Theory SparseMatrix

Up to index of Isabelle/HOL/HOL-Algebra/example_Bicomplex

theory SparseMatrix
imports Matrix LP
begin

(*  Title:      HOL/Matrix/SparseMatrix.thy
    ID:         $Id: SparseMatrix.thy,v 1.17 2008/03/17 17:37:01 wenzelm Exp $
    Author:     Steven Obua
*)

theory SparseMatrix imports Matrix LP begin

types 
  'a spvec = "(nat * 'a) list"
  'a spmat = "('a spvec) spvec"

consts
  sparse_row_vector :: "('a::lordered_ring) spvec => 'a matrix"
  sparse_row_matrix :: "('a::lordered_ring) spmat => 'a matrix"

defs
  sparse_row_vector_def : "sparse_row_vector arr == foldl (% m x. m + (singleton_matrix 0 (fst x) (snd x))) 0 arr"
  sparse_row_matrix_def : "sparse_row_matrix arr == foldl (% m r. m + (move_matrix (sparse_row_vector (snd r)) (int (fst r)) 0)) 0 arr"

lemma sparse_row_vector_empty[simp]: "sparse_row_vector [] = 0"
  by (simp add: sparse_row_vector_def)

lemma sparse_row_matrix_empty[simp]: "sparse_row_matrix [] = 0"
  by (simp add: sparse_row_matrix_def)

lemma foldl_distrstart[rule_format]: "! a x y. (f (g x y) a = g x (f y a)) ==> ! x y. (foldl f (g x y) l = g x (foldl f y l))"
  by (induct l, auto)

lemma sparse_row_vector_cons[simp]: "sparse_row_vector (a#arr) = (singleton_matrix 0 (fst a) (snd a)) + (sparse_row_vector arr)"
  apply (induct arr)
  apply (auto simp add: sparse_row_vector_def)
  apply (simp add: foldl_distrstart[of "λm x. m + singleton_matrix 0 (fst x) (snd x)" "λx m. singleton_matrix 0 (fst x) (snd x) + m"])
  done

lemma sparse_row_vector_append[simp]: "sparse_row_vector (a @ b) = (sparse_row_vector a) + (sparse_row_vector b)"
  by (induct a, auto)

lemma nrows_spvec[simp]: "nrows (sparse_row_vector x) <= (Suc 0)"
  apply (induct x)
  apply (simp_all add: add_nrows)
  done

lemma sparse_row_matrix_cons: "sparse_row_matrix (a#arr) = ((move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0)) + sparse_row_matrix arr"
  apply (induct arr)
  apply (auto simp add: sparse_row_matrix_def)
  apply (simp add: foldl_distrstart[of "λm x. m + (move_matrix (sparse_row_vector (snd x)) (int (fst x)) 0)" 
    "% a m. (move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0) + m"])
  done

lemma sparse_row_matrix_append: "sparse_row_matrix (arr@brr) = (sparse_row_matrix arr) + (sparse_row_matrix brr)"
  apply (induct arr)
  apply (auto simp add: sparse_row_matrix_cons)
  done

consts
  sorted_spvec :: "'a spvec => bool"
  sorted_spmat :: "'a spmat => bool"

primrec
  "sorted_spmat [] = True"
  "sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))"

primrec
  "sorted_spvec [] = True"
sorted_spvec_step:  "sorted_spvec (a#as) = (case as of [] => True | b#bs => ((fst a < fst b) & (sorted_spvec as)))" 

declare sorted_spvec.simps [simp del]

lemma sorted_spvec_empty[simp]: "sorted_spvec [] = True"
by (simp add: sorted_spvec.simps)

lemma sorted_spvec_cons1: "sorted_spvec (a#as) ==> sorted_spvec as"
apply (induct as)
apply (auto simp add: sorted_spvec.simps)
done

lemma sorted_spvec_cons2: "sorted_spvec (a#b#t) ==> sorted_spvec (a#t)"
apply (induct t)
apply (auto simp add: sorted_spvec.simps)
done

lemma sorted_spvec_cons3: "sorted_spvec(a#b#t) ==> fst a < fst b"
apply (auto simp add: sorted_spvec.simps)
done

lemma sorted_sparse_row_vector_zero[rule_format]: "m <= n --> sorted_spvec ((n,a)#arr) --> Rep_matrix (sparse_row_vector arr) j m = 0"
apply (induct arr)
apply (auto)
apply (frule sorted_spvec_cons2,simp)+
apply (frule sorted_spvec_cons3, simp)
done

lemma sorted_sparse_row_matrix_zero[rule_format]: "m <= n --> sorted_spvec ((n,a)#arr) --> Rep_matrix (sparse_row_matrix arr) m j = 0"
  apply (induct arr)
  apply (auto)
  apply (frule sorted_spvec_cons2, simp)
  apply (frule sorted_spvec_cons3, simp)
  apply (simp add: sparse_row_matrix_cons neg_def)
  done

consts
  abs_spvec :: "('a::lordered_ring) spvec => 'a spvec"
  minus_spvec ::  "('a::lordered_ring) spvec => 'a spvec"
  smult_spvec :: "('a::lordered_ring) => 'a spvec => 'a spvec" 
  addmult_spvec :: "('a::lordered_ring) * 'a spvec * 'a spvec => 'a spvec"

primrec 
  "minus_spvec [] = []"
  "minus_spvec (a#as) = (fst a, -(snd a))#(minus_spvec as)"

primrec 
  "abs_spvec [] = []"
  "abs_spvec (a#as) = (fst a, abs (snd a))#(abs_spvec as)"

lemma sparse_row_vector_minus: 
  "sparse_row_vector (minus_spvec v) = - (sparse_row_vector v)"
  apply (induct v)
  apply (simp_all add: sparse_row_vector_cons)
  apply (simp add: Rep_matrix_inject[symmetric])
  apply (rule ext)+
  apply simp
  done

lemma sparse_row_vector_abs:
  "sorted_spvec v ==> sparse_row_vector (abs_spvec v) = abs (sparse_row_vector v)"
  apply (induct v)
  apply (simp_all add: sparse_row_vector_cons)
  apply (frule_tac sorted_spvec_cons1, simp)
  apply (simp only: Rep_matrix_inject[symmetric])
  apply (rule ext)+
  apply auto
  apply (subgoal_tac "Rep_matrix (sparse_row_vector v) 0 a = 0")
  apply (simp)
  apply (rule sorted_sparse_row_vector_zero)
  apply auto
  done

lemma sorted_spvec_minus_spvec:
  "sorted_spvec v ==> sorted_spvec (minus_spvec v)"
  apply (induct v)
  apply (simp)
  apply (frule sorted_spvec_cons1, simp)
  apply (simp add: sorted_spvec.simps split:list.split_asm)
  done

lemma sorted_spvec_abs_spvec:
  "sorted_spvec v ==> sorted_spvec (abs_spvec v)"
  apply (induct v)
  apply (simp)
  apply (frule sorted_spvec_cons1, simp)
  apply (simp add: sorted_spvec.simps split:list.split_asm)
  done
  
defs
  smult_spvec_def: "smult_spvec y arr == map (% a. (fst a, y * snd a)) arr"  

lemma smult_spvec_empty[simp]: "smult_spvec y [] = []"
  by (simp add: smult_spvec_def)

lemma smult_spvec_cons: "smult_spvec y (a#arr) = (fst a, y * (snd a)) # (smult_spvec y arr)"
  by (simp add: smult_spvec_def)

recdef addmult_spvec "measure (% (y, a, b). length a + (length b))"
  "addmult_spvec (y, arr, []) = arr"
  "addmult_spvec (y, [], brr) = smult_spvec y brr"
  "addmult_spvec (y, a#arr, b#brr) = (
    if (fst a) < (fst b) then (a#(addmult_spvec (y, arr, b#brr))) 
    else (if (fst b < fst a) then ((fst b, y * (snd b))#(addmult_spvec (y, a#arr, brr)))
    else ((fst a, (snd a)+ y*(snd b))#(addmult_spvec (y, arr,brr)))))"

lemma addmult_spvec_empty1[simp]: "addmult_spvec (y, [], a) = smult_spvec y a"
  by (induct a, auto)

lemma addmult_spvec_empty2[simp]: "addmult_spvec (y, a, []) = a"
  by (induct a, auto)

lemma sparse_row_vector_map: "(! x y. f (x+y) = (f x) + (f y)) ==> (f::'a=>('a::lordered_ring)) 0 = 0 ==> 
  sparse_row_vector (map (% x. (fst x, f (snd x))) a) = apply_matrix f (sparse_row_vector a)"
  apply (induct a)
  apply (simp_all add: apply_matrix_add)
  done

lemma sparse_row_vector_smult: "sparse_row_vector (smult_spvec y a) = scalar_mult y (sparse_row_vector a)"
  apply (induct a)
  apply (simp_all add: smult_spvec_cons scalar_mult_add)
  done

lemma sparse_row_vector_addmult_spvec: "sparse_row_vector (addmult_spvec (y::'a::lordered_ring, a, b)) = 
  (sparse_row_vector a) + (scalar_mult y (sparse_row_vector b))"
  apply (rule addmult_spvec.induct[of _ y])
  apply (simp add: scalar_mult_add smult_spvec_cons sparse_row_vector_smult singleton_matrix_add)+
  done

lemma sorted_smult_spvec[rule_format]: "sorted_spvec a ==> sorted_spvec (smult_spvec y a)"
  apply (auto simp add: smult_spvec_def)
  apply (induct a)
  apply (auto simp add: sorted_spvec.simps split:list.split_asm)
  done

lemma sorted_spvec_addmult_spvec_helper: "[|sorted_spvec (addmult_spvec (y, (a, b) # arr, brr)); aa < a; sorted_spvec ((a, b) # arr); 
  sorted_spvec ((aa, ba) # brr)|] ==> sorted_spvec ((aa, y * ba) # addmult_spvec (y, (a, b) # arr, brr))"  
  apply (induct brr)
  apply (auto simp add: sorted_spvec.simps)
  apply (simp split: list.split)
  apply (auto)
  apply (simp split: list.split)
  apply (auto)
  done

