2) ×f K(G, 1).

Supposing now that the group G is given with a finite type free resolution, our Algorithm 1 can
be applied in order to produce the effective homology of K(G, 1). Analogously, provided a finite type
resolution for A, we can determine the effective homology of K(A, 1). Since K(A, 1) is a simplicial
Abelian group one can apply the classifying space constructor B that gives us B(K(A, 1)) = K(A, 2),
which is also a simplicial Abelian group. Furthermore, the effective homology version of the classifying
space constructor B (see Rubio and Sergeraert (2006), for details) provides us the effective homology of
the space K(A, 2) from the effective homology of K(A, 1) (iterating the process, K(A, n) = B(K(A, n−

1)) has effective homology for every n ∈ N). In this way, both spaces K(A, 2) and K(G, 1) are objects
with effective homology. Finally, the effective homology version for a fibration (described also in Rubio
and Sergeraert (2006)), makes use of the effective homologies of K(A, 2) and K(G, 1) and of the
twisting operator τf : K(G, 1)∗ → K(A, 2)∗−1 and gives us the effective homology of the total space
X = K(A, 2) ×f K(G, 1). In particular, this leads to the desired homology groups of the 2-type X . The
process is formally described in our Algorithm 2.

Algorithm 2 Computation of the effective homology of a 2-type

Require: an Abelian group Awith a free resolution FA of finite type (with a contracting homotopy); a
groupG (acting trivially onA)with a free resolution FG of finite type (with a contracting homotopy);
a cohomology class [f ] ∈ H3(G, A) given by a 3-cocycle f : K(G, 1)3 → A.

Ensure: ε : C∗(X)⇐⇐⇒⇒ E∗ where E∗ is an effective chain complex and X = K(A, 2) ×f K(G, 1).
1: X = 2Type(A,G, f )

[New function which computes the 2-type associated to the groups A and G and the 3-cocycle f , that is, X =

K(A, 2) ×f K(G, 1); the implementation follows the ideas explained at the beginning of this subsection]

2: efhmKG1 = Algorithm1(G, FG)

[Apply Algorithm 1 to the group Gwith the finite type resolution FG; the effective homology of K(G, 1) is obtained]

3: efhmKA2 = ClassifyingSpaceEfhm(K(A, 1), Algorithm1(A, FA))

[Apply Algorithm 1 to compute the effective homology of K(A, 1); then we use the Kenzo function computing the
effective homology of the classifying space of a simplicial Abelian group from its effective homology, which in this
case produces the effective homology of B(K(A, 1)) = K(A, 2)]

4: ε = FibrationEfhm(X, efhmKA2, efhmKG1)

[Use the Kenzo function which computes the effective homology of a fibration from the effective homologies of
the two factors, in this case K(A, 2) and K(G, 1)]

This algorithm has been implemented in Common Lisp as part of our new module for the Kenzo
system dealing with homology of groups. See Section 5.3 for some examples of calculations.

If the group G acts non-trivially on A, an action K(G, 0) × K(A, 2) → K(A, 2) must also be
considered in the fibrationK(A, 2) ↩→ X → K(G, 1). The explicit construction of the twisting operator
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which describes the fibration cannot be obtained as easily as in the previous case, and a more deep
study of the fibration is necessary. It should be done as a further work.

4.2. Central extensions

Let 0 → A → E → G → 1 be a central extension of groups (that is, A is an Abelian group and G
acts on A in a trivial way). Then, it is well-known (see Brown, 1982) there exists a set-theoretic map
f : G × G → Awhich satisfies:

(1) f (g, 1) = 0 = f (1, g)
(2) f (gh, k) = f (h, k) − f (g, h) + f (g, hk)

In addition, the initial extension is equivalent to another extension

0 → A → A ×f G → G → 1

where the elements of A ×f G are pairs (a, g) with a ∈ A and g ∈ G, and the group law is defined by

(a1, g1)(a2, g2) ≡ (a1 + a2 + f (g1, g2), g1g2).

The set-theoretic map f is called the 2-cocycle of the extension, since it corresponds to a map
f : K(G, 1)2 → A in H2(G, A).

Very frequently, the groups G and A are not complicated and their homology groups are known. On
the contrary, the homology groups of E ∼= A×f G are not always easy to obtain. The effective homology
technique and our Algorithm 3 will provide a method computing the desired homology groups of E
from finite type resolutions of G and A. In this way, it will not be necessary to determine a finite type
resolution for E.

As explained in a previous work of the second author of this paper (see Rubio, 1997), given a
2-cocycle f defining a central extension of a group G by an Abelian group A, one can (explicitly)
construct a fibration

K(A, 1) ↩→ X → K(G, 1)

where the total space X can be seen as a twisted Cartesian product K(A, 1)×τ K(G, 1). Furthermore, it
can be proved that this space is in fact isomorphic to the Eilenberg–MacLane spaceK(A×f G, 1), whose
homology groups are those of the group A ×f G ∼= E. The simplicial morphisms Φ : K(A ×f G, 1) →

K(A, 1) ×τ K(G, 1) and Φ−1
: K(A, 1) ×τ K(G, 1) → K(A ×f G, 1) can be found in Rubio (1997).

