Up to index of Isabelle/HOL/HOL-Algebra/example_Bicomplex
theory SparseMatrix(* Title: HOL/Matrix/SparseMatrix.thy ID: $Id: SparseMatrix.thy,v 1.17 2008/03/17 17:37:01 wenzelm Exp $ Author: Steven Obua *) theory SparseMatrix imports Matrix LP begin types 'a spvec = "(nat * 'a) list" 'a spmat = "('a spvec) spvec" consts sparse_row_vector :: "('a::lordered_ring) spvec => 'a matrix" sparse_row_matrix :: "('a::lordered_ring) spmat => 'a matrix" defs sparse_row_vector_def : "sparse_row_vector arr == foldl (% m x. m + (singleton_matrix 0 (fst x) (snd x))) 0 arr" sparse_row_matrix_def : "sparse_row_matrix arr == foldl (% m r. m + (move_matrix (sparse_row_vector (snd r)) (int (fst r)) 0)) 0 arr" lemma sparse_row_vector_empty[simp]: "sparse_row_vector [] = 0" by (simp add: sparse_row_vector_def) lemma sparse_row_matrix_empty[simp]: "sparse_row_matrix [] = 0" by (simp add: sparse_row_matrix_def) lemma foldl_distrstart[rule_format]: "! a x y. (f (g x y) a = g x (f y a)) ==> ! x y. (foldl f (g x y) l = g x (foldl f y l))" by (induct l, auto) lemma sparse_row_vector_cons[simp]: "sparse_row_vector (a#arr) = (singleton_matrix 0 (fst a) (snd a)) + (sparse_row_vector arr)" apply (induct arr) apply (auto simp add: sparse_row_vector_def) apply (simp add: foldl_distrstart[of "λm x. m + singleton_matrix 0 (fst x) (snd x)" "λx m. singleton_matrix 0 (fst x) (snd x) + m"]) done lemma sparse_row_vector_append[simp]: "sparse_row_vector (a @ b) = (sparse_row_vector a) + (sparse_row_vector b)" by (induct a, auto) lemma nrows_spvec[simp]: "nrows (sparse_row_vector x) <= (Suc 0)" apply (induct x) apply (simp_all add: add_nrows) done lemma sparse_row_matrix_cons: "sparse_row_matrix (a#arr) = ((move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0)) + sparse_row_matrix arr" apply (induct arr) apply (auto simp add: sparse_row_matrix_def) apply (simp add: foldl_distrstart[of "λm x. m + (move_matrix (sparse_row_vector (snd x)) (int (fst x)) 0)" "% a m. (move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0) + m"]) done lemma sparse_row_matrix_append: "sparse_row_matrix (arr@brr) = (sparse_row_matrix arr) + (sparse_row_matrix brr)" apply (induct arr) apply (auto simp add: sparse_row_matrix_cons) done consts sorted_spvec :: "'a spvec => bool" sorted_spmat :: "'a spmat => bool" primrec "sorted_spmat [] = True" "sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))" primrec "sorted_spvec [] = True" sorted_spvec_step: "sorted_spvec (a#as) = (case as of [] => True | b#bs => ((fst a < fst b) & (sorted_spvec as)))" declare sorted_spvec.simps [simp del] lemma sorted_spvec_empty[simp]: "sorted_spvec [] = True" by (simp add: sorted_spvec.simps) lemma sorted_spvec_cons1: "sorted_spvec (a#as) ==> sorted_spvec as" apply (induct as) apply (auto simp add: sorted_spvec.simps) done lemma sorted_spvec_cons2: "sorted_spvec (a#b#t) ==> sorted_spvec (a#t)" apply (induct t) apply (auto simp add: sorted_spvec.simps) done lemma sorted_spvec_cons3: "sorted_spvec(a#b#t) ==> fst a < fst b" apply (auto simp add: sorted_spvec.simps) done lemma sorted_sparse_row_vector_zero[rule_format]: "m <= n --> sorted_spvec ((n,a)#arr) --> Rep_matrix (sparse_row_vector arr) j m = 0" apply (induct arr) apply (auto) apply (frule sorted_spvec_cons2,simp)+ apply (frule sorted_spvec_cons3, simp) done lemma sorted_sparse_row_matrix_zero[rule_format]: "m <= n --> sorted_spvec ((n,a)#arr) --> Rep_matrix (sparse_row_matrix arr) m j = 0" apply (induct arr) apply (auto) apply (frule sorted_spvec_cons2, simp) apply (frule sorted_spvec_cons3, simp) apply (simp add: sparse_row_matrix_cons neg_def) done consts abs_spvec :: "('a::lordered_ring) spvec => 'a spvec" minus_spvec :: "('a::lordered_ring) spvec => 'a spvec" smult_spvec :: "('a::lordered_ring) => 'a spvec => 'a spvec" addmult_spvec :: "('a::lordered_ring) * 'a spvec * 'a spvec => 'a spvec" primrec "minus_spvec [] = []" "minus_spvec (a#as) = (fst a, -(snd a))#(minus_spvec as)" primrec "abs_spvec [] = []" "abs_spvec (a#as) = (fst a, abs (snd a))#(abs_spvec as)" lemma sparse_row_vector_minus: "sparse_row_vector (minus_spvec v) = - (sparse_row_vector v)" apply (induct v) apply (simp_all add: sparse_row_vector_cons) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp done lemma sparse_row_vector_abs: "sorted_spvec v ==> sparse_row_vector (abs_spvec v) = abs (sparse_row_vector v)" apply (induct v) apply (simp_all add: sparse_row_vector_cons) apply (frule_tac sorted_spvec_cons1, simp) apply (simp only: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply auto apply (subgoal_tac "Rep_matrix (sparse_row_vector v) 0 a = 0") apply (simp) apply (rule sorted_sparse_row_vector_zero) apply auto done lemma sorted_spvec_minus_spvec: "sorted_spvec v ==> sorted_spvec (minus_spvec v)" apply (induct v) apply (simp) apply (frule sorted_spvec_cons1, simp) apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spvec_abs_spvec: "sorted_spvec v ==> sorted_spvec (abs_spvec v)" apply (induct v) apply (simp) apply (frule sorted_spvec_cons1, simp) apply (simp add: sorted_spvec.simps split:list.split_asm) done defs smult_spvec_def: "smult_spvec y arr == map (% a. (fst a, y * snd a)) arr" lemma smult_spvec_empty[simp]: "smult_spvec y [] = []" by (simp add: smult_spvec_def) lemma smult_spvec_cons: "smult_spvec y (a#arr) = (fst a, y * (snd a)) # (smult_spvec y arr)" by (simp add: smult_spvec_def) recdef addmult_spvec "measure (% (y, a, b). length a + (length b))" "addmult_spvec (y, arr, []) = arr" "addmult_spvec (y, [], brr) = smult_spvec y brr" "addmult_spvec (y, a#arr, b#brr) = ( if (fst a) < (fst b) then (a#(addmult_spvec (y, arr, b#brr))) else (if (fst b < fst a) then ((fst b, y * (snd b))#(addmult_spvec (y, a#arr, brr))) else ((fst a, (snd a)+ y*(snd b))#(addmult_spvec (y, arr,brr)))))" lemma addmult_spvec_empty1[simp]: "addmult_spvec (y, [], a) = smult_spvec y a" by (induct a, auto) lemma addmult_spvec_empty2[simp]: "addmult_spvec (y, a, []) = a" by (induct a, auto) lemma sparse_row_vector_map: "(! x y. f (x+y) = (f x) + (f y)) ==> (f::'a=>('a::lordered_ring)) 0 = 0 ==> sparse_row_vector (map (% x. (fst x, f (snd x))) a) = apply_matrix f (sparse_row_vector a)" apply (induct a) apply (simp_all add: apply_matrix_add) done lemma sparse_row_vector_smult: "sparse_row_vector (smult_spvec y a) = scalar_mult y (sparse_row_vector a)" apply (induct a) apply (simp_all add: smult_spvec_cons scalar_mult_add) done lemma sparse_row_vector_addmult_spvec: "sparse_row_vector (addmult_spvec (y::'a::lordered_ring, a, b)) = (sparse_row_vector a) + (scalar_mult y (sparse_row_vector b))" apply (rule addmult_spvec.induct[of _ y]) apply (simp add: scalar_mult_add smult_spvec_cons sparse_row_vector_smult singleton_matrix_add)+ done lemma sorted_smult_spvec[rule_format]: "sorted_spvec a ==> sorted_spvec (smult_spvec y a)" apply (auto simp add: smult_spvec_def) apply (induct a) apply (auto simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spvec_addmult_spvec_helper: "[|sorted_spvec (addmult_spvec (y, (a, b) # arr, brr)); aa < a; sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr)|] ==> sorted_spvec ((aa, y * ba) # addmult_spvec (y, (a, b) # arr, brr))" apply (induct brr) apply (auto simp add: sorted_spvec.simps) apply (simp split: list.split) apply (auto) apply (simp split: list.split) apply (auto) done lemma sorted_spvec_addmult_spvec_helper2: "[|sorted_spvec (addmult_spvec (y, arr, (aa, ba) # brr)); a < aa; sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr)|] ==> sorted_spvec ((a, b) # addmult_spvec (y, arr, (aa, ba) # brr))" apply (induct arr) apply (auto simp add: smult_spvec_def sorted_spvec.simps) apply (simp split: list.split) apply (auto) done lemma sorted_spvec_addmult_spvec_helper3[rule_format]: "sorted_spvec (addmult_spvec (y, arr, brr)) --> sorted_spvec ((aa, b) # arr) --> sorted_spvec ((aa, ba) # brr) --> sorted_spvec ((aa, b + y * ba) # (addmult_spvec (y, arr, brr)))" apply (rule addmult_spvec.induct[of _ y arr brr]) apply (simp_all add: sorted_spvec.simps smult_spvec_def) done lemma sorted_addmult_spvec[rule_format]: "sorted_spvec a --> sorted_spvec b --> sorted_spvec (addmult_spvec (y, a, b))" apply (rule addmult_spvec.induct[of _ y a b]) apply (simp_all add: sorted_smult_spvec) apply (rule conjI, intro strip) apply (case_tac "~(a < aa)") apply (simp_all) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp add: sorted_spvec_addmult_spvec_helper) apply (intro strip | rule conjI)+ apply (frule_tac as=arr in sorted_spvec_cons1) apply (simp add: sorted_spvec_addmult_spvec_helper2) apply (intro strip) apply (frule_tac as=arr in sorted_spvec_cons1) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp) apply (simp_all add: sorted_spvec_addmult_spvec_helper3) done consts mult_spvec_spmat :: "('a::lordered_ring) spvec * 'a spvec * 'a spmat => 'a spvec" recdef mult_spvec_spmat "measure (% (c, arr, brr). (length arr) + (length brr))" "mult_spvec_spmat (c, [], brr) = c" "mult_spvec_spmat (c, arr, []) = c" "mult_spvec_spmat (c, a#arr, b#brr) = ( if ((fst a) < (fst b)) then (mult_spvec_spmat (c, arr, b#brr)) else (if ((fst b) < (fst a)) then (mult_spvec_spmat (c, a#arr, brr)) else (mult_spvec_spmat (addmult_spvec (snd a, c, snd b), arr, brr))))" lemma sparse_row_mult_spvec_spmat[rule_format]: "sorted_spvec (a::('a::lordered_ring) spvec) --> sorted_spvec B --> sparse_row_vector (mult_spvec_spmat (c, a, B)) = (sparse_row_vector c) + (sparse_row_vector a) * (sparse_row_matrix B)" proof - have comp_1: "!! a b. a < b ==> Suc 0 <= nat ((int b)-(int a))" by arith have not_iff: "!! a b. a = b ==> (~ a) = (~ b)" by simp have max_helper: "!! a b. ~ (a <= max (Suc a) b) ==> False" by arith { fix a fix v assume a:"a < nrows(sparse_row_vector v)" have b:"nrows(sparse_row_vector v) <= 1" by simp note dummy = less_le_trans[of a "nrows (sparse_row_vector v)" 1, OF a b] then have "a = 0" by simp } note nrows_helper = this show ?thesis apply (rule mult_spvec_spmat.induct) apply simp+ apply (rule conjI) apply (intro strip) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp add: ring_simps sparse_row_matrix_cons) apply (simplesubst Rep_matrix_zero_imp_mult_zero) apply (simp) apply (intro strip) apply (rule disjI2) apply (intro strip) apply (subst nrows) apply (rule order_trans[of _ 1]) apply (simp add: comp_1)+ apply (subst Rep_matrix_zero_imp_mult_zero) apply (intro strip) apply (case_tac "k <= aa") apply (rule_tac m1 = k and n1 = a and a1 = b in