lemma sorted_spvec_addmult_spvec_helper2: 
 "[|sorted_spvec (addmult_spvec (y, arr, (aa, ba) # brr)); a < aa; sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr)|]
       ==> sorted_spvec ((a, b) # addmult_spvec (y, arr, (aa, ba) # brr))"
  apply (induct arr)
  apply (auto simp add: smult_spvec_def sorted_spvec.simps)
  apply (simp split: list.split)
  apply (auto)
  done

lemma sorted_spvec_addmult_spvec_helper3[rule_format]:
  "sorted_spvec (addmult_spvec (y, arr, brr)) --> sorted_spvec ((aa, b) # arr) --> sorted_spvec ((aa, ba) # brr)
     --> sorted_spvec ((aa, b + y * ba) # (addmult_spvec (y, arr, brr)))"
  apply (rule addmult_spvec.induct[of _ y arr brr])
  apply (simp_all add: sorted_spvec.simps smult_spvec_def)
  done

lemma sorted_addmult_spvec[rule_format]: "sorted_spvec a --> sorted_spvec b --> sorted_spvec (addmult_spvec (y, a, b))"
  apply (rule addmult_spvec.induct[of _ y a b])
  apply (simp_all add: sorted_smult_spvec)
  apply (rule conjI, intro strip)
  apply (case_tac "~(a < aa)")
  apply (simp_all)
  apply (frule_tac as=brr in sorted_spvec_cons1)
  apply (simp add: sorted_spvec_addmult_spvec_helper)
  apply (intro strip | rule conjI)+
  apply (frule_tac as=arr in sorted_spvec_cons1)
  apply (simp add: sorted_spvec_addmult_spvec_helper2)
  apply (intro strip)
  apply (frule_tac as=arr in sorted_spvec_cons1)
  apply (frule_tac as=brr in sorted_spvec_cons1)
  apply (simp)
  apply (simp_all add: sorted_spvec_addmult_spvec_helper3)
  done

consts 
  mult_spvec_spmat :: "('a::lordered_ring) spvec * 'a spvec * 'a spmat  => 'a spvec"

recdef mult_spvec_spmat "measure (% (c, arr, brr). (length arr) + (length brr))"
  "mult_spvec_spmat (c, [], brr) = c"
  "mult_spvec_spmat (c, arr, []) = c"
  "mult_spvec_spmat (c, a#arr, b#brr) = (
     if ((fst a) < (fst b)) then (mult_spvec_spmat (c, arr, b#brr))
     else (if ((fst b) < (fst a)) then (mult_spvec_spmat (c, a#arr, brr)) 
     else (mult_spvec_spmat (addmult_spvec (snd a, c, snd b), arr, brr))))"

lemma sparse_row_mult_spvec_spmat[rule_format]: "sorted_spvec (a::('a::lordered_ring) spvec) --> sorted_spvec B --> 
  sparse_row_vector (mult_spvec_spmat (c, a, B)) = (sparse_row_vector c) + (sparse_row_vector a) * (sparse_row_matrix B)"
proof -
  have comp_1: "!! a b. a < b ==> Suc 0 <= nat ((int b)-(int a))" by arith
  have not_iff: "!! a b. a = b ==> (~ a) = (~ b)" by simp
  have max_helper: "!! a b. ~ (a <= max (Suc a) b) ==> False"
    by arith
  {
    fix a 
    fix v
    assume a:"a < nrows(sparse_row_vector v)"
    have b:"nrows(sparse_row_vector v) <= 1" by simp
    note dummy = less_le_trans[of a "nrows (sparse_row_vector v)" 1, OF a b]   
    then have "a = 0" by simp
  }
  note nrows_helper = this
  show ?thesis
    apply (rule mult_spvec_spmat.induct)
    apply simp+
    apply (rule conjI)
    apply (intro strip)
    apply (frule_tac as=brr in sorted_spvec_cons1)
    apply (simp add: ring_simps sparse_row_matrix_cons)
    apply (simplesubst Rep_matrix_zero_imp_mult_zero) 
    apply (simp)
    apply (intro strip)
    apply (rule disjI2)
    apply (intro strip)
    apply (subst nrows)
    apply (rule  order_trans[of _ 1])
    apply (simp add: comp_1)+
    apply (subst Rep_matrix_zero_imp_mult_zero)
    apply (intro strip)
    apply (case_tac "k <= aa")
    apply (rule_tac m1 = k and n1 = a and a1 = b in ssubst[OF sorted_sparse_row_vector_zero])
    apply (simp_all)
    apply (rule impI)
    apply (rule disjI2)
    apply (rule nrows)
    apply (rule order_trans[of _ 1])
    apply (simp_all add: comp_1)
    
    apply (intro strip | rule conjI)+
    apply (frule_tac as=arr in sorted_spvec_cons1)
    apply (simp add: ring_simps)
    apply (subst Rep_matrix_zero_imp_mult_zero)
    apply (simp)
    apply (rule disjI2)
    apply (intro strip)
    apply (simp add: sparse_row_matrix_cons neg_def)
    apply (case_tac "a <= aa")  
    apply (erule sorted_sparse_row_matrix_zero)  
    apply (simp_all)
    apply (intro strip)
    apply (case_tac "a=aa")
    apply (simp_all)
    apply (frule_tac as=arr in sorted_spvec_cons1)
    apply (frule_tac as=brr in sorted_spvec_cons1)
    apply (simp add: sparse_row_matrix_cons ring_simps sparse_row_vector_addmult_spvec)
    apply (rule_tac B1 = "sparse_row_matrix brr" in ssubst[OF Rep_matrix_zero_imp_mult_zero])
    apply (auto)
    apply (rule sorted_sparse_row_matrix_zero)
    apply (simp_all)
    apply (rule_tac A1 = "sparse_row_vector arr" in ssubst[OF Rep_matrix_zero_imp_mult_zero])
    apply (auto)
    apply (rule_tac m=k and n = aa and a = b and arr=arr in sorted_sparse_row_vector_zero)
    apply (simp_all)
    apply (simp add: neg_def)
    apply (drule nrows_notzero)
    apply (drule nrows_helper)
    apply (arith)
    
    apply (subst Rep_matrix_inject[symmetric])
    apply (rule ext)+
    apply (simp)
    apply (subst Rep_matrix_mult)
    apply (rule_tac j1=aa in ssubst[OF foldseq_almostzero])
    apply (simp_all)
    apply (intro strip, rule conjI)
    apply (intro strip)
    apply (drule_tac max_helper)
    apply (simp)
    apply (auto)
    apply (rule zero_imp_mult_zero)
    apply (rule disjI2)
    apply (rule nrows)
    apply (rule order_trans[of _ 1])
    apply (simp)
    apply (simp)
    done
qed

lemma sorted_mult_spvec_spmat[rule_format]: 
  "sorted_spvec (c::('a::lordered_ring) spvec) --> sorted_spmat B --> sorted_spvec (mult_spvec_spmat (c, a, B))"
  apply (rule mult_spvec_spmat.induct[of _ c a B])
  apply (simp_all add: sorted_addmult_spvec)
  done

consts 
  mult_spmat :: "('a::lordered_ring) spmat => 'a spmat => 'a spmat"

primrec 
  "mult_spmat [] A = []"
  "mult_spmat (a#as) A = (fst a, mult_spvec_spmat ([], snd a, A))#(mult_spmat as A)"

lemma sparse_row_mult_spmat[rule_format]: 
  "sorted_spmat A --> sorted_spvec B --> sparse_row_matrix (mult_spmat A B) = (sparse_row_matrix A) * (sparse_row_matrix B)"
  apply (induct A)
  apply (auto simp add: sparse_row_matrix_cons sparse_row_mult_spvec_spmat ring_simps move_matrix_mult)
  done

lemma sorted_spvec_mult_spmat[rule_format]:
  "sorted_spvec (A::('a::lordered_ring) spmat) --> sorted_spvec (mult_spmat A B)"
  apply (induct A)
  apply (auto)
  apply (drule sorted_spvec_cons1, simp)
  apply (case_tac A)
  apply (auto simp add: sorted_spvec.simps)
  done

lemma sorted_spmat_mult_spmat[rule_format]:
  "sorted_spmat (B::('a::lordered_ring) spmat) --> sorted_spmat (mult_spmat A B)"
  apply (induct A)
  apply (auto simp add: sorted_mult_spvec_spmat) 
  done

consts
  add_spvec :: "('a::lordered_ab_group_add) spvec * 'a spvec => 'a spvec"
  add_spmat :: "('a::lordered_ab_group_add) spmat * 'a spmat => 'a spmat"

recdef add_spvec "measure (% (a, b). length a + (length b))"
  "add_spvec (arr, []) = arr"
  "add_spvec ([], brr) = brr"
  "add_spvec (a#arr, b#brr) = (
  if (fst a) < (fst b) then (a#(add_spvec (arr, b#brr))) 
     else (if (fst b < fst a) then (b#(add_spvec (a#arr, brr)))
     else ((fst a, (snd a)+(snd b))#(add_spvec (arr,brr)))))"

lemma add_spvec_empty1[simp]: "add_spvec ([], a) = a"
  by (induct a, auto)

lemma add_spvec_empty2[simp]: "add_spvec (a, []) = a"
  by (induct a, auto)

lemma sparse_row_vector_add: "sparse_row_vector (add_spvec (a,b)) = (sparse_row_vector a) + (sparse_row_vector b)"
  apply (rule add_spvec.induct[of _ a b])
  apply (simp_all add: singleton_matrix_add)
  done

recdef add_spmat "measure (% (A,B). (length A)+(length B))"
  "add_spmat ([], bs) = bs"
  "add_spmat (as, []) = as"
  "add_spmat (a#as, b#bs) = (
  if fst a < fst b then 
    (a#(add_spmat (as, b#bs)))
  else (if fst b < fst a then
    (b#(add_spmat (a#as, bs)))
  else
    ((fst a, add_spvec (snd a, snd b))#(add_spmat (as, bs)))))"

lemma sparse_row_add_spmat: "sparse_row_matrix (add_spmat (A, B)) = (sparse_row_matrix A) + (sparse_row_matrix B)"
  apply (rule add_spmat.induct)
  apply (auto simp add: sparse_row_matrix_cons sparse_row_vector_add move_matrix_add)
  done