On the other hand, in the case where both the fiber and base spaces of the fibration, K(A, 1) and
K(G, 1), are objects with effective homology, the effective homology version of a fibration (see Rubio
and Sergeraert, 2006) provides the effective homology of the total space K(A, 1) ×τ K(G, 1), which in
particular will make it possible to obtain the homology groups of E. Finally, if the groups G and A are
givenwith finite type (small) resolutions, our Algorithm1provides the necessary effective homologies
of K(G, 1) and K(A, 1). We obtain therefore the following algorithm.

This algorithm has also been implemented in Common Lisp and in particular it allows us
to determine the homology groups of central extensions of finitely generated Abelian groups.
In Section 5.4 we include some examples of calculations.

5. Newmodules for Kenzo and experimental results

As already mentioned in Section 2.2, Kenzo (Dousson et al., 1999) is a Common Lisp program
devoted to Symbolic Computation in Algebraic Topology, developed by Francis Sergeraert and some
co-workers. This systemmakes use of the effective homology method to determine homology groups
of complicated spaces and has obtained some results which had never been determined before.
In principle Kenzo was not intended to compute homology of groups but we have enhanced this
system with a new module dealing with groups, resolutions, and Eilenberg–MacLane spaces (which
were already implemented in Kenzo for the particular cases Z and Z/2Z) and we have written
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Algorithm 3 Computation of the effective homology of a central extension
Require: groups G and A (A is Abelian) and for both of them free resolutions of finite type FG and

FA with the corresponding contracting homotopies (or more generally, G and A with effective
homology); a 2-cocycle f defining an extension of G by A.

Ensure: ε : C∗(K(A ×f G, 1))⇐⇐⇒⇒ E∗ where E∗ is an effective chain complex.
1: X = CentralExtensionFibration(A,G, f )

[Compute the fibration associated with a central extension; in other words, X = K(A, 1) ×τ K(G, 1). The
implementation follows the construction of Rubio (1997)]

2: efhmKG1 = Algorithm1(G, FG)

[Apply Algorithm 1 to the group Gwith the finite type resolution FG; the effective homology of K(G, 1) is obtained]

3: efhmKA1 = Algorithm1(A, FA)

[Apply Algorithm 1 to the group Awith the finite type resolution FA; the effective homology of K(A, 1) is obtained]

4: ε′
= FibrationEfhm(X, efhmKA1, efhmKG1)

[Use the Kenzo function which computes the effective homology of a fibration from the effective homologies of
the two factors, in this case K(A, 1) and K(G, 1)]

5: Φ = CentralExtensionLeftIsomorphism(A,G, f )

[Produce the map Φ : K(A ×f G, 1) → K(A, 1) ×τ K(G, 1) as explained in Rubio (1997)]

6: Φ ′
= CentralExtensionRightIsomorphism(A,G, f )

[Produce the map Φ−1
: K(A, 1) ×τ K(G, 1) → K(A ×f G, 1) as explained in Rubio (1997)]

7: ε = Composition(ε′, Φ, Φ ′)

[Compose the equivalence ε′
: C∗(X)⇐⇐⇒⇒ E∗ with the isomorphism K(A ×f G, 1) ∼= K(A, 1) ×τ K(G, 1) = X given

by the maps Φ and Φ ′ . We obtain an equivalence C∗(K(A ×f G, 1))⇐⇐⇒⇒ E∗]

the corresponding programs implementing Algorithm 1, which produces the effective homology of
the space K(G, 1) given a finite type resolution for the group G. Since the construction of a finite
type resolution for a group is not always an easy task, we have allowed Kenzo to connect with the
GAP package HAP and obtain a resolution from it. Furthermore, as already announced, we provide
programs which determine the homology groups of some 2-types and central extensions. All the
programs presented in this section can be found in http://www.unirioja.es/cu/anromero/research2.
html.

5.1. Interoperating with GAP

GAP (TheGAPGroup, 2008) is a system for computational discrete algebrawith particular emphasis
on Computational Group Theory. In our work we consider the HAP homological algebra library (Ellis,
2009) for usewith GAP; it waswritten by GrahamEllis and is still under development. The initial focus
of HAP is on computations related to the cohomology of groups. A range of finite and infinite groups
are handled, with particular emphasis on integral coefficients. It also contains some functions for the
integral (co)homology of: Lie rings, Leibniz rings, cat-1-groups and digital topological spaces. And in
particular, HAP allows one to obtain (small) resolutions of many different groups, although it does not
implement the Bar resolution nor Eilenberg–MacLane spaces K(G, 1).

As presented in Romero et al. (2009), in a joint work with Graham Ellis, we have developed a new
modulemaking it possible to export resolutions fromHAP and import them intoKenzo. As interchange
language we have used OpenMath (The OpenMath Society, 2004), an XML standard for representing
mathematical objects. There exist OpenMath translators from several Computer Algebra systems,
and in particular GAP includes a package (Solomon and Costantini, 2009) which produces OpenMath

http://www.unirioja.es/cu/anromero/research2.html
http://www.unirioja.es/cu/anromero/research2.html
http://www.unirioja.es/cu/anromero/research2.html
http://www.unirioja.es/cu/anromero/research2.html
http://www.unirioja.es/cu/anromero/research2.html
http://www.unirioja.es/cu/anromero/research2.html
http://www.unirioja.es/cu/anromero/research2.html
http://www.unirioja.es/cu/anromero/research2.html
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code from some GAP elements (lists, groups...). We have extended this package in order to represent
resolutions, including a new GAP function which provides the OpenMath code of these elements.
In Romero et al. (2009) a detailed description of our OpenMath representation for resolutions can
be found.

