Martín Lara Coria dicta la conferencia ‘Expanding the simple pendulum’s rotation solution in action-angle variables’ a las 10.00 horas en el Seminario Chicho (D-314) del Edificio Vives.
La conferencia tiene lugar dentro de las actividades del programa Marie S. Curie del Grupo de Computación Científica (financiada por MSCA HOPT PIEF-GA-2013-627111) y coordinada por Juan Félix San Juan y Roberto Armellin.
Resumen: Integration of Hamiltonian systems by the Hamilton-Jacobi method, and in particular finding the action-angle variables of the system, has proven to be a successful approach. However, when the solution depends on elliptic functions the transformation to action-angle variables may need to remain in implicit form. This is exactly the case of the simple pendulum, where in order to make explicit the transformation to action-angle variables one needs to resort to nontrivial expansions of special functions and series reversion. Alternatively, it is shown that the explicit expansion of the transformation to action-angle variables can be constructed directly, and that this direct construction leads naturally to the Lie transforms method, in this way avoiding the intricacies related to the traditional expansion of elliptic functions.