lemma sorted_add_spvec_helper1[rule_format]: "add_spvec ((a,b)#arr, brr) = (ab, bb) # list --> (ab = a | (brr ≠ [] & ab = fst (hd brr)))"
  proof - 
    have "(! x ab a. x = (a,b)#arr --> add_spvec (x, brr) = (ab, bb) # list --> (ab = a | (ab = fst (hd brr))))"
      by (rule add_spvec.induct[of _ _ brr], auto)
    then show ?thesis
      by (case_tac brr, auto)
  qed

lemma sorted_add_spmat_helper1[rule_format]: "add_spmat ((a,b)#arr, brr) = (ab, bb) # list --> (ab = a | (brr ≠ [] & ab = fst (hd brr)))"
  proof - 
    have "(! x ab a. x = (a,b)#arr --> add_spmat (x, brr) = (ab, bb) # list --> (ab = a | (ab = fst (hd brr))))"
      by (rule add_spmat.induct[of _ _ brr], auto)
    then show ?thesis
      by (case_tac brr, auto)
  qed

lemma sorted_add_spvec_helper[rule_format]: "add_spvec (arr, brr) = (ab, bb) # list --> ((arr ≠ [] & ab = fst (hd arr)) | (brr ≠ [] & ab = fst (hd brr)))"
  apply (rule add_spvec.induct[of _ arr brr])
  apply (auto)
  done

lemma sorted_add_spmat_helper[rule_format]: "add_spmat (arr, brr) = (ab, bb) # list --> ((arr ≠ [] & ab = fst (hd arr)) | (brr ≠ [] & ab = fst (hd brr)))"
  apply (rule add_spmat.induct[of _ arr brr])
  apply (auto)
  done

lemma add_spvec_commute: "add_spvec (a, b) = add_spvec (b, a)"
  by (rule add_spvec.induct[of _ a b], auto)

lemma add_spmat_commute: "add_spmat (a, b) = add_spmat (b, a)"
  apply (rule add_spmat.induct[of _ a b])
  apply (simp_all add: add_spvec_commute)
  done
  
lemma sorted_add_spvec_helper2: "add_spvec ((a,b)#arr, brr) = (ab, bb) # list ==> aa < a ==> sorted_spvec ((aa, ba) # brr) ==> aa < ab"
  apply (drule sorted_add_spvec_helper1)
  apply (auto)
  apply (case_tac brr)
  apply (simp_all)
  apply (drule_tac sorted_spvec_cons3)
  apply (simp)
  done

lemma sorted_add_spmat_helper2: "add_spmat ((a,b)#arr, brr) = (ab, bb) # list ==> aa < a ==> sorted_spvec ((aa, ba) # brr) ==> aa < ab"
  apply (drule sorted_add_spmat_helper1)
  apply (auto)
  apply (case_tac brr)
  apply (simp_all)
  apply (drule_tac sorted_spvec_cons3)
  apply (simp)
  done

lemma sorted_spvec_add_spvec[rule_format]: "sorted_spvec a --> sorted_spvec b --> sorted_spvec (add_spvec (a, b))"
  apply (rule add_spvec.induct[of _ a b])
  apply (simp_all)
  apply (rule conjI)
  apply (intro strip)
  apply (simp)
  apply (frule_tac as=brr in sorted_spvec_cons1)
  apply (simp)
  apply (subst sorted_spvec_step)
  apply (simp split: list.split)
  apply (clarify, simp)
  apply (simp add: sorted_add_spvec_helper2)
  apply (clarify)
  apply (rule conjI)
  apply (case_tac "a=aa")
  apply (simp)
  apply (clarify)
  apply (frule_tac as=arr in sorted_spvec_cons1, simp)
  apply (subst sorted_spvec_step)
  apply (simp split: list.split)
  apply (clarify, simp)
  apply (simp add: sorted_add_spvec_helper2 add_spvec_commute)
  apply (case_tac "a=aa")
  apply (simp_all)
  apply (clarify)
  apply (frule_tac as=arr in sorted_spvec_cons1)
  apply (frule_tac as=brr in sorted_spvec_cons1)
  apply (simp)
  apply (subst sorted_spvec_step)
  apply (simp split: list.split)
  apply (clarify, simp)
  apply (drule_tac sorted_add_spvec_helper)
  apply (auto)
  apply (case_tac arr)
  apply (simp_all)
  apply (drule sorted_spvec_cons3)
  apply (simp)
  apply (case_tac brr)
  apply (simp_all)
  apply (drule sorted_spvec_cons3)
  apply (simp)
  done

lemma sorted_spvec_add_spmat[rule_format]: "sorted_spvec A --> sorted_spvec B --> sorted_spvec (add_spmat (A, B))"
  apply (rule add_spmat.induct[of _ A B])
  apply (simp_all)
  apply (rule conjI)
  apply (intro strip)
  apply (simp)
  apply (frule_tac as=bs in sorted_spvec_cons1)
  apply (simp)
  apply (subst sorted_spvec_step)
  apply (simp split: list.split)
  apply (clarify, simp)
  apply (simp add: sorted_add_spmat_helper2)
  apply (clarify)
  apply (rule conjI)
  apply (case_tac "a=aa")
  apply (simp)
  apply (clarify)
  apply (frule_tac as=as in sorted_spvec_cons1, simp)
  apply (subst sorted_spvec_step)
  apply (simp split: list.split)
  apply (clarify, simp)
  apply (simp add: sorted_add_spmat_helper2 add_spmat_commute)
  apply (case_tac "a=aa")
  apply (simp_all)
  apply (clarify)
  apply (frule_tac as=as in sorted_spvec_cons1)
  apply (frule_tac as=bs in sorted_spvec_cons1)
  apply (simp)
  apply (subst sorted_spvec_step)
  apply (simp split: list.split)
  apply (clarify, simp)
  apply (drule_tac sorted_add_spmat_helper)
  apply (auto)
  apply (case_tac as)
  apply (simp_all)
  apply (drule sorted_spvec_cons3)
  apply (simp)
  apply (case_tac bs)
  apply (simp_all)
  apply (drule sorted_spvec_cons3)
  apply (simp)
  done

lemma sorted_spmat_add_spmat[rule_format]: "sorted_spmat A --> sorted_spmat B --> sorted_spmat (add_spmat (A, B))"
  apply (rule add_spmat.induct[of _ A B])
  apply (simp_all add: sorted_spvec_add_spvec)
  done

consts
  le_spvec :: "('a::lordered_ab_group_add) spvec * 'a spvec => bool" 
  le_spmat :: "('a::lordered_ab_group_add) spmat * 'a spmat => bool" 

recdef le_spvec "measure (% (a,b). (length a) + (length b))" 
  "le_spvec ([], []) = True"
  "le_spvec (a#as, []) = ((snd a <= 0) & (le_spvec (as, [])))"
  "le_spvec ([], b#bs) = ((0 <= snd b) & (le_spvec ([], bs)))"
  "le_spvec (a#as, b#bs) = (
  if (fst a < fst b) then 
    ((snd a <= 0) & (le_spvec (as, b#bs)))
  else (if (fst b < fst a) then
    ((0 <= snd b) & (le_spvec (a#as, bs)))
  else 
    ((snd a <= snd b) & (le_spvec (as, bs)))))"

recdef le_spmat "measure (% (a,b). (length a) + (length b))"
  "le_spmat ([], []) = True"
  "le_spmat (a#as, []) = (le_spvec (snd a, []) & (le_spmat (as, [])))"
  "le_spmat ([], b#bs) = (le_spvec ([], snd b) & (le_spmat ([], bs)))"
  "le_spmat (a#as, b#bs) = (
  if fst a < fst b then
    (le_spvec(snd a,[]) & le_spmat(as, b#bs))
  else (if (fst b < fst a) then 
    (le_spvec([], snd b) & le_spmat(a#as, bs))
  else
    (le_spvec(snd a, snd b) & le_spmat (as, bs))))"

constdefs
  disj_matrices :: "('a::zero) matrix => 'a matrix => bool"
  "disj_matrices A B == (! j i. (Rep_matrix A j i ≠ 0) --> (Rep_matrix B j i = 0)) & (! j i. (Rep_matrix B j i ≠ 0) --> (Rep_matrix A j i = 0))"  

declare [[simp_depth_limit = 6]]

lemma disj_matrices_contr1: "disj_matrices A B ==> Rep_matrix A j i ≠ 0 ==> Rep_matrix B j i = 0"
   by (simp add: disj_matrices_def)

lemma disj_matrices_contr2: "disj_matrices A B ==> Rep_matrix B j i ≠ 0 ==> Rep_matrix A j i = 0"
   by (simp add: disj_matrices_def)


lemma disj_matrices_add: "disj_matrices A B ==> disj_matrices C D ==> disj_matrices A D ==> disj_matrices B C ==> 
  (A + B <= C + D) = (A <= C & B <= (D::('a::lordered_ab_group_add) matrix))"
  apply (auto)
  apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def)
  apply (intro strip)
  apply (erule conjE)+
  apply (drule_tac j=j and i=i in spec2)+
  apply (case_tac "Rep_matrix B j i = 0")
  apply (case_tac "Rep_matrix D j i = 0")
  apply (simp_all)
  apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def)
  apply (intro strip)
  apply (erule conjE)+
  apply (drule_tac j=j and i=i in spec2)+
  apply (case_tac "Rep_matrix A j i = 0")
  apply (case_tac "Rep_matrix C j i = 0")
  apply (simp_all)
  apply (erule add_mono)
  apply (assumption)
  done

lemma disj_matrices_zero1[simp]: "disj_matrices 0 B"
by (simp add: disj_matrices_def)

lemma disj_matrices_zero2[simp]: "disj_matrices A 0"
by (simp add: disj_matrices_def)

lemma disj_matrices_commute: "disj_matrices A B = disj_matrices B A"
by (auto simp add: disj_matrices_def)

lemma disj_matrices_add_le_zero: "disj_matrices A B ==>
  (A + B <= 0) = (A <= 0 & (B::('a::lordered_ab_group_add) matrix) <= 0)"
by (rule disj_matrices_add[of A B 0 0, simplified])
 