The communication between HAP and Kenzo is done as follows: given a group G, the system HAP
produces a ZG-resolution (including the homotopy operator). This resolution can be automatically
translated to OpenMath code thanks to our new function added to the OpenMath package for GAP,
and this code is written in a text file. Then Kenzo imports the file (and translates the OpenMath
code into Kenzo elements thanks to the corresponding parser) so that one can use the resolution
directly in Kenzo without the need of programming it in Common Lisp. Once the resolution is
defined in Kenzo, we can use it to determine the effective homology of K(G, 1) as explained in
Section 3. In this way, if the construction of a resolution for a group G is complicated, we can
avoid programming it by hand; it will be automatically implemented in Kenzo by obtaining it
from HAP.

5.2. Computations with K(G, n)’s

Let G be a group and let us suppose that Kenzo knows a resolution for it (for some particular groups
the system can construct it directly; for others, it could obtain it from HAP). Making use of our main
Algorithm 1 one can determine the effective homology of the simplicial Abelian group K(G, 1), and in
particular, compute its homology groups.

Let us consider, for instance, G = C5, the cyclic group of order 5. As already seen in Section 2.1,
in this case it is not difficult to construct a small resolution F∗ of G. The group can be built in
Kenzo with the function cyclicGroup; the program computes automatically the well-known
resolution for G (coded as a reduction F∗ ⇒⇒Z) and stores it in the slot resolution of the
group.

> (setf C5 (cyclicGroup 5))
[K1 Abelian-Group]
> (resolution C5)
[K10 Reduction K2 => K5]

This resolution is then used by our programs, following Algorithm 1, to determine the effective
homology of K(G, 1). The corresponding homotopy equivalence is spontaneously computed and
stored in the slot efhm. In this way one can obtain the homology groups of this Eilenberg–MacLane
space.

> (setf KC51 (K-G-1 C5))
[K11 Abelian-Simplicial-Group]
> (efhm KC51)
[K50 Homotopy-Equivalence K11 <= K40 => K31]
> (homology KC51 0 5)
Homology in dimension 0 :
Component Z
---done---
Homology in dimension 1 :
Component Z/5Z
---done---
Homology in dimension 2 :
---done---
Homology in dimension 3 :
Component Z/5Z
---done---
Homology in dimension 4 :
---done---

Moreover, since G = C5 is Abelian, K(G, 1) is a simplicial Abelian group, and we can apply the
classifying space constructor B (already implemented in Kenzo) which gives us B(K(G, 1)) = K(G, 2),
a new simplicial Abelian group with effective homology.
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> (setf KC52 (classifying-space KC51))
[K51 Abelian-Simplicial-Group]
> (efhm KC52)
[K190 Homotopy-Equivalence K51 <= K180 => K176]
> (homology KC52 3 6)
Homology in dimension 3 :
---done---
Homology in dimension 4 :
Component Z/5Z
---done---
Homology in dimension 5 :
---done---

Iterating the process, K(G, n) = B(K(G, n − 1)) has effective homology for every n ∈ N. Our new
Kenzo function K-Cm-n allows us to directly construct K(Cm, n); we observe that the slot efhm is
automatically created.
> (setf KC42 (K-Cm-n 4 2))
[K204 Abelian-Simplicial-Group]
> (efhm KC42)
[K378 Homotopy-Equivalence K204 <= K368 => K364]
> (homology KC42 4)
Homology in dimension 4 :
Component Z/8Z
---done---

The construction of Eilenberg–MacLane spaces K(G, n) for every cyclic group G = Cm (with the
corresponding effective homology) is an important enhancing of the Kenzo system, which previously
was only able to deal with cases G = Z and G = Z/2Z = C2. The homology groups obtained
for some of these new spaces have been tested comparing them with the results shown in Alain
Clément’s thesis (Clément, 2002). It is important to stress that Clément’s tables, computed by using a
direct algorithm created by Henry Cartan (see Cartan, 1954–1955), contain much more groups than
those that can be computed with our programs in its current state. Nevertheless, Clément’s tables
give only the homology groups of the spaces, while our approach provides the effective homology.
Our information is much more complete, giving access to geometrical generators of the homology
and, in fact, fully solving the homological problem of these groups (see Rubio and Sergeraert, 2006).
And, perhaps more important, our programs allow us to continue working with the corresponding
K(G, n), to produce new interesting topological spaces and to determine their homology groups. The
information computed by Clément is not enough to carry out this further work.

The same technique explained for cyclic groups can be used to compute the effective homology of
spaces K(G, n), where G is a finitely generated Abelian group. In this case, the homology of K(G, n) is
one of the main ingredients to compute homotopy groups of spaces (see Rubio and Sergeraert (2002)
and Rubio and Sergeraert (2006) for details).

