Universidad de La Rioja    
 
 
Principal Office 365 Correo-web Directorio Mapa web Contacto
Información para
Estudiantes
Admisión y Matrícula
Foreign students
Áurea / UR Alumni
Empresas
Visitantes
PDI/PAS
Información sobre
Universidad de La Rioja
Estudios
Campus Virtual
Investigación
Portal de Investigación
Escuela Máster y Doctorado
Casa de las Lenguas
Facultades y Escuelas
Departamentos
Administración y Servicios
Biblioteca
Fundación de la UR
Fundación Dialnet
Portal de transparencia
Defensoría Universitaria
Unidad de Igualdad
Oficina de Sostenibilidad
Universidad Saludable
Plan estratégico
Sede electrónica
Registro General
Actualidad
Noticias
Agenda
Congresos y jornadas
Plazas PDI/PAS
Perfil del contratante
 
Cita Previa Of. Estudiante
Sede Electrónica
Tablón Electrónico
Quejas, Sugerencias y Felicitaciones
Ingeniería Eléctrica

ROBOT PROGRAMMING AND CONTROL.
Theory contents. 2021-2022 course.

Versión en español

Important:

The contents show below may be modified as long as there are circumstantes justified en the current academic year.

YOUTUBE sessions (in spanish language)


I: Introduction to Robotics
1: Introduction to Robotics

- Introduction and definition
- History
- Automation and Robotics
- Classifications of robots
- Industrial robots and their applications
- Robot mechanical structure
- Robot features
- Typical manipulator structures: cartesian, cylindrical, spherical, antropomorphic, Scara, other structures

II: Review of mathematics and physics
2: Transformations used in robotics

Introduction to joint and task spaces
- Task, operational space. Task coordenates
- Joint space. Joint coordenates
- Introduction to redundant robots
Spatial transformations applied to a rigid body
- Pose of a rigid body. Position description and translation transformation
- Planar rotation matrix
- 3D elementary rotations
- Rotation of a vector
- Composition of rotation matrices
- Translation and rotation transformations
- Euler angles. Wrist angles. Direct, inverse and singular solutions
- Roll, pitch and yaw angles. Direct, inverse and singular solutions
- Angle and axis
- Unit quaternion
- Homogeneous transformations. Robots (arm, wrist, end efector) examples
- Graphic model to describe the position and orientation of a rigid body. Transformation diagrams applied to a robotic system
Physics transformations applied to a rigid body
- Vector derivate in rotating frame
- Cylindrical kinematic structure: position, linear velocity and linear acceleration
- Spherical kinematic structure: position, linear velocity and linear acceleration
- Combination (simultaneous) motions. Robotic examples: spherical structure motion and Euler wrist motion
- Centroid. Basic examples: triangle, semisphere
- Center of mass. Basic axamples: semisphere
- Moment of inertia. Basic axamples: cylinder, cone
- Inertia matrix for spatial movement of a rigid body. Basic example: parallelepiped
- Mechanical energy
- Kinematic energy of a rigid body: translational energy and rotational energy
- Potential energy of a rigid body
- Static laws of a rigid body

III: Kinematics
3.1: Direct Kinematics Problem (D.K.P.)

- Introduction to the Direct Kinematics Problem
- Direct kinematics analysis and solution
- Denavit-Hartenber convention. Conditions and parameters
- Procedure applied to the D.K.P.
- Kinematics of typical manipulator structures: two-link planar arm, three-link planar robot, scara manipulator, Stanford manipulator, Euler wrist

3.2: Inverse Kinematics Problem (I.K.P.)