lemma disj_matrices_add_zero_le: "disj_matrices A B ==>
  (0 <= A + B) = (0 <= A & 0 <= (B::('a::lordered_ab_group_add) matrix))"
by (rule disj_matrices_add[of 0 0 A B, simplified])

lemma disj_matrices_add_x_le: "disj_matrices A B ==> disj_matrices B C ==> 
  (A <= B + C) = (A <= C & 0 <= (B::('a::lordered_ab_group_add) matrix))"
by (auto simp add: disj_matrices_add[of 0 A B C, simplified])

lemma disj_matrices_add_le_x: "disj_matrices A B ==> disj_matrices B C ==> 
  (B + A <= C) = (A <= C &  (B::('a::lordered_ab_group_add) matrix) <= 0)"
by (auto simp add: disj_matrices_add[of B A 0 C,simplified] disj_matrices_commute)

lemma disj_sparse_row_singleton: "i <= j ==> sorted_spvec((j,y)#v) ==> disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)"
  apply (simp add: disj_matrices_def)
  apply (rule conjI)
  apply (rule neg_imp)
  apply (simp)
  apply (intro strip)
  apply (rule sorted_sparse_row_vector_zero)
  apply (simp_all)
  apply (intro strip)
  apply (rule sorted_sparse_row_vector_zero)
  apply (simp_all)
  done 

lemma disj_matrices_x_add: "disj_matrices A B ==> disj_matrices A C ==> disj_matrices (A::('a::lordered_ab_group_add) matrix) (B+C)"
  apply (simp add: disj_matrices_def)
  apply (auto)
  apply (drule_tac j=j and i=i in spec2)+
  apply (case_tac "Rep_matrix B j i = 0")
  apply (case_tac "Rep_matrix C j i = 0")
  apply (simp_all)
  done

lemma disj_matrices_add_x: "disj_matrices A B ==> disj_matrices A C ==> disj_matrices (B+C) (A::('a::lordered_ab_group_add) matrix)" 
  by (simp add: disj_matrices_x_add disj_matrices_commute)

lemma disj_singleton_matrices[simp]: "disj_matrices (singleton_matrix j i x) (singleton_matrix u v y) = (j ≠ u | i ≠ v | x = 0 | y = 0)" 
  by (auto simp add: disj_matrices_def)

lemma disj_move_sparse_vec_mat[simplified disj_matrices_commute]: 
  "j <= a ==> sorted_spvec((a,c)#as) ==> disj_matrices (move_matrix (sparse_row_vector b) (int j) i) (sparse_row_matrix as)"
  apply (auto simp add: neg_def disj_matrices_def)
  apply (drule nrows_notzero)
  apply (drule less_le_trans[OF _ nrows_spvec])
  apply (subgoal_tac "ja = j")
  apply (simp add: sorted_sparse_row_matrix_zero)
  apply (arith)
  apply (rule nrows)
  apply (rule order_trans[of _ 1 _])
  apply (simp)
  apply (case_tac "nat (int ja - int j) = 0")
  apply (case_tac "ja = j")
  apply (simp add: sorted_sparse_row_matrix_zero)
  apply arith+
  done

lemma disj_move_sparse_row_vector_twice:
  "j ≠ u ==> disj_matrices (move_matrix (sparse_row_vector a) j i) (move_matrix (sparse_row_vector b) u v)"
  apply (auto simp add: neg_def disj_matrices_def)
  apply (rule nrows, rule order_trans[of _ 1], simp, drule nrows_notzero, drule less_le_trans[OF _ nrows_spvec], arith)+
  done

lemma le_spvec_iff_sparse_row_le[rule_format]: "(sorted_spvec a) --> (sorted_spvec b) --> (le_spvec (a,b)) = (sparse_row_vector a <= sparse_row_vector b)"
  apply (rule le_spvec.induct)
  apply (simp_all add: sorted_spvec_cons1 disj_matrices_add_le_zero disj_matrices_add_zero_le 
    disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
  apply (rule conjI, intro strip)
  apply (simp add: sorted_spvec_cons1)
  apply (subst disj_matrices_add_x_le)
  apply (simp add: disj_sparse_row_singleton[OF less_imp_le] disj_matrices_x_add disj_matrices_commute)
  apply (simp add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
  apply (simp, blast)
  apply (intro strip, rule conjI, intro strip)
  apply (simp add: sorted_spvec_cons1)
  apply (subst disj_matrices_add_le_x)
  apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_sparse_row_singleton[OF less_imp_le] disj_matrices_commute disj_matrices_x_add)
  apply (blast)
  apply (intro strip)
  apply (simp add: sorted_spvec_cons1)
  apply (case_tac "a=aa", simp_all)
  apply (subst disj_matrices_add)
  apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
  done

lemma le_spvec_empty2_sparse_row[rule_format]: "(sorted_spvec b) --> (le_spvec (b,[]) = (sparse_row_vector b <= 0))"
  apply (induct b)
  apply (simp_all add: sorted_spvec_cons1)
  apply (intro strip)
  apply (subst disj_matrices_add_le_zero)
  apply (simp add: disj_matrices_commute disj_sparse_row_singleton sorted_spvec_cons1)
  apply (rule_tac y = "snd a" in disj_sparse_row_singleton[OF order_refl])
  apply (simp_all)
  done

lemma le_spvec_empty1_sparse_row[rule_format]: "(sorted_spvec b) --> (le_spvec ([],b) = (0 <= sparse_row_vector b))"
  apply (induct b)
  apply (simp_all add: sorted_spvec_cons1)
  apply (intro strip)
  apply (subst disj_matrices_add_zero_le)
  apply (simp add: disj_matrices_commute disj_sparse_row_singleton sorted_spvec_cons1)
  apply (rule_tac y = "snd a" in disj_sparse_row_singleton[OF order_refl])
  apply (simp_all)
  done

lemma le_spmat_iff_sparse_row_le[rule_format]: "(sorted_spvec A) --> (sorted_spmat A) --> (sorted_spvec B) --> (sorted_spmat B) --> 
  le_spmat(A, B) = (sparse_row_matrix A <= sparse_row_matrix B)"
  apply (rule le_spmat.induct)
  apply (simp add: sparse_row_matrix_cons disj_matrices_add_le_zero disj_matrices_add_zero_le disj_move_sparse_vec_mat[OF order_refl] 
    disj_matrices_commute sorted_spvec_cons1 le_spvec_empty2_sparse_row le_spvec_empty1_sparse_row)+ 
  apply (rule conjI, intro strip)
  apply (simp add: sorted_spvec_cons1)
  apply (subst disj_matrices_add_x_le)
  apply (rule disj_matrices_add_x)
  apply (simp add: disj_move_sparse_row_vector_twice)
  apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute)
  apply (simp add: disj_move_sparse_vec_mat[OF order_refl] disj_matrices_commute)
  apply (simp, blast)
  apply (intro strip, rule conjI, intro strip)
  apply (simp add: sorted_spvec_cons1)
  apply (subst disj_matrices_add_le_x)
  apply (simp add: disj_move_sparse_vec_mat[OF order_refl])
  apply (rule disj_matrices_x_add)
  apply (simp add: disj_move_sparse_row_vector_twice)
  apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute)
  apply (simp, blast)
  apply (intro strip)
  apply (case_tac "a=aa")
  apply (simp_all)
  apply (subst disj_matrices_add)
  apply (simp_all add: disj_matrices_commute disj_move_sparse_vec_mat[OF order_refl])
  apply (simp add: sorted_spvec_cons1 le_spvec_iff_sparse_row_le)
  done

declare [[simp_depth_limit = 999]]

consts 
   abs_spmat :: "('a::lordered_ring) spmat => 'a spmat"
   minus_spmat :: "('a::lordered_ring) spmat => 'a spmat"

primrec
  "abs_spmat [] = []"
  "abs_spmat (a#as) = (fst a, abs_spvec (snd a))#(abs_spmat as)"

primrec
  "minus_spmat [] = []"
  "minus_spmat (a#as) = (fst a, minus_spvec (snd a))#(minus_spmat as)"

lemma sparse_row_matrix_minus:
  "sparse_row_matrix (minus_spmat A) = - (sparse_row_matrix A)"
  apply (induct A)
  apply (simp_all add: sparse_row_vector_minus sparse_row_matrix_cons)
  apply (subst Rep_matrix_inject[symmetric])
  apply (rule ext)+
  apply simp
  done

lemma Rep_sparse_row_vector_zero: "x ≠ 0 ==> Rep_matrix (sparse_row_vector v) x y = 0"
proof -
  assume x:"x ≠ 0"
  have r:"nrows (sparse_row_vector v) <= Suc 0" by (rule nrows_spvec)
  show ?thesis
    apply (rule nrows)
    apply (subgoal_tac "Suc 0 <= x")
    apply (insert r)
    apply (simp only:)
    apply (insert x)
    apply arith
    done
qed
    
lemma sparse_row_matrix_abs:
  "sorted_spvec A ==> sorted_spmat A ==> sparse_row_matrix (abs_spmat A) = abs (sparse_row_matrix A)"
  apply (induct A)
  apply (simp_all add: sparse_row_vector_abs sparse_row_matrix_cons)
  apply (frule_tac sorted_spvec_cons1, simp)
  apply (simplesubst Rep_matrix_inject[symmetric])
  apply (rule ext)+
  apply auto
  apply (case_tac "x=a")
  apply (simp)
  apply (simplesubst sorted_sparse_row_matrix_zero)
  apply auto
  apply (simplesubst Rep_sparse_row_vector_zero)
  apply (simp_all add: neg_def)
  done

lemma sorted_spvec_minus_spmat: "sorted_spvec A ==> sorted_spvec (minus_spmat A)"
  apply (induct A)
  apply (simp)
  apply (frule sorted_spvec_cons1, simp)
  apply (simp add: sorted_spvec.simps split:list.split_asm)
  done 

lemma sorted_spvec_abs_spmat: "sorted_spvec A ==> sorted_spvec (abs_spmat A)" 
  apply (induct A)
  apply (simp)
  apply (frule sorted_spvec_cons1, simp)
  apply (simp add: sorted_spvec.simps split:list.split_asm)
  done