5.3. An example of homology of a 2-type

Let us consider now G = C3 the cyclic group of order 3. Let A = Z/3Z be the Abelian group of
three elements with trivial G-action (the groups G and A are in fact isomorphic; different notations
are used to distinguish multiplicative and additive operations). Then the third cohomology group of
G with coefficients in A is

H3(G, A) = Z/3Z.

The classes [f ] of this cohomology group correspond to 2-types with π1 = G, π2 = A, and one such
2-type X can be seen as a twisted Cartesian product X = K(A, 2) ×f K(G, 1). It can be constructed by
Kenzo in the following way:
> (setf KC31 (K-Cm-n 3 1))
[K380 Abelian-Simplicial-Group]
> (setf chml-clss (chml-clss KC31 3))
[K427 Cohomology-Class on K407 of degree 3]
> (setf tau (zp-whitehead 3 KC31 chml-clss))



764 A. Romero, J. Rubio / Journal of Symbolic Computation 47 (2012) 752–770

[K442 Fibration K380 -> K428]
> (setf X (fibration-total tau))
[K448 Kan-Simplicial-Set]

As seen in the previous section, K(A, 2) and K(G, 1) are objects with effective homology. From the
two equivalences C∗(K(A, 2))⇐⇐⇒⇒ E∗ and C∗(K(G, 1))⇐⇐⇒⇒ E ′

∗
, Kenzo knows how to construct the

effective homology of the twisted Cartesian product X = K(A, 2) ×f K(G, 1), which allows one to
determine its homology groups.
> (efhm X)
[K660 Homotopy-Equivalence K448 <= K650 => K646]
> (homology X 5)
Homology in dimension 5 :
component Z/3Z
---done---

In the same way, the homology groups of X = K(A, 2)×f K(G, 1) can be determined for all groups
A and G with given (small) resolutions and cohomology classes [f ] in H3(G, A). Up to now, only the
homology of finitely presented groups has been considered, restricting the kind of 2-types that can be
studied with our methods, since only spaces with Abelian fundamental group would be in its scope.
The range of groups which can be considered is considerably enlarged with the central extension
constructions, as explained in the following subsection.

5.4. Central extensions

Let us introduce an interesting example of central extension extracted from Leary (1991). Let E be
the group defined by the following presentation:

E = ⟨x, y, z|xp = yp = zp
n−2

= [x, z] = [y, z] = 1; [x, y] = zp
n−3

⟩.

This group can be seen as a central extension of the groups

A = ⟨z|zp
n−2

= 1),

isomorphic to the cyclic group with pn−2 elements, and

G = ⟨x, y|xp = yp = [x, y] = 1⟩,

which is the direct sum of two cyclic groups of cardinality p. A 2-cocycle of the extension is defined by

f (xp1yq1 , xp2yq2) = zq1p2(p−1)pn−3
.

As already explained, the group A ∼= Cpn−2 has effective homology. On the other hand, the effective
homology of G ∼= Cp ⊕ Cp can be easily obtained from the effective homology of the cyclic group Cp
(a direct sum of two groups can in fact be considered as a particular case of central extension, where
the 2-cocycle is trivial, so that its effective homology can be computed given the effective homologies
of the two factors). In this way, Algorithm 3 can be applied to obtain the effective homology of E and
then compute its homology groups.

Let us consider, for instance, p = 3 and n = 4. The following Kenzo instructions construct the
group E.
> (progn

(setf p 3 n 4)
(setf A (cyclicGroup (expt p (- n 2))))
(setf G (gr-crts-prdc (cyclicGroup p) (cyclicGroup p)))
(setf cocycle #’(lambda (crpr1 crpr2)

(with-grcrpr (x1 y1) crpr1
(with-grcrpr (x2 y2) crpr2

(mod (* y1 x2 (1- p) (expt p (- n 3))) (expt p (- n 2)))))))
(setf E (gr-cntr-extn A G cocycle)))

[K663 Group]
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The spaces K(A, 1) and K(G, 1) can be constructed with the function K-G-1; both of them are
Abelian simplicial groups with effective homology.

> (setf KA1 (K-G-1 A))
[K664 Abelian-Simplicial-Group]
> (efhm KA1)
[K710 Homotopy-Equivalence K664 <= K700 => K691]
> (setf KG1 (K-G-1 G))
[K711 Abelian-Simplicial-Group]
> (efhm KG1)
[K775 Homotopy-Equivalence K711 <= K765 => K745]

Given the effective homologies of K(A, 1) and K(G, 1), our Algorithm 3 returns the effective
homology of K(E, 1), which is then stored in the corresponding slot efhm.

> (setf KE1 (K-G-1 E))
[K776 Simplicial-Group]
> (efhm KE1)
[K884 Homotopy-Equivalence K776 <= K870 => K866]
> (homology KE1 0 5)
Homology in dimension 0 :
Component Z
---done---
Homology in dimension 1 :
Component Z/3Z
Component Z/3Z
Component Z/3Z
---done---
Homology in dimension 2 :
Component Z/3Z
Component Z/3Z
---done---
Homology in dimension 3 :
Component Z/9Z
Component Z/3Z
Component Z/3Z
Component Z/3Z
---done---
Homology in dimension 4 :
Component Z/3Z
Component Z/3Z
Component Z/3Z
---done---

In this way, one can determine the homology groups of the central extension E. The computations
obtained by our programs have been comparedwith Leary’s theoretical results for different values of p
and n; the same groups have been obtained by bothmethods.We can repeat here the discussionmade
at the end of Section 5.2 with respect to Clément’s computations for H∗(K(G, n)): Leary’s methods
give more groups than our techniques, but with less information. In particular, our results allow us
to compute the homology of 2-types whose fundamental groups are central extensions, while Leary’s
groups are not enough for this task.