- Introduction to the Direct Kinematics Problem
- Existence and uniqueness of I.K.P. solutions
- Geometric and algebraic methods
- I.K.P. of a 2D planar arm. Geometric and algebraic solutions
- I.K.P. decoupling into two subproblems: the position arm I.K.P. and the orientation wrist I.K.P.
- I.K.P. of a three-link planar manipulator
- I.K.P. of a Scara robot

3.3: Velocity mapping. The Jacobian matrix

- The geometric Jacobian
- Derivate of a rotation matrix
- Link velocities and accelerations
- Jacobian computation
- Jacobian of typical manipulator structures: two-link planar arm, three-link planar arm, scarar robot
- Kinematic singularities
- Singularity decoupling: arm and wrist singularities
- Singularities of typical manipulator structures: two-link planar arm, Euler wrist, Scara robot

3.4: Statics and manipulator design

- Static laws applied to a link
- Forces acting on a link i
- Moments acting on a link i
- Static laws applied to a two-link manipulator
- Recursive calculations. Force and moments vectors
- Static of a two-link planar arm

IV: Dynamics
4.1: Lagrange-Euler formulation

- Lagrange equation
- Computation of kinetic energy
- Computation of potential energy
- Equations of motion
- Dynamic model of simple manipulator structures: two-link cartesian arm, two-link planar arm

4.2: Newton-Euler formulation

- Introduction to the Newton-Euler formulation
- Link velocities y accelerations
- Recursive algorithm
- Dinamic model of simple manipulator structures: two-link cartesian arm, two-link planar arm

 
V: Kinematic control. Trajectory planning
5.1: Kinematic control

- Introduction to path planning
- Kinematic model and kinematic control
- Trajectory spaces and types of paths
- Path primities

 
VI: Introduction to robot control
6.1: Dynamic robot control

- Introduction to control problem
- Control spaces and types of control
- Independent joint control and multivariable control
- PID independent control
- Feedforward compensation
- PD control with gravity compensation

 
VII: Robot programming
7.1: Robot systems programming

- Robot programming methods
- Robot control system hardware
- Programming languages
- Robot programming examples

 
VIII: Introduction to robotics technology
8.1: Components included in a industrial robot

- Introduction to robotics components
- Actuators: electric actuators (stepper motors, dc motors, brushless motors, ac motors), pneumatic actuators (cylinder and motors), hydraulic actuators (cylinder and motors)
- Internal sensors: position sensors (encoders, potenciometers, LVDT, synchros and resolvers), velocity sensors (tachometers, hall-effect sensors), acceleration sensors, force sensors
- Grippers: mechanical grippers, magnetic grippers, vacuum grippers, adherise grippers, other grippers
- Mechanical gears

 

Webmaster:
carlos.elvira@unirioja.es
Última modificación: 06-09-2021 19:44

Datos
Asignaturas
I.T.I. Electricidad
(103. En extinción)
· Control y programación de robots
(1033010. Sin docencia)
I.T.I. Electrónica Industrial
(104. En extinción)
· Automatización Industrial I
(1041012. Sin docencia)
· Informática Industrial I
(1041018. Sin docencia)
· Control y programación de robots
(1043001. Sin docencia)
I.T.I. Mecánica
(105. En extinción)
· Control y programación de robots
(1053010. Sin docencia)
I. T. Informática Gestión
(113. En extinción)
· Instalación, configuración y mantenimiento de equipos informáticos
(1133009. Sin docencia)
Grado Ingeniería Informática (801G)
· Administración de redes y servidores (442)
· Administración avanzada de redes y servidores (458)
Grado Ingeniería Mecánica (803G)
· Control y automatización industrial (497)
· Fundamentos de control industrial (877)
· Fundamentos de automatización industrial (878)
Grado Ingeniería Eléctrica (804G)
· Control y automatización industrial (497)
· Regulación automática y automatización industrial (628)
· Fundamentos de control industrial (877)
· Fundamentos de automatización industrial (878)
Grado Ing. Electrónica Ind. y Automática (805G)
· Control y automatización industrial (497)
· Control y programación de robots (640)
· Fundamentos de control industrial (877)
· Fundamentos de automatización industrial (878)
Máster en Ingeniería Industrial (852M)
· Instalaciones industriales (5069)
Máster de Profesorado. Tecnología (M107A)
· Innovación docente e iniciación a la investigación operativa (267204000)
Proyectos Fin de Carrera
Tutorías
Tutorías Personalizadas
Prácticas Empresa
Investigación
Otras actividades
Buzón de sugerencias
Otros
Intranet
© Universidad de La Rioja