lemma sorted_spmat_minus_spmat: "sorted_spmat A ==> sorted_spmat (minus_spmat A)"
  apply (induct A)
  apply (simp_all add: sorted_spvec_minus_spvec)
  done

lemma sorted_spmat_abs_spmat: "sorted_spmat A ==> sorted_spmat (abs_spmat A)"
  apply (induct A)
  apply (simp_all add: sorted_spvec_abs_spvec)
  done

constdefs
  diff_spmat :: "('a::lordered_ring) spmat => 'a spmat => 'a spmat"
  "diff_spmat A B == add_spmat (A, minus_spmat B)"

lemma sorted_spmat_diff_spmat: "sorted_spmat A ==> sorted_spmat B ==> sorted_spmat (diff_spmat A B)"
  by (simp add: diff_spmat_def sorted_spmat_minus_spmat sorted_spmat_add_spmat)

lemma sorted_spvec_diff_spmat: "sorted_spvec A ==> sorted_spvec B ==> sorted_spvec (diff_spmat A B)"
  by (simp add: diff_spmat_def sorted_spvec_minus_spmat sorted_spvec_add_spmat)

lemma sparse_row_diff_spmat: "sparse_row_matrix (diff_spmat A B ) = (sparse_row_matrix A) - (sparse_row_matrix B)"
  by (simp add: diff_spmat_def sparse_row_add_spmat sparse_row_matrix_minus)

constdefs
  sorted_sparse_matrix :: "'a spmat => bool"
  "sorted_sparse_matrix A == (sorted_spvec A) & (sorted_spmat A)"

lemma sorted_sparse_matrix_imp_spvec: "sorted_sparse_matrix A ==> sorted_spvec A"
  by (simp add: sorted_sparse_matrix_def)

lemma sorted_sparse_matrix_imp_spmat: "sorted_sparse_matrix A ==> sorted_spmat A"
  by (simp add: sorted_sparse_matrix_def)

lemmas sorted_sp_simps = 
  sorted_spvec.simps
  sorted_spmat.simps
  sorted_sparse_matrix_def

lemma bool1: "(¬ True) = False"  by blast
lemma bool2: "(¬ False) = True"  by blast
lemma bool3: "((P::bool) ∧ True) = P" by blast
lemma bool4: "(True ∧ (P::bool)) = P" by blast
lemma bool5: "((P::bool) ∧ False) = False" by blast
lemma bool6: "(False ∧ (P::bool)) = False" by blast
lemma bool7: "((P::bool) ∨ True) = True" by blast
lemma bool8: "(True ∨ (P::bool)) = True" by blast
lemma bool9: "((P::bool) ∨ False) = P" by blast
lemma bool10: "(False ∨ (P::bool)) = P" by blast
lemmas boolarith = bool1 bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 bool10

lemma if_case_eq: "(if b then x else y) = (case b of True => x | False => y)" by simp

consts
  pprt_spvec :: "('a::{lordered_ab_group_add}) spvec => 'a spvec"
  nprt_spvec :: "('a::{lordered_ab_group_add}) spvec => 'a spvec"
  pprt_spmat :: "('a::{lordered_ab_group_add}) spmat => 'a spmat"
  nprt_spmat :: "('a::{lordered_ab_group_add}) spmat => 'a spmat"

primrec
  "pprt_spvec [] = []"
  "pprt_spvec (a#as) = (fst a, pprt (snd a)) # (pprt_spvec as)"

primrec
  "nprt_spvec [] = []"
  "nprt_spvec (a#as) = (fst a, nprt (snd a)) # (nprt_spvec as)"

primrec 
  "pprt_spmat [] = []"
  "pprt_spmat (a#as) = (fst a, pprt_spvec (snd a))#(pprt_spmat as)"
  (*case (pprt_spvec (snd a)) of [] => (pprt_spmat as) | y#ys => (fst a, y#ys)#(pprt_spmat as))"*)

primrec 
  "nprt_spmat [] = []"
  "nprt_spmat (a#as) = (fst a, nprt_spvec (snd a))#(nprt_spmat as)"
  (*case (nprt_spvec (snd a)) of [] => (nprt_spmat as) | y#ys => (fst a, y#ys)#(nprt_spmat as))"*)


lemma pprt_add: "disj_matrices A (B::(_::lordered_ring) matrix) ==> pprt (A+B) = pprt A + pprt B"
  apply (simp add: pprt_def sup_matrix_def)
  apply (simp add: Rep_matrix_inject[symmetric])
  apply (rule ext)+
  apply simp
  apply (case_tac "Rep_matrix A x xa ≠ 0")
  apply (simp_all add: disj_matrices_contr1)
  done

lemma nprt_add: "disj_matrices A (B::(_::lordered_ring) matrix) ==> nprt (A+B) = nprt A + nprt B"
  apply (simp add: nprt_def inf_matrix_def)
  apply (simp add: Rep_matrix_inject[symmetric])
  apply (rule ext)+
  apply simp
  apply (case_tac "Rep_matrix A x xa ≠ 0")
  apply (simp_all add: disj_matrices_contr1)
  done

lemma pprt_singleton[simp]: "pprt (singleton_matrix j i (x::_::lordered_ring)) = singleton_matrix j i (pprt x)"
  apply (simp add: pprt_def sup_matrix_def)
  apply (simp add: Rep_matrix_inject[symmetric])
  apply (rule ext)+
  apply simp
  done

lemma nprt_singleton[simp]: "nprt (singleton_matrix j i (x::_::lordered_ring)) = singleton_matrix j i (nprt x)"
  apply (simp add: nprt_def inf_matrix_def)
  apply (simp add: Rep_matrix_inject[symmetric])
  apply (rule ext)+
  apply simp
  done

lemma less_imp_le: "a < b ==> a <= (b::_::order)" by (simp add: less_def)

lemma sparse_row_vector_pprt: "sorted_spvec v ==> sparse_row_vector (pprt_spvec v) = pprt (sparse_row_vector v)"
  apply (induct v)
  apply (simp_all)
  apply (frule sorted_spvec_cons1, auto)
  apply (subst pprt_add)
  apply (subst disj_matrices_commute)
  apply (rule disj_sparse_row_singleton)
  apply auto
  done

lemma sparse_row_vector_nprt: "sorted_spvec v ==> sparse_row_vector (nprt_spvec v) = nprt (sparse_row_vector v)"
  apply (induct v)
  apply (simp_all)
  apply (frule sorted_spvec_cons1, auto)
  apply (subst nprt_add)
  apply (subst disj_matrices_commute)
  apply (rule disj_sparse_row_singleton)
  apply auto
  done
  
  
lemma pprt_move_matrix: "pprt (move_matrix (A::('a::lordered_ring) matrix) j i) = move_matrix (pprt A) j i"
  apply (simp add: pprt_def)
  apply (simp add: sup_matrix_def)
  apply (simp add: Rep_matrix_inject[symmetric])
  apply (rule ext)+
  apply (simp)
  done

lemma nprt_move_matrix: "nprt (move_matrix (A::('a::lordered_ring) matrix) j i) = move_matrix (nprt A) j i"
  apply (simp add: nprt_def)
  apply (simp add: inf_matrix_def)
  apply (simp add: Rep_matrix_inject[symmetric])
  apply (rule ext)+
  apply (simp)
  done

lemma sparse_row_matrix_pprt: "sorted_spvec m ==> sorted_spmat m ==> sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)"
  apply (induct m)
  apply simp
  apply simp
  apply (frule sorted_spvec_cons1)
  apply (simp add: sparse_row_matrix_cons sparse_row_vector_pprt)
  apply (subst pprt_add)
  apply (subst disj_matrices_commute)
  apply (rule disj_move_sparse_vec_mat)
  apply auto
  apply (simp add: sorted_spvec.simps)
  apply (simp split: list.split)
  apply auto
  apply (simp add: pprt_move_matrix)
  done

lemma sparse_row_matrix_nprt: "sorted_spvec m ==> sorted_spmat m ==> sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)"
  apply (induct m)
  apply simp
  apply simp
  apply (frule sorted_spvec_cons1)
  apply (simp add: sparse_row_matrix_cons sparse_row_vector_nprt)
  apply (subst nprt_add)
  apply (subst disj_matrices_commute)
  apply (rule disj_move_sparse_vec_mat)
  apply auto
  apply (simp add: sorted_spvec.simps)
  apply (simp split: list.split)
  apply auto
  apply (simp add: nprt_move_matrix)
  done

lemma sorted_pprt_spvec: "sorted_spvec v ==> sorted_spvec (pprt_spvec v)"
  apply (induct v)
  apply (simp)
  apply (frule sorted_spvec_cons1)
  apply simp
  apply (simp add: sorted_spvec.simps split:list.split_asm)
  done

lemma sorted_nprt_spvec: "sorted_spvec v ==> sorted_spvec (nprt_spvec v)"
  apply (induct v)
  apply (simp)
  apply (frule sorted_spvec_cons1)
  apply simp
  apply (simp add: sorted_spvec.simps split:list.split_asm)
  done

lemma sorted_spvec_pprt_spmat: "sorted_spvec m ==> sorted_spvec (pprt_spmat m)"
  apply (induct m)
  apply (simp)
  apply (frule sorted_spvec_cons1)
  apply simp
  apply (simp add: sorted_spvec.simps split:list.split_asm)
  done

lemma sorted_spvec_nprt_spmat: "sorted_spvec m ==> sorted_spvec (nprt_spmat m)"
  apply (induct m)
  apply (simp)
  apply (frule sorted_spvec_cons1)
  apply simp
  apply (simp add: sorted_spvec.simps split:list.split_asm)
  done

lemma sorted_spmat_pprt_spmat: "sorted_spmat m ==> sorted_spmat (pprt_spmat m)"
  apply (induct m)
  apply (simp_all add: sorted_pprt_spvec)
  done

lemma sorted_spmat_nprt_spmat: "sorted_spmat m ==> sorted_spmat (nprt_spmat m)"
  apply (induct m)
  apply (simp_all add: sorted_nprt_spvec)
  done