6. The inverse problem: recovering a resolution from the effective homology of a group

In Section 3 we have presented an algorithm which, given a group G with a free finite type
resolution F∗, constructs the effective homology of the simplicial Abelian group K(G, 1). This effective
homology allows one to determine the homology groups of G and, as seen in Sections 4 and 5, makes
it possible to use the space K(G, 1) as initial data for some constructions in Algebraic Topology,
computing in this way homology groups of other interesting objects.

We consider now the inverse problem: let G be a group such that an equivalence

C∗(K(G, 1))⇐⇐⇒⇒ E∗
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is given, E∗ being a finite type chain complex of Abelian groups. Is it possible to obtain a finite type
free resolution for the group G? It seems, in principle, that the answer should be negative in the
general case; since no condition is imposed on the arrows, they surely do not respect the G-action
and, thus, it would not be possible to build a ZG-resolution.We have proved, however, that supposing
that some additional conditions for the given chain equivalence are satisfied, one can construct the
desired resolution with the corresponding contracting homotopy.

The algorithm we have developed makes use of the Basic Perturbation Lemma (BPL), one of the
fundamental results in Constructive Algebraic Topology. The general idea of this theorem is that given
a reduction ρ = (f , g, h) : C∗ ⇒⇒D∗, if we modify the initial differential dC of the big complex C∗ by
adding some perturbation, then it is possible to perturb the differential dD in the small chain complex
D∗ so that we obtain a new reduction between the perturbed complexes. But the result is not always
true, a necessary condition must be satisfied: the composite function h ◦ dC must be locally nilpotent.
An endomorphism α : C∗ → C∗ is locally nilpotent if for every x ∈ C∗ there exists m ∈ N such
that αm(x) = 0. The condition of local nilpotency ensures the convergence of a formal series used
in the BPL to build the perturbed differential on the small complex (and, in fact, to construct also all
the arrows defining the new reduction between the perturbed complexes). The Basic Perturbation
Lemma was discovered by Shih (1962), and then generalized by Brown (1967). In its modern form it
was formulated by Gugenheim (1972) and its essential use in Kenzo has been documented in Rubio
and Sergeraert (2006).

Let us suppose that G is a group and we have an equivalence C∗(K(G, 1))
ρ1
⇐⇐ D∗

ρ2
⇒⇒ E∗, where

ρ1 = (f1, g1, h1), ρ2 = (f2, g2, h2), E∗ is an effective chain complex, and the composition h2g1∂nf1
is locally nilpotent (∂n is the face of index n over the elements of K(G, 1)n, which can be extended
to Cn(K(G, 1))). We want to construct a free resolution F∗ for G of finite type with a contracting
homotopy h.

Let us start by considering the universal fibration K(G, 0) → K(G, 0) ×τ K(G, 1) → K(G, 1) (see
May, 1967). The total space K(G, 0) ×τ K(G, 1) is acyclic and one can construct a reduction

C∗(K(G, 0) ×τ K(G, 1))⇒⇒Z

whereZ represents the chain complex (of Abelian groups) C∗(Z, 0)with a unique non-null component
Z in dimension 0.

On the other hand, one can consider the Eilenberg–Zilber theorem (Eilenberg and Zilber, 1953),
which relates the chain complex of a Cartesian productwith the tensor product of the chain complexes
of the two components, and allows one to build a reduction

C∗(K(G, 0) × K(G, 1))⇒⇒C∗(K(G, 0)) ⊗ C∗(K(G, 1)).

Applying the BPL (it can be proved that the nilpotence condition is satisfied) we obtain a perturbed
reduction (this is in fact the twisted Eilenberg–Zilber theorem, see May (1967))

C∗(K(G, 0) ×τ K(G, 1))⇒⇒C∗(K(G, 0)) ⊗t C∗(K(G, 1))

where C∗(K(G, 0)) ⊗t C∗(K(G, 1)) is a chain complex with the same underlying graded module as
the tensor product C∗(K(G, 0)) ⊗ C∗(K(G, 1)), but its differential is modified to take account of the
twisting operator τ .

Now, from the given equivalence C∗(K(G, 1))⇐⇐D∗ ⇒⇒ E∗, it is not difficult to construct a new
equivalence

C∗(K(G, 0)) ⊗ C∗(K(G, 1))⇐⇐C∗(K(G, 0)) ⊗ D∗ ⇒⇒C∗(K(G, 0)) ⊗ E∗

and applying again the BPL, provided that h2g1∂nf1 is locally nilpotent, we obtain

C∗(K(G, 0)) ⊗t C∗(K(G, 1))⇐⇐C∗(K(G, 0)) ⊗t D∗ ⇒⇒C∗(K(G, 0)) ⊗t E∗.

Finally, one can observe that C∗(K(G, 0)) ≡ ZG and composing the reductions C∗(K(G, 0) ×τ

K(G, 1))⇒⇒Z and C∗(K(G, 0) ×τ K(G, 1))⇒⇒C∗(K(G, 0)) ⊗t C∗(K(G, 1)) with the last equivalence,
we get a contracting homotopy on ZG ⊗t E∗ which is a resolution for G.

This construction can be formalized by means of our Algorithm 4.
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Algorithm 4 Inverse algorithm

Require: a group G and a (strong) chain equivalence ε : C∗(K(G, 1))
ρ1
⇐⇐ D

ρ2
⇒⇒ E, where

ρ1 = (f1, g1, h1), ρ2 = (f2, g2, h2), E is an effective chain complex, and the composition h2g1∂nf1
is locally nilpotent.

Ensure: F is a free resolution for G of finite type with a contracting homotopy h.
1: X = UniversalFibration(K(G, 0))

[Construct the acyclic space K(G, 0) ×τ K(G, 1) (May, 1967). This is a new function]

2: τ = UniversalFibrationPerturbation(K(G, 0))

[Compute the perturbation τ in K(G, 0) ×τ K(G, 1)]

3: ρ1 = UniversalFibrationReduction(K(G, 0))

[Construct the reduction K(G, 0) ×τ K(G, 1)⇒⇒Z. New function]

4: ρ2 = TwistedEilenbergZilber(K(G, 0), K(G, 1), τ )

[Kenzo function which computes the reduction C∗(K(G, 0) ×τ K(G, 1))⇒⇒C∗(K(G, 0)) ⊗t C∗(K(G, 1)). It makes
use of the Basic Perturbation Lemma as explained before]

5: C = BottomChainComplex(ρ2)

[Kenzo returns the bottom chain complex in a reduction; in our case it is the space C∗(K(G, 0)) ⊗t C∗(K(G, 1))]

6: ρ3 = CompositionAsReduction(ρ2, ρ1)

[Since the bottom chain complex in the reduction ρ1 is Z, one can compute a new reduction ρ3 : C∗(K(G, 0)) ⊗t

C∗(K(G, 1))⇒⇒Z. This is a new function not included in Kenzo]

7: ε1 = TwistedTensorProductEfhm(C, TrivialEfhm(K(G, 0)), ε)

[Kenzo knowshow todetermine the effective homology of a (twisted) tensor product from the effective homologies
of the two components. In our case, K(G, 0) has trivial effective homology and the effective homology of
K(G, 1) is the given equivalence ε. In this way the new object ε1 is an equivalence ε1 : C∗(K(G, 0)) ⊗t

C∗(K(G, 1))⇐⇐⇒⇒C∗(K(G, 0)) ⊗t E]

8: ρ4 = CompositionAsReduction(ρ3, ε1)

[The composition of the reduction ρ3 : C∗(K(G, 0) ⊗t K(G, 1))⇒⇒Z with the equivalence ε1 : C∗(K(G, 0)) ⊗t

C∗(K(G, 1))⇐⇐⇒⇒C∗(K(G, 0)) ⊗t E leads to a reduction ρ4 : C∗(K(G, 0)) ⊗t E ⇒⇒Z]

9: F = TopChainComplex(ρ4)

[The top chain complex in the reduction ρ4 is C∗(K(G, 0)) ⊗t E ≡ ZG ⊗t E which can be seen as a chain complex
of ZG-modules]

10: h = hMorphism(ρ4)

[The component h in the reduction ρ4 is a contracting homotopy for F ]

As a first possible application of this algorithm, one can consider the integer group G = Z and
the well known effective homology of K(Z, 1), given by a reduction C∗(K(Z, 1)) ⇒⇒C∗(S1), where S1
denotes a simplicial model for the sphere of dimension 1. In this case it is not difficult to prove the
desired condition, h2g1∂nf1 is locally nilpotent, and therefore one can construct a finite type resolution
for G = Z, as a reduction ZG ⊗t C∗(S1)⇒⇒Z.

A natural question which appears in this context is whether, given a group G and an equivalence
C∗(K(G, 1))⇐⇐⇒⇒ E∗ which has been obtained by means of our Algorithm 1 from a finite type
resolution F∗, the necessary condition of h2g1∂nf1 being locally nilpotent is satisfied or not. The answer
is positive if the group G and the resolution F∗ satisfy some particular properties. More concretely, we
suppose that a norm is defined on G and it can be extended to F∗ in the following naturalway.
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Definition 13. Let G be a group. A norm for G is a map ∥.∥ : G → N such that

• ∥g∥ > 0 for each g ∈ G and ∥g∥ = 0 if and only if g = 1;
• ∥g1g2∥ ≤ ∥g1∥ + ∥g2∥ for all g1, g2 ∈ G.

We suppose that the resolution is reduced (F0 = ZG) and define ∥.∥ : F0 = ZG → N as
∥


λigi∥ = max{∥gi∥}. We say that the norm is compatible with the resolution F∗ if for each n ≥ 1
we can also define ∥.∥ : Fn → N such that

• ∥(g, z)∥ = ∥g∥ + ∥z∥ for all g ∈ G and z a generator of Fn;
• there exists in ∈ Z such that ∥hn(x)∥ ≤ ∥x∥− in and ∥dn+1(x′)∥ ≤ ∥x′

∥+ in for all x ∈ Fn, x′
∈ Fn+1.