constdefs
  mult_est_spmat :: "('a::lordered_ring) spmat => 'a spmat => 'a spmat => 'a spmat => 'a spmat"
  "mult_est_spmat r1 r2 s1 s2 == 
  add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2), add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2), 
  add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1), mult_spmat (nprt_spmat s1) (nprt_spmat r1))))"  

lemmas sparse_row_matrix_op_simps =
  sorted_sparse_matrix_imp_spmat sorted_sparse_matrix_imp_spvec
  sparse_row_add_spmat sorted_spvec_add_spmat sorted_spmat_add_spmat
  sparse_row_diff_spmat sorted_spvec_diff_spmat sorted_spmat_diff_spmat
  sparse_row_matrix_minus sorted_spvec_minus_spmat sorted_spmat_minus_spmat
  sparse_row_mult_spmat sorted_spvec_mult_spmat sorted_spmat_mult_spmat
  sparse_row_matrix_abs sorted_spvec_abs_spmat sorted_spmat_abs_spmat
  le_spmat_iff_sparse_row_le
  sparse_row_matrix_pprt sorted_spvec_pprt_spmat sorted_spmat_pprt_spmat
  sparse_row_matrix_nprt sorted_spvec_nprt_spmat sorted_spmat_nprt_spmat

lemma zero_eq_Numeral0: "(0::_::number_ring) = Numeral0" by simp

lemmas sparse_row_matrix_arith_simps[simplified zero_eq_Numeral0] = 
  mult_spmat.simps mult_spvec_spmat.simps 
  addmult_spvec.simps 
  smult_spvec_empty smult_spvec_cons
  add_spmat.simps add_spvec.simps
  minus_spmat.simps minus_spvec.simps
  abs_spmat.simps abs_spvec.simps
  diff_spmat_def
  le_spmat.simps le_spvec.simps
  pprt_spmat.simps pprt_spvec.simps
  nprt_spmat.simps nprt_spvec.simps
  mult_est_spmat_def


(*lemma spm_linprog_dual_estimate_1:
  assumes  
  "sorted_sparse_matrix A1"
  "sorted_sparse_matrix A2"
  "sorted_sparse_matrix c1"
  "sorted_sparse_matrix c2"
  "sorted_sparse_matrix y"
  "sorted_spvec b"
  "sorted_spvec r"
  "le_spmat ([], y)"
  "A * x ≤ sparse_row_matrix (b::('a::lordered_ring) spmat)"
  "sparse_row_matrix A1 <= A"
  "A <= sparse_row_matrix A2"
  "sparse_row_matrix c1 <= c"
  "c <= sparse_row_matrix c2"
  "abs x ≤ sparse_row_matrix r"
  shows
  "c * x ≤ sparse_row_matrix (add_spmat (mult_spmat y b, mult_spmat (add_spmat (add_spmat (mult_spmat y (diff_spmat A2 A1), 
  abs_spmat (diff_spmat (mult_spmat y A1) c1)), diff_spmat c2 c1)) r))"
  by (insert prems, simp add: sparse_row_matrix_op_simps linprog_dual_estimate_1[where A=A])
*)

lemma spm_mult_le_dual_prts: 
  assumes
  "sorted_sparse_matrix A1"
  "sorted_sparse_matrix A2"
  "sorted_sparse_matrix c1"
  "sorted_sparse_matrix c2"
  "sorted_sparse_matrix y"
  "sorted_sparse_matrix r1"
  "sorted_sparse_matrix r2"
  "sorted_spvec b"
  "le_spmat ([], y)"
  "sparse_row_matrix A1 ≤ A"
  "A ≤ sparse_row_matrix A2"
  "sparse_row_matrix c1 ≤ c"
  "c ≤ sparse_row_matrix c2"
  "sparse_row_matrix r1 ≤ x"
  "x ≤ sparse_row_matrix r2"
  "A * x ≤ sparse_row_matrix (b::('a::lordered_ring) spmat)"
  shows
  "c * x ≤ sparse_row_matrix (add_spmat (mult_spmat y b,
  (let s1 = diff_spmat c1 (mult_spmat y A2); s2 = diff_spmat c2 (mult_spmat y A1) in 
  add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2), add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2), 
  add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1), mult_spmat (nprt_spmat s1) (nprt_spmat r1)))))))"
  apply (simp add: Let_def)
  apply (insert prems)
  apply (simp add: sparse_row_matrix_op_simps ring_simps)  
  apply (rule mult_le_dual_prts[where A=A, simplified Let_def ring_simps])
  apply (auto)
  done

lemma spm_mult_le_dual_prts_no_let: 
  assumes
  "sorted_sparse_matrix A1"
  "sorted_sparse_matrix A2"
  "sorted_sparse_matrix c1"
  "sorted_sparse_matrix c2"
  "sorted_sparse_matrix y"
  "sorted_sparse_matrix r1"
  "sorted_sparse_matrix r2"
  "sorted_spvec b"
  "le_spmat ([], y)"
  "sparse_row_matrix A1 ≤ A"
  "A ≤ sparse_row_matrix A2"
  "sparse_row_matrix c1 ≤ c"
  "c ≤ sparse_row_matrix c2"
  "sparse_row_matrix r1 ≤ x"
  "x ≤ sparse_row_matrix r2"
  "A * x ≤ sparse_row_matrix (b::('a::lordered_ring) spmat)"
  shows
  "c * x ≤ sparse_row_matrix (add_spmat (mult_spmat y b,
  mult_est_spmat r1 r2 (diff_spmat c1 (mult_spmat y A2)) (diff_spmat c2 (mult_spmat y A1))))"
  by (simp add: prems mult_est_spmat_def spm_mult_le_dual_prts[where A=A, simplified Let_def])
 
end

lemma sparse_row_vector_empty:

  sparse_row_vector [] = 0

lemma sparse_row_matrix_empty:

  sparse_row_matrix [] = 0

lemma foldl_distrstart:

  (!!a x y. f (g x y) a = g x (f y a)) ==> foldl f (g x y) l = g x (foldl f y l)

lemma sparse_row_vector_cons:

  sparse_row_vector (a # arr) =
  singleton_matrix 0 (fst a) (snd a) + sparse_row_vector arr

lemma sparse_row_vector_append:

  sparse_row_vector (a @ b) = sparse_row_vector a + sparse_row_vector b

lemma nrows_spvec:

  nrows (sparse_row_vector x)  Suc 0

lemma sparse_row_matrix_cons:

  sparse_row_matrix (a # arr) =
  move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0 + sparse_row_matrix arr

lemma sparse_row_matrix_append:

  sparse_row_matrix (arr @ brr) = sparse_row_matrix arr + sparse_row_matrix brr

lemma sorted_spvec_empty:

  sorted_spvec [] = True

lemma sorted_spvec_cons1:

  sorted_spvec (a # as) ==> sorted_spvec as

lemma sorted_spvec_cons2:

  sorted_spvec (a # b # t) ==> sorted_spvec (a # t)

lemma sorted_spvec_cons3:

  sorted_spvec (a # b # t) ==> fst a < fst b

lemma sorted_sparse_row_vector_zero:

  [| m  n; sorted_spvec ((n, a) # arr) |]
  ==> Rep_matrix (sparse_row_vector arr) j m = (0::'a)

lemma sorted_sparse_row_matrix_zero:

  [| m  n; sorted_spvec ((n, a) # arr) |]
  ==> Rep_matrix (sparse_row_matrix arr) m j = (0::'a)

lemma sparse_row_vector_minus:

  sparse_row_vector (minus_spvec v) = - sparse_row_vector v

lemma sparse_row_vector_abs:

  sorted_spvec v ==> sparse_row_vector (abs_spvec v) = ¦sparse_row_vector v¦

lemma sorted_spvec_minus_spvec:

  sorted_spvec v ==> sorted_spvec (minus_spvec v)

lemma sorted_spvec_abs_spvec:

  sorted_spvec v ==> sorted_spvec (abs_spvec v)

lemma smult_spvec_empty:

  smult_spvec y [] = []

lemma smult_spvec_cons:

  smult_spvec y (a # arr) = (fst a, y * snd a) # smult_spvec y arr

lemma addmult_spvec_empty1:

  addmult_spvec (y, [], a) = smult_spvec y a

lemma addmult_spvec_empty2:

  addmult_spvec (y, a, []) = a

lemma sparse_row_vector_map:

  [| ∀x y. f (x + y) = f x + f y; f (0::'a) = (0::'a) |]
  ==> sparse_row_vector (map (λx. (fst x, f (snd x))) a) =
      apply_matrix f (sparse_row_vector a)

lemma sparse_row_vector_smult:

  sparse_row_vector (smult_spvec y a) = scalar_mult y (sparse_row_vector a)

lemma sparse_row_vector_addmult_spvec:

  sparse_row_vector (addmult_spvec (y, a, b)) =
  sparse_row_vector a + scalar_mult y (sparse_row_vector b)

lemma sorted_smult_spvec:

  sorted_spvec a ==> sorted_spvec (smult_spvec y a)

lemma sorted_spvec_addmult_spvec_helper:

  [| sorted_spvec (addmult_spvec (y, (a, b) # arr, brr)); aa < a;
     sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr) |]
  ==> sorted_spvec ((aa, y * ba) # addmult_spvec (y, (a, b) # arr, brr))

lemma sorted_spvec_addmult_spvec_helper2:

  [| sorted_spvec (addmult_spvec (y, arr, (aa, ba) # brr)); a < aa;
     sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr) |]
  ==> sorted_spvec ((a, b) # addmult_spvec (y, arr, (aa, ba) # brr))

lemma sorted_spvec_addmult_spvec_helper3:

  [| sorted_spvec (addmult_spvec (y, arr, brr)); sorted_spvec ((aa, b) # arr);
     sorted_spvec ((aa, ba) # brr) |]
  ==> sorted_spvec ((aa, b + y * ba) # addmult_spvec (y, arr, brr))

lemma sorted_addmult_spvec:

  [| sorted_spvec a; sorted_spvec b |] ==> sorted_spvec (addmult_spvec (y, a, b))

lemma sparse_row_mult_spvec_spmat:

  [| sorted_spvec a; sorted_spvec B |]
  ==> sparse_row_vector (mult_spvec_spmat (c, a, B)) =
      sparse_row_vector c + sparse_row_vector a * sparse_row_matrix B

lemma sorted_mult_spvec_spmat:

  [| sorted_spvec c; sorted_spmat B |]
  ==> sorted_spvec (mult_spvec_spmat (c, a, B))

lemma sparse_row_mult_spmat:

  [| sorted_spmat A; sorted_spvec B |]
  ==> sparse_row_matrix (mult_spmat A B) =
      sparse_row_matrix A * sparse_row_matrix B

lemma sorted_spvec_mult_spmat:

  sorted_spvec A ==> sorted_spvec (mult_spmat A B)

lemma sorted_spmat_mult_spmat:

  sorted_spmat B ==> sorted_spmat (mult_spmat A B)

lemma add_spvec_empty1:

  add_spvec ([], a) = a

lemma add_spvec_empty2:

  add_spvec (a, []) = a

lemma sparse_row_vector_add:

  sparse_row_vector (add_spvec (a, b)) = sparse_row_vector a + sparse_row_vector b

lemma sparse_row_add_spmat:

  sparse_row_matrix (add_spmat (A, B)) = sparse_row_matrix A + sparse_row_matrix B

lemma sorted_add_spvec_helper1:

  add_spvec ((a, b) # arr, brr) = (ab, bb) # list
  ==> ab = abrr  [] ∧ ab = fst (hd brr)

lemma sorted_add_spmat_helper1:

  add_spmat ((a, b) # arr, brr) = (ab, bb) # list
  ==> ab = abrr  [] ∧ ab = fst (hd brr)

lemma sorted_add_spvec_helper:

  add_spvec (arr, brr) = (ab, bb) # list
  ==> arr  [] ∧ ab = fst (hd arr) ∨ brr  [] ∧ ab = fst (hd brr)

lemma sorted_add_spmat_helper:

  add_spmat (arr, brr) = (ab, bb) # list
  ==> arr  [] ∧ ab = fst (hd arr) ∨ brr  [] ∧ ab = fst (hd brr)

lemma add_spvec_commute:

  add_spvec (a, b) = add_spvec (b, a)

lemma add_spmat_commute:

  add_spmat (a, b) = add_spmat (b, a)

lemma sorted_add_spvec_helper2:

  [| add_spvec ((a, b) # arr, brr) = (ab, bb) # list; aa < a;
     sorted_spvec ((aa, ba) # brr) |]
  ==> aa < ab

lemma sorted_add_spmat_helper2:

  [| add_spmat ((a, b) # arr, brr) = (ab, bb) # list; aa < a;
     sorted_spvec ((aa, ba) # brr) |]
  ==> aa < ab

lemma sorted_spvec_add_spvec:

  [| sorted_spvec a; sorted_spvec b |] ==> sorted_spvec (add_spvec (a, b))

lemma sorted_spvec_add_spmat:

  [| sorted_spvec A; sorted_spvec B |] ==> sorted_spvec (add_spmat (A, B))

lemma sorted_spmat_add_spmat:

  [| sorted_spmat A; sorted_spmat B |] ==> sorted_spmat (add_spmat (A, B))

lemma disj_matrices_contr1:

  [| disj_matrices A B; Rep_matrix A j i  (0::'a) |]
  ==> Rep_matrix B j i = (0::'a)

lemma disj_matrices_contr2:

  [| disj_matrices A B; Rep_matrix B j i  (0::'a) |]
  ==> Rep_matrix A j i = (0::'a)

lemma disj_matrices_add:

  [| disj_matrices A B; disj_matrices C D; disj_matrices A D; disj_matrices B C |]
  ==> (A + B  C + D) = (A  CB  D)

lemma disj_matrices_zero1:

  disj_matrices 0 B

lemma disj_matrices_zero2:

  disj_matrices A 0

lemma disj_matrices_commute:

  disj_matrices A B = disj_matrices B A

lemma disj_matrices_add_le_zero:

  disj_matrices A B ==> (A + B  0) = (A  0B  0)

lemma disj_matrices_add_zero_le:

  disj_matrices A B ==> (0  A + B) = (0  A0  B)

lemma disj_matrices_add_x_le:

  [| disj_matrices A B; disj_matrices B C |] ==> (A  B + C) = (A  C0  B)

lemma disj_matrices_add_le_x:

  [| disj_matrices A B; disj_matrices B C |] ==> (B + A  C) = (A  CB  0)

lemma disj_sparse_row_singleton:

  [| i  j; sorted_spvec ((j, y) # v) |]
  ==> disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)

lemma disj_matrices_x_add:

  [| disj_matrices A B; disj_matrices A C |] ==> disj_matrices A (B + C)

lemma disj_matrices_add_x:

  [| disj_matrices A B; disj_matrices A C |] ==> disj_matrices (B + C) A

lemma disj_singleton_matrices:

  disj_matrices (singleton_matrix j i x) (singleton_matrix u v y) =
  (j  ui  vx = (0::'a) ∨ y = (0::'a))

lemma disj_move_sparse_vec_mat:

  [| j  a; sorted_spvec ((a, c) # as) |]
  ==> disj_matrices (sparse_row_matrix as)
       (move_matrix (sparse_row_vector b) (int j) i)

lemma disj_move_sparse_row_vector_twice:

  j  u
  ==> disj_matrices (move_matrix (sparse_row_vector a) j i)
       (move_matrix (sparse_row_vector b) u v)

lemma le_spvec_iff_sparse_row_le:

  [| sorted_spvec a; sorted_spvec b |]
  ==> le_spvec (a, b) = (sparse_row_vector a  sparse_row_vector b)

lemma le_spvec_empty2_sparse_row:

  sorted_spvec b ==> le_spvec (b, []) = (sparse_row_vector b  0)

lemma le_spvec_empty1_sparse_row:

  sorted_spvec b ==> le_spvec ([], b) = (0  sparse_row_vector b)

lemma le_spmat_iff_sparse_row_le:

  [| sorted_spvec A; sorted_spmat A; sorted_spvec B; sorted_spmat B |]
  ==> le_spmat (A, B) = (sparse_row_matrix A  sparse_row_matrix B)

lemma sparse_row_matrix_minus:

  sparse_row_matrix (minus_spmat A) = - sparse_row_matrix A

lemma Rep_sparse_row_vector_zero:

  x  0 ==> Rep_matrix (sparse_row_vector v) x y = (0::'a)

lemma sparse_row_matrix_abs:

  [| sorted_spvec A; sorted_spmat A |]
  ==> sparse_row_matrix (abs_spmat A) = ¦sparse_row_matrix A¦

lemma sorted_spvec_minus_spmat:

  sorted_spvec A ==> sorted_spvec (minus_spmat A)

lemma sorted_spvec_abs_spmat:

  sorted_spvec A ==> sorted_spvec (abs_spmat A)

lemma sorted_spmat_minus_spmat:

  sorted_spmat A ==> sorted_spmat (minus_spmat A)

lemma sorted_spmat_abs_spmat:

  sorted_spmat A ==> sorted_spmat (abs_spmat A)

lemma sorted_spmat_diff_spmat:

  [| sorted_spmat A; sorted_spmat B |] ==> sorted_spmat (diff_spmat A B)

lemma sorted_spvec_diff_spmat:

  [| sorted_spvec A; sorted_spvec B |] ==> sorted_spvec (diff_spmat A B)

lemma sparse_row_diff_spmat:

  sparse_row_matrix (diff_spmat A B) = sparse_row_matrix A - sparse_row_matrix B

lemma sorted_sparse_matrix_imp_spvec:

  sorted_sparse_matrix A ==> sorted_spvec A

lemma sorted_sparse_matrix_imp_spmat:

  sorted_sparse_matrix A ==> sorted_spmat A

lemma sorted_sp_simps:

  sorted_spvec [] = True
  sorted_spvec (a # as) =
  (case as of [] => True | b # bs => fst a < fst b ∧ sorted_spvec as)
  sorted_spmat [] = True
  sorted_spmat (a # as) = (sorted_spvec (snd a) ∧ sorted_spmat as)
  sorted_sparse_matrix A == sorted_spvec A ∧ sorted_spmat A

lemma bool1:

  (¬ True) = False

lemma bool2:

  (¬ False) = True

lemma bool3:

  (P ∧ True) = P

lemma bool4:

  (True ∧ P) = P

lemma bool5:

  (P ∧ False) = False

lemma bool6:

  (False ∧ P) = False

lemma bool7:

  (P ∨ True) = True

lemma bool8:

  (True ∨ P) = True

lemma bool9:

  (P ∨ False) = P

lemma bool10:

  (False ∨ P) = P

lemma boolarith:

  (¬ True) = False
  (¬ False) = True
  (P ∧ True) = P
  (True ∧ P) = P
  (P ∧ False) = False
  (False ∧ P) = False
  (P ∨ True) = True
  (True ∨ P) = True
  (P ∨ False) = P
  (False ∨ P) = P

lemma if_case_eq:

  (if b then x else y) = (case b of True => x | False => y)

lemma pprt_add:

  disj_matrices A B ==> pprt (A + B) = pprt A + pprt B

lemma nprt_add:

  disj_matrices A B ==> nprt (A + B) = nprt A + nprt B

lemma pprt_singleton:

  pprt (singleton_matrix j i x) = singleton_matrix j i (pprt x)

lemma nprt_singleton:

  nprt (singleton_matrix j i x) = singleton_matrix j i (nprt x)

lemma less_imp_le:

  a < b ==> a  b

lemma sparse_row_vector_pprt:

  sorted_spvec v ==> sparse_row_vector (pprt_spvec v) = pprt (sparse_row_vector v)

lemma sparse_row_vector_nprt:

  sorted_spvec v ==> sparse_row_vector (nprt_spvec v) = nprt (sparse_row_vector v)

lemma pprt_move_matrix:

  pprt (move_matrix A j i) = move_matrix (pprt A) j i

lemma nprt_move_matrix:

  nprt (move_matrix A j i) = move_matrix (nprt A) j i

lemma sparse_row_matrix_pprt:

  [| sorted_spvec m; sorted_spmat m |]
  ==> sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)

lemma sparse_row_matrix_nprt:

  [| sorted_spvec m; sorted_spmat m |]
  ==> sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)

lemma sorted_pprt_spvec:

  sorted_spvec v ==> sorted_spvec (pprt_spvec v)

lemma sorted_nprt_spvec:

  sorted_spvec v ==> sorted_spvec (nprt_spvec v)

lemma sorted_spvec_pprt_spmat:

  sorted_spvec m ==> sorted_spvec (pprt_spmat m)

lemma sorted_spvec_nprt_spmat:

  sorted_spvec m ==> sorted_spvec (nprt_spmat m)

lemma sorted_spmat_pprt_spmat:

  sorted_spmat m ==> sorted_spmat (pprt_spmat m)

lemma sorted_spmat_nprt_spmat:

  sorted_spmat m ==> sorted_spmat (nprt_spmat m)

lemma sparse_row_matrix_op_simps:

  sorted_sparse_matrix A ==> sorted_spmat A
  sorted_sparse_matrix A ==> sorted_spvec A
  sparse_row_matrix (add_spmat (A, B)) = sparse_row_matrix A + sparse_row_matrix B
  [| sorted_spvec A; sorted_spvec B |] ==> sorted_spvec (add_spmat (A, B))
  [| sorted_spmat A; sorted_spmat B |] ==> sorted_spmat (add_spmat (A, B))
  sparse_row_matrix (diff_spmat A B) = sparse_row_matrix A - sparse_row_matrix B
  [| sorted_spvec A; sorted_spvec B |] ==> sorted_spvec (diff_spmat A B)
  [| sorted_spmat A; sorted_spmat B |] ==> sorted_spmat (diff_spmat A B)
  sparse_row_matrix (minus_spmat A) = - sparse_row_matrix A
  sorted_spvec A ==> sorted_spvec (minus_spmat A)
  sorted_spmat A ==> sorted_spmat (minus_spmat A)
  [| sorted_spmat A; sorted_spvec B |]
  ==> sparse_row_matrix (mult_spmat A B) =
      sparse_row_matrix A * sparse_row_matrix B
  sorted_spvec A ==> sorted_spvec (mult_spmat A B)
  sorted_spmat B ==> sorted_spmat (mult_spmat A B)
  [| sorted_spvec A; sorted_spmat A |]
  ==> sparse_row_matrix (abs_spmat A) = ¦sparse_row_matrix A¦
  sorted_spvec A ==> sorted_spvec (abs_spmat A)
  sorted_spmat A ==> sorted_spmat (abs_spmat A)
  [| sorted_spvec A; sorted_spmat A; sorted_spvec B; sorted_spmat B |]
  ==> le_spmat (A, B) = (sparse_row_matrix A  sparse_row_matrix B)
  [| sorted_spvec m; sorted_spmat m |]
  ==> sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)
  sorted_spvec m ==> sorted_spvec (pprt_spmat m)
  sorted_spmat m ==> sorted_spmat (pprt_spmat m)
  [| sorted_spvec m; sorted_spmat m |]
  ==> sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)
  sorted_spvec m ==> sorted_spvec (nprt_spmat m)
  sorted_spmat m ==> sorted_spmat (nprt_spmat m)

lemma zero_eq_Numeral0:

  (0::'a) = Numeral0

lemma sparse_row_matrix_arith_simps:

  mult_spmat [] A = []
  mult_spmat (a # as) A =
  (fst a, mult_spvec_spmat ([], snd a, A)) # mult_spmat as A
  mult_spvec_spmat (c, [], brr) = c
  mult_spvec_spmat (c, y # z, []) = c
  mult_spvec_spmat (c, a # arr, b # brr) =
  (if fst a < fst b then mult_spvec_spmat (c, arr, b # brr)
   else if fst b < fst a then mult_spvec_spmat (c, a # arr, brr)
        else mult_spvec_spmat (addmult_spvec (snd a, c, snd b), arr, brr))
  addmult_spvec (y, arr, []) = arr
  addmult_spvec (y, [], ae # af) = smult_spvec y (ae # af)
  addmult_spvec (y, a # arr, b # brr) =
  (if fst a < fst b then a # addmult_spvec (y, arr, b # brr)
   else if fst b < fst a then (fst b, y * snd b) # addmult_spvec (y, a # arr, brr)
        else (fst a, snd a + y * snd b) # addmult_spvec (y, arr, brr))
  smult_spvec y [] = []
  smult_spvec y (a # arr) = (fst a, y * snd a) # smult_spvec y arr
  add_spmat ([], bs) = bs
  add_spmat (w # x, []) = w # x
  add_spmat (a # as, b # bs) =
  (if fst a < fst b then a # add_spmat (as, b # bs)
   else if fst b < fst a then b # add_spmat (a # as, bs)
        else (fst a, add_spvec (snd a, snd b)) # add_spmat (as, bs))
  add_spvec (arr, []) = arr
  add_spvec ([], ab # ac) = ab # ac
  add_spvec (a # arr, b # brr) =
  (if fst a < fst b then a # add_spvec (arr, b # brr)
   else if fst b < fst a then b # add_spvec (a # arr, brr)
        else (fst a, snd a + snd b) # add_spvec (arr, brr))
  minus_spmat [] = []
  minus_spmat (a # as) = (fst a, minus_spvec (snd a)) # minus_spmat as
  minus_spvec [] = []
  minus_spvec (a # as) = (fst a, - snd a) # minus_spvec as
  abs_spmat [] = []
  abs_spmat (a # as) = (fst a, abs_spvec (snd a)) # abs_spmat as
  abs_spvec [] = []
  abs_spvec (a # as) = (fst a, ¦snd a¦) # abs_spvec as
  diff_spmat A B == add_spmat (A, minus_spmat B)
  le_spmat ([], []) = True
  le_spmat (a # as, []) = (le_spvec (snd a, []) ∧ le_spmat (as, []))
  le_spmat ([], b # bs) = (le_spvec ([], snd b) ∧ le_spmat ([], bs))
  le_spmat (a # as, b # bs) =
  (if fst a < fst b then le_spvec (snd a, []) ∧ le_spmat (as, b # bs)
   else if fst b < fst a then le_spvec ([], snd b) ∧ le_spmat (a # as, bs)
        else le_spvec (snd a, snd b) ∧ le_spmat (as, bs))
  le_spvec ([], []) = True
  le_spvec (a # as, []) = (snd a  (0::'a) ∧ le_spvec (as, []))
  le_spvec ([], b # bs) = ((0::'a)  snd b ∧ le_spvec ([], bs))
  le_spvec (a # as, b # bs) =
  (if fst a < fst b then snd a  (0::'a) ∧ le_spvec (as, b # bs)
   else if fst b < fst a then (0::'a)  snd b ∧ le_spvec (a # as, bs)
        else snd a  snd b ∧ le_spvec (as, bs))
  pprt_spmat [] = []
  pprt_spmat (a # as) = (fst a, pprt_spvec (snd a)) # pprt_spmat as
  pprt_spvec [] = []
  pprt_spvec (a # as) = (fst a, pprt (snd a)) # pprt_spvec as
  nprt_spmat [] = []
  nprt_spmat (a # as) = (fst a, nprt_spvec (snd a)) # nprt_spmat as
  nprt_spvec [] = []
  nprt_spvec (a # as) = (fst a, nprt (snd a)) # nprt_spvec as
  mult_est_spmat r1.0 r2.0 s1.0 s2.0 ==
  add_spmat
   (mult_spmat (pprt_spmat s2.0) (pprt_spmat r2.0),
    add_spmat
     (mult_spmat (pprt_spmat s1.0) (nprt_spmat r2.0),
      add_spmat
       (mult_spmat (nprt_spmat s2.0) (pprt_spmat r1.0),
        mult_spmat (nprt_spmat s1.0) (nprt_spmat r1.0))))

lemma spm_mult_le_dual_prts:

  [| sorted_sparse_matrix A1.0; sorted_sparse_matrix A2.0;
     sorted_sparse_matrix c1.0; sorted_sparse_matrix c2.0; sorted_sparse_matrix y;
     sorted_sparse_matrix r1.0; sorted_sparse_matrix r2.0; sorted_spvec b;
     le_spmat ([], y); sparse_row_matrix A1.0  A; A  sparse_row_matrix A2.0;
     sparse_row_matrix c1.0  c; c  sparse_row_matrix c2.0;
     sparse_row_matrix r1.0  x; x  sparse_row_matrix r2.0;
     A * x  sparse_row_matrix b |]
  ==> c * x
       sparse_row_matrix
         (add_spmat
           (mult_spmat y b,
            let s1 = diff_spmat c1.0 (mult_spmat y A2.0);
                s2 = diff_spmat c2.0 (mult_spmat y A1.0)
            in add_spmat
                (mult_spmat (pprt_spmat s2) (pprt_spmat r2.0),
                 add_spmat
                  (mult_spmat (pprt_spmat s1) (nprt_spmat r2.0),
                   add_spmat
                    (mult_spmat (nprt_spmat s2) (pprt_spmat r1.0),
                     mult_spmat (nprt_spmat s1) (nprt_spmat r1.0))))))

lemma spm_mult_le_dual_prts_no_let:

  [| sorted_sparse_matrix A1.0; sorted_sparse_matrix A2.0;
     sorted_sparse_matrix c1.0; sorted_sparse_matrix c2.0; sorted_sparse_matrix y;
     sorted_sparse_matrix r1.0; sorted_sparse_matrix r2.0; sorted_spvec b;
     le_spmat ([], y); sparse_row_matrix A1.0  A; A  sparse_row_matrix A2.0;
     sparse_row_matrix c1.0  c; c  sparse_row_matrix c2.0;
     sparse_row_matrix r1.0  x; x  sparse_row_matrix r2.0;
     A * x  sparse_row_matrix b |]
  ==> c * x
       sparse_row_matrix
         (add_spmat
           (mult_spmat y b,
            mult_est_spmat r1.0 r2.0 (diff_spmat c1.0 (mult_spmat y A2.0))
             (diff_spmat c2.0 (mult_spmat y A1.0))))