The last condition introduces a control measure on the contracting homotopy h, with respect to
the structure of the group, allowing us (as shown in the following result) to ensure in this case the
convergence of the Basic Perturbation Lemma. Examples of resolutions with this kind of norm are the
Bar resolution, the canonical small resolution for G = Z and, for instance, the small resolutions for
cyclic groups introduced in Section 2.1.

Theorem 14. Let G be a group and F∗ a free resolution for G with contracting homotopy h. Let us suppose
that G is provided with a norm ∥.∥ : G → N which is compatible with the resolution. Then the effective
homology of K(G, 1) obtained from F∗ by our Algorithm 1 satisfies the necessary condition of h2g1∂nf1
being locally nilpotent, and therefore it is possible to construct a (new) free finite type resolution for G.

Proof. Let us recall that the effective homology of K(G, 1) given by our Algorithm 1 is given by an
equivalence:

C∗(K(G, 1))
ρ′

⇐⇐ Cylinder(f )∗
ρ

⇒⇒ E∗

obtained from an equivalence in the classical sense:

C∗(K(G, 1))

k′

�� f
++ E∗

g
mm

k
��

Taking into account the definition of the different components of the reductions ρ and ρ ′ (included
in Romero et al. (2009)), one can observe that in this case the composition f1h2g1 is in fact the
morphism k′

: C∗(K(G, 1)) → C∗+1(K(G, 1)), and therefore the condition of h2g1∂nf1 being locally
nilpotent is equivalent to ∂nk′ being locally nilpotent.

We recall too that the morphism k′ is obtained by tensorizing the map k′
: Bar∗(G) → Bar∗+1(G),

which, as explained in Romero et al. (2009), is defined over the generators un
α of Bn ≡ Barn(G) as

k′

0(u
0
α) = h′(u0

α) − h′gf (u0
α)

k′

n(u
n
α) = h′(Id−gf − k′

n−1d(u
n
α))

where h′ is the contracting homotopy of the Bar resolution Bar∗(G) ≡ B∗.
The norm ∥.∥ : G → N can be extended to B∗ as follows: ∥.∥ : B∗ → N given by ∥g.[g1| · · · |gn]∥ =

∥g∥ +


j ∥gj∥ and ∥


i λi(g i.[g i
1| · · · |g

i
n])∥ = maxi{∥g i

∥ +


j ∥g
i
j∥. From the definitions of the

differential map d in B∗ and the contracting homotopy h′ (Brown, 1982) one can easily observe that
bothmaps preserve the norm ∥.∥. Furthermore, one can prove in a recursiveway that the composition
gf preserves the norm ∥.∥ too, so that using an inductive reasoning one has that k′ preserves ∥.∥ too.
Finally it is not difficult to observe that ∂n decreases ∥.∥ at least in one unit, and then the composition
∂nk′ is locally nilpotent, as desired. �

The new resolution F ′
∗
given by Algorithm 4 has in this case the same structural components as the

initial resolution F∗; in other words, Fn = F ′
n for all n ∈ N. However, the differential and contracting

homotopy maps could be different.
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A final example of application of Algorithm 4 and Theorem 14 is the following one.

Theorem 15. Let G,G′ be groups with free resolutions F∗ and F ′
∗
(with contracting homotopies h and

h′ respectively). Let us suppose that there exists norms on G and G′ which are compatible with the
corresponding resolutions. Then the effective homology of G ⊕ G′ (obtained from those of G and G′ as a
particular case of central extension) satisfies that h2g1∂nf1 is locally nilpotent, so that it is also possible to
determine a resolution for the direct sum G ⊕ G′.

Again, we know the graded part of the output resolution, but it is still unknown if the differential
and contracting homotopy constructed have some good geometrical behavior.

7. Conclusions and further work

In this paper we have defended this proposal: the geometric way for computing group homology
can be sensible and fruitful. To this aim, we have worked inside Sergeraert’s effective homology, and
added packages devoted to group homology in Sergeraert’s Kenzo system.

In their current state our methods have a performance penalty when compared with the
more standard algebraic approach (based on resolutions). Nevertheless, this claim is only true for
computations reachable by previousmeans. Furthermore, what ismore important, to get available the
homology of a groupG through an Eilenberg–MacLane space K(G, 1)with effective homology allows us
to use that space for further topological constructions. The poorer performance is therefore balanced
with the richer information we get.

The paper illustrates our approach with concrete computer experiments for general Eilenberg–
MacLane spaces K(G, n), for central extensions of groups and for 2-types. In the first two applications,
the computer results have been compared with previously published works. In the case of the
homology groups of 2-types computedwithKenzo, no comparison is possible, because no other source
of results is known by us.

Furthermore we have explored the problem of computing a resolution of G from the effective
homology of K(G, 1), obtaining some partial algorithmic results which have not yet been
implemented.

Some of the lines opened in this paper have not been completely closed, signaling clear lines
of further work. Starting from the end, the scope of the methods to compute resolutions from
effective homologies should be enlarged, and more examples should be worked out. In particular, a
comparison between the initial resolutions and the ones constructed in the case of normed groups
should be undertaken, trying to elucidate if our output resolution is better in some geometrical
sense.

In the area of 2-types, the more important task would be to extend our approach to 2-types with
non-trivial action of the fundamental group. The main obstacle here is to obtain a fibration expressed
as a twisted Cartesian product, in order to be able to apply the previous Kenzo infrastructure.

Another challenge consists in trying to get better algorithms from the efficiency point of view, in
such a way that our programs can compete with other approaches. In particular, we should improve
the algorithm to construct the effective homology from a resolution, at least in certain cases, to
obtain execution times closer to those of the source system, HAP. For finitely generated Abelian
groups (which are the building blocks to start many of our constructions) a more direct approach,
much more efficient, could be extracted from the original papers by Eilenberg and MacLane (1953,
1954a,b).

Finally, the application of ourmethods for wider classes of groups (for instance, extensions beyond
the central extensions dealt with in this paper) is likely possible and surely an interesting research
topic.

Acknowledgement

Thanks are due to Graham Ellis who collaborated with us in the connection of Kenzo and GAP and
in work dealing with 2-types, as documented in Romero et al. (2009).



770 A. Romero, J. Rubio / Journal of Symbolic Computation 47 (2012) 752–770

References

Brown, K.S., 1982. Cohomology of Groups. Springer-Verlag.
Brown, R., 1967. The twisted Eilenberg-Zilber theorem. Celebrazioni Archimedi de Secolo XX, Simposio di Topologia, 34–37.
Cartan, H., 1954–1955. Algèbres d’Eilenberg–MacLane et homotopie. Séminaire H. Cartan, École Normal Supérieure, Paris,

exposés 2–11.
Clément, A., 2002. Integral cohomology of finite postnikov towers. Ph.D. Thesis, Université de Lausanne.
Dousson, X., Rubio, J., Sergeraert, F., Siret, Y., 1999. The Kenzo program. Institut Fourier, Grenoble. http://www-fourier.ujf-

grenoble.fr/~sergerar/Kenzo.
Eilenberg, S., MacLane, S., 1953. On the groups H(π, n), I. Annals of Mathematics 58, 55–106.
Eilenberg, S., MacLane, S., 1954a. On the groups H(π, n), II. Annals of Mathematics 70, 49–139.
Eilenberg, S., MacLane, S., 1954b. On the groups H(π, n), III. Annals of Mathematics 60 (3), 513–557.
Eilenberg, S., Zilber, J.A., 1953. On products of complexes. American Journal of Mathematics 75, 200–204.
Ellis, G.J., 1992. Homology of 2-types. Journal of the London Mathematical Society 46 (2), 1–27.
Ellis, G.J., 2009. HAP package for GAP. http://www.gap-system.org/Packages/hap.html.
Gugenheim, V.K.A.M., 1972. On the chain complex of a fibration. Illinois 16 (3), 398–414.
Leary, I., 1991. The integral cohomology rings of some p-groups. Mathematical Proceedings of the Cambridge Philosophical

Society 110, 25–32.
MacLane, S., 1963. Homology. In: Grundleren der Mathematischen Wissenschaften, vol. 114. Springer.
May, J.P., 1967. Simplicial Objects in Algebraic Topology. In: Van Nostrand Mathematical Studies, vol. 11.
Romero, A., Ellis, G., Rubio, J., 2009. Interoperating between Computer Algebra systems: computing homology of groups with

Kenzo and GAP. In: Proceedings ISSAC 2009. ACM, New York, pp. 303–310.
Rubio, J., 1997. Integrating functional programming and symbolic computation. Mathematics and Computers in Simulation 44,

505–511.
Rubio, J., Sergeraert, F., 2002. Constructive algebraic topology. Bulletin des Sciences Mathématiques 126 (5), 389–412.
Rubio, J., Sergeraert, F., 2006. Constructive Homological Algebra and Applications. In: Lecture Notes Summer School on

Mathematics, Algorithms, and Proofs. University of Genova. http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-
Lecture-Notes.pdf.

Sergeraert, F., 1994. The computability problem in Algebraic Topology. Advances in Mathematics 104 (1), 1–29.
Shih, W., 1962. Homologie des espaces fibrés. Publications mathématiques de l’Institut des Hautes Études Scientifiques 13.
Solomon, A., Costantini, M., 2009. OpenMath package for GAP. http://www.gap-system.org/Packages/openmath.html.
The GAP Group, 2008. GAP – Groups, Algorithms, and Programming, Version 4.4.12. http://www.gap-system.org.
The OpenMath Society, 2004. OpenMath. http://www.openmath.org/.
Weibel, C.A., 1994. An introduction to homological algebra. In: Cambridge Studies in AdvancedMathematics, vol. 38. Cambridge

University Press.

http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo
http://www.gap-system.org/Packages/hap.html
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
http://www.gap-system.org/Packages/openmath.html
http://www.gap-system.org
http://www.openmath.org/

	Computing the homology of groups: The geometric way
	Introduction
	Definitions and preliminaries
	Some fundamental notions about homology of groups
	Effective homology

	Effective homology of a group from a resolution
	Applications
	2-types
	Central extensions

	New modules for Kenzo and experimental results
	Interoperating with GAP
	Computations with K(G,n)'s
	An example of homology of a 2-type
	Central extensions

	The inverse problem: recovering a resolution from the effective homology of a group
	Conclusions and further work
	Acknowledgement
	References