ssubst[OF sorted_sparse_row_vector_zero]) apply (simp_all) apply (rule impI) apply (rule disjI2) apply (rule nrows) apply (rule order_trans[of _ 1]) apply (simp_all add: comp_1) apply (intro strip | rule conjI)+ apply (frule_tac as=arr in sorted_spvec_cons1) apply (simp add: ring_simps) apply (subst Rep_matrix_zero_imp_mult_zero) apply (simp) apply (rule disjI2) apply (intro strip) apply (simp add: sparse_row_matrix_cons neg_def) apply (case_tac "a <= aa") apply (erule sorted_sparse_row_matrix_zero) apply (simp_all) apply (intro strip) apply (case_tac "a=aa") apply (simp_all) apply (frule_tac as=arr in sorted_spvec_cons1) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp add: sparse_row_matrix_cons ring_simps sparse_row_vector_addmult_spvec) apply (rule_tac B1 = "sparse_row_matrix brr" in ssubst[OF Rep_matrix_zero_imp_mult_zero]) apply (auto) apply (rule sorted_sparse_row_matrix_zero) apply (simp_all) apply (rule_tac A1 = "sparse_row_vector arr" in ssubst[OF Rep_matrix_zero_imp_mult_zero]) apply (auto) apply (rule_tac m=k and n = aa and a = b and arr=arr in sorted_sparse_row_vector_zero) apply (simp_all) apply (simp add: neg_def) apply (drule nrows_notzero) apply (drule nrows_helper) apply (arith) apply (subst Rep_matrix_inject[symmetric]) apply (rule ext)+ apply (simp) apply (subst Rep_matrix_mult) apply (rule_tac j1=aa in ssubst[OF foldseq_almostzero]) apply (simp_all) apply (intro strip, rule conjI) apply (intro strip) apply (drule_tac max_helper) apply (simp) apply (auto) apply (rule zero_imp_mult_zero) apply (rule disjI2) apply (rule nrows) apply (rule order_trans[of _ 1]) apply (simp) apply (simp) done qed lemma sorted_mult_spvec_spmat[rule_format]: "sorted_spvec (c::('a::lordered_ring) spvec) --> sorted_spmat B --> sorted_spvec (mult_spvec_spmat (c, a, B))" apply (rule mult_spvec_spmat.induct[of _ c a B]) apply (simp_all add: sorted_addmult_spvec) done consts mult_spmat :: "('a::lordered_ring) spmat => 'a spmat => 'a spmat" primrec "mult_spmat [] A = []" "mult_spmat (a#as) A = (fst a, mult_spvec_spmat ([], snd a, A))#(mult_spmat as A)" lemma sparse_row_mult_spmat[rule_format]: "sorted_spmat A --> sorted_spvec B --> sparse_row_matrix (mult_spmat A B) = (sparse_row_matrix A) * (sparse_row_matrix B)" apply (induct A) apply (auto simp add: sparse_row_matrix_cons sparse_row_mult_spvec_spmat ring_simps move_matrix_mult) done lemma sorted_spvec_mult_spmat[rule_format]: "sorted_spvec (A::('a::lordered_ring) spmat) --> sorted_spvec (mult_spmat A B)" apply (induct A) apply (auto) apply (drule sorted_spvec_cons1, simp) apply (case_tac A) apply (auto simp add: sorted_spvec.simps) done lemma sorted_spmat_mult_spmat[rule_format]: "sorted_spmat (B::('a::lordered_ring) spmat) --> sorted_spmat (mult_spmat A B)" apply (induct A) apply (auto simp add: sorted_mult_spvec_spmat) done consts add_spvec :: "('a::lordered_ab_group_add) spvec * 'a spvec => 'a spvec" add_spmat :: "('a::lordered_ab_group_add) spmat * 'a spmat => 'a spmat" recdef add_spvec "measure (% (a, b). length a + (length b))" "add_spvec (arr, []) = arr" "add_spvec ([], brr) = brr" "add_spvec (a#arr, b#brr) = ( if (fst a) < (fst b) then (a#(add_spvec (arr, b#brr))) else (if (fst b < fst a) then (b#(add_spvec (a#arr, brr))) else ((fst a, (snd a)+(snd b))#(add_spvec (arr,brr)))))" lemma add_spvec_empty1[simp]: "add_spvec ([], a) = a" by (induct a, auto) lemma add_spvec_empty2[simp]: "add_spvec (a, []) = a" by (induct a, auto) lemma sparse_row_vector_add: "sparse_row_vector (add_spvec (a,b)) = (sparse_row_vector a) + (sparse_row_vector b)" apply (rule add_spvec.induct[of _ a b]) apply (simp_all add: singleton_matrix_add) done recdef add_spmat "measure (% (A,B). (length A)+(length B))" "add_spmat ([], bs) = bs" "add_spmat (as, []) = as" "add_spmat (a#as, b#bs) = ( if fst a < fst b then (a#(add_spmat (as, b#bs))) else (if fst b < fst a then (b#(add_spmat (a#as, bs))) else ((fst a, add_spvec (snd a, snd b))#(add_spmat (as, bs)))))" lemma sparse_row_add_spmat: "sparse_row_matrix (add_spmat (A, B)) = (sparse_row_matrix A) + (sparse_row_matrix B)" apply (rule add_spmat.induct) apply (auto simp add: sparse_row_matrix_cons sparse_row_vector_add move_matrix_add) done lemma sorted_add_spvec_helper1[rule_format]: "add_spvec ((a,b)#arr, brr) = (ab, bb) # list --> (ab = a | (brr ≠ [] & ab = fst (hd brr)))" proof - have "(! x ab a. x = (a,b)#arr --> add_spvec (x, brr) = (ab, bb) # list --> (ab = a | (ab = fst (hd brr))))" by (rule add_spvec.induct[of _ _ brr], auto) then show ?thesis by (case_tac brr, auto) qed lemma sorted_add_spmat_helper1[rule_format]: "add_spmat ((a,b)#arr, brr) = (ab, bb) # list --> (ab = a | (brr ≠ [] & ab = fst (hd brr)))" proof - have "(! x ab a. x = (a,b)#arr --> add_spmat (x, brr) = (ab, bb) # list --> (ab = a | (ab = fst (hd brr))))" by (rule add_spmat.induct[of _ _ brr], auto) then show ?thesis by (case_tac brr, auto) qed lemma sorted_add_spvec_helper[rule_format]: "add_spvec (arr, brr) = (ab, bb) # list --> ((arr ≠ [] & ab = fst (hd arr)) | (brr ≠ [] & ab = fst (hd brr)))" apply (rule add_spvec.induct[of _ arr brr]) apply (auto) done lemma sorted_add_spmat_helper[rule_format]: "add_spmat (arr, brr) = (ab, bb) # list --> ((arr ≠ [] & ab = fst (hd arr)) | (brr ≠ [] & ab = fst (hd brr)))" apply (rule add_spmat.induct[of _ arr brr]) apply (auto) done lemma add_spvec_commute: "add_spvec (a, b) = add_spvec (b, a)" by (rule add_spvec.induct[of _ a b], auto) lemma add_spmat_commute: "add_spmat (a, b) = add_spmat (b, a)" apply (rule add_spmat.induct[of _ a b]) apply (simp_all add: add_spvec_commute) done lemma sorted_add_spvec_helper2: "add_spvec ((a,b)#arr, brr) = (ab, bb) # list ==> aa < a ==> sorted_spvec ((aa, ba) # brr) ==> aa < ab" apply (drule sorted_add_spvec_helper1) apply (auto) apply (case_tac brr) apply (simp_all) apply (drule_tac sorted_spvec_cons3) apply (simp) done lemma sorted_add_spmat_helper2: "add_spmat ((a,b)#arr, brr) = (ab, bb) # list ==> aa < a ==> sorted_spvec ((aa, ba) # brr) ==> aa < ab" apply (drule sorted_add_spmat_helper1) apply (auto) apply (case_tac brr) apply (simp_all) apply (drule_tac sorted_spvec_cons3) apply (simp) done lemma sorted_spvec_add_spvec[rule_format]: "sorted_spvec a --> sorted_spvec b --> sorted_spvec (add_spvec (a, b))" apply (rule add_spvec.induct[of _ a b]) apply (simp_all) apply (rule conjI) apply (intro strip) apply (simp) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp) apply (subst sorted_spvec_step) apply (simp split: list.split) apply (clarify, simp) apply (simp add: sorted_add_spvec_helper2) apply (clarify) apply (rule conjI) apply (case_tac "a=aa") apply (simp) apply (clarify) apply (frule_tac as=arr in sorted_spvec_cons1, simp) apply (subst sorted_spvec_step) apply (simp split: list.split) apply (clarify, simp) apply (simp add: sorted_add_spvec_helper2 add_spvec_commute) apply (case_tac "a=aa") apply (simp_all) apply (clarify) apply (frule_tac as=arr in sorted_spvec_cons1) apply (frule_tac as=brr in sorted_spvec_cons1) apply (simp) apply (subst sorted_spvec_step) apply (simp split: list.split) apply (clarify, simp) apply (drule_tac sorted_add_spvec_helper) apply (auto) apply (case_tac arr) apply (simp_all) apply (drule sorted_spvec_cons3) apply (simp) apply (case_tac brr) apply (simp_all) apply (drule sorted_spvec_cons3) apply (simp) done lemma sorted_spvec_add_spmat[rule_format]: "sorted_spvec A --> sorted_spvec B --> sorted_spvec (add_spmat (A, B))" apply (rule add_spmat.induct[of _ A B]) apply (simp_all) apply (rule conjI) apply (intro strip) apply (simp) apply (frule_tac as=bs in sorted_spvec_cons1) apply (simp) apply (subst sorted_spvec_step) apply (simp split: list.split) apply (clarify, simp) apply (simp add: sorted_add_spmat_helper2) apply (clarify) apply (rule conjI) apply (case_tac "a=aa") apply (simp) apply (clarify) apply (frule_tac as=as in sorted_spvec_cons1, simp) apply (subst sorted_spvec_step) apply (simp split: list.split) apply (clarify, simp) apply (simp add: sorted_add_spmat_helper2 add_spmat_commute) apply (case_tac "a=aa") apply (simp_all) apply (clarify) apply (frule_tac as=as in sorted_spvec_cons1) apply (frule_tac as=bs in sorted_spvec_cons1) apply (simp) apply (subst sorted_spvec_step) apply (simp split: list.split) apply (clarify, simp) apply (drule_tac sorted_add_spmat_helper) apply (auto) apply (case_tac as) apply (simp_all) apply (drule sorted_spvec_cons3) apply (simp) apply (case_tac bs) apply (simp_all) apply (drule sorted_spvec_cons3) apply (simp) done lemma sorted_spmat_add_spmat[rule_format]: "sorted_spmat A --> sorted_spmat B --> sorted_spmat (add_spmat (A, B))" apply (rule add_spmat.induct[of _ A B]) apply (simp_all add: sorted_spvec_add_spvec) done consts le_spvec :: "('a::lordered_ab_group_add) spvec * 'a spvec => bool" le_spmat :: "('a::lordered_ab_group_add) spmat * 'a spmat => bool" recdef le_spvec "measure (% (a,b). (length a) + (length b))" "le_spvec ([], []) = True" "le_spvec (a#as, []) = ((snd a <= 0) & (le_spvec (as, [])))" "le_spvec ([], b#bs) = ((0 <= snd b) & (le_spvec ([], bs)))" "le_spvec (a#as, b#bs) = ( if (fst a < fst b) then ((snd a <= 0) & (le_spvec (as, b#bs))) else (if (fst b < fst a) then ((0 <= snd b) & (le_spvec (a#as, bs))) else ((snd a <= snd b) & (le_spvec (as, bs)))))" recdef le_spmat "measure (% (a,b). (length a) + (length b))" "le_spmat ([], []) = True" "le_spmat (a#as, []) = (le_spvec (snd a, []) & (le_spmat (as, [])))" "le_spmat ([], b#bs) = (le_spvec ([], snd b) & (le_spmat ([], bs)))" "le_spmat (a#as, b#bs) = ( if fst a < fst b then (le_spvec(snd a,[]) & le_spmat(as, b#bs)) else (if (fst b < fst a) then (le_spvec([], snd b) & le_spmat(a#as, bs)) else (le_spvec(snd a, snd b) & le_spmat (as, bs))))" constdefs disj_matrices :: "('a::zero) matrix => 'a matrix => bool" "disj_matrices A B == (! j i. (Rep_matrix A j i ≠ 0) --> (Rep_matrix B j i = 0)) & (! j i. (Rep_matrix B j i ≠ 0) --> (Rep_matrix A j i = 0))" declare [[simp_depth_limit = 6]] lemma disj_matrices_contr1: "disj_matrices A B ==> Rep_matrix A j i ≠ 0 ==> Rep_matrix B j i = 0" by (simp add: disj_matrices_def) lemma disj_matrices_contr2: "disj_matrices A B ==> Rep_matrix B j i ≠ 0 ==> Rep_matrix A j i = 0" by (simp add: disj_matrices_def) lemma disj_matrices_add: "disj_matrices A B ==> disj_matrices C D ==> disj_matrices A D ==> disj_matrices B C ==> (A + B <= C + D) = (A <= C & B <= (D::('a::lordered_ab_group_add) matrix))" apply (auto) apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def) apply (intro strip) apply (erule conjE)+ apply (drule_tac j=j and i=i in spec2)+ apply (case_tac "Rep_matrix B j i = 0") apply (case_tac "Rep_matrix D j i = 0") apply (simp_all) apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def) apply (intro strip) apply (erule conjE)+ apply (drule_tac j=j and i=i in spec2)+ apply (case_tac "Rep_matrix A j i = 0") apply (case_tac "Rep_matrix C j i = 0") apply (simp_all) apply (erule add_mono) apply (assumption) done lemma disj_matrices_zero1[simp]: "disj_matrices 0 B" by (simp add: disj_matrices_def) lemma disj_matrices_zero2[simp]: "disj_matrices A 0" by (simp add: disj_matrices_def) lemma disj_matrices_commute: "disj_matrices A B = disj_matrices B A" by (auto simp add: disj_matrices_def) lemma disj_matrices_add_le_zero: "disj_matrices A B ==> (A + B <= 0) = (A <= 0 & (B::('a::lordered_ab_group_add) matrix) <= 0)" by (rule disj_matrices_add[of A B 0 0, simplified]) lemma disj_matrices_add_zero_le: "disj_matrices A B ==> (0 <= A + B) = (0 <= A & 0 <= (B::('a::lordered_ab_group_add) matrix))" by (rule disj_matrices_add[of 0 0 A B, simplified]) lemma disj_matrices_add_x_le: "disj_matrices A B ==> disj_matrices B C ==> (A <= B + C) = (A <= C & 0 <= (B::('a::lordered_ab_group_add) matrix))" by (auto simp add: disj_matrices_add[of 0 A B C, simplified]) lemma disj_matrices_add_le_x: "disj_matrices A B ==> disj_matrices B C ==> (B + A <= C) = (A <= C & (B::('a::lordered_ab_group_add) matrix) <= 0)" by (auto simp add: disj_matrices_add[of B A 0 C,simplified] disj_matrices_commute) lemma disj_sparse_row_singleton: "i <= j ==> sorted_spvec((j,y)#v) ==> disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)" apply (simp add: disj_matrices_def) apply (rule conjI) apply (rule neg_imp) apply (simp) apply (intro strip) apply (rule sorted_sparse_row_vector_zero) apply (simp_all) apply (intro strip) apply (rule sorted_sparse_row_vector_zero) apply (simp_all) done lemma disj_matrices_x_add: "disj_matrices A B ==> disj_matrices A C ==> disj_matrices (A::('a::lordered_ab_group_add) matrix) (B+C)" apply (simp add: disj_matrices_def) apply (auto) apply (drule_tac j=j and i=i in spec2)+ apply (case_tac "Rep_matrix B j i = 0") apply (case_tac "Rep_matrix C j i = 0") apply (simp_all) done lemma disj_matrices_add_x: "disj_matrices A B ==> disj_matrices A C ==> disj_matrices (B+C) (A::('a::lordered_ab_group_add) matrix)" by (simp add: disj_matrices_x_add disj_matrices_commute) lemma disj_singleton_matrices[simp]: "disj_matrices (singleton_matrix j i x) (singleton_matrix u v y) = (j ≠ u | i ≠ v | x = 0 | y = 0)" by (auto simp add: disj_matrices_def) lemma disj_move_sparse_vec_mat[simplified disj_matrices_commute]: "j <= a ==> sorted_spvec((a,c)#as) ==> disj_matrices (move_matrix (sparse_row_vector b) (int j) i) (sparse_row_matrix as)" apply (auto simp add: neg_def disj_matrices_def) apply (drule nrows_notzero) apply (drule less_le_trans[OF _ nrows_spvec]) apply (subgoal_tac "ja = j") apply (simp add: sorted_sparse_row_matrix_zero) apply (arith) apply (rule nrows) apply (rule order_trans[of _ 1 _]) apply (simp) apply (case_tac "nat (int ja - int j) = 0") apply (case_tac "ja = j") apply (simp add: sorted_sparse_row_matrix_zero) apply arith+ done lemma disj_move_sparse_row_vector_twice: "j ≠ u ==> disj_matrices (move_matrix (sparse_row_vector a) j i) (move_matrix (sparse_row_vector b) u v)" apply (auto simp add: neg_def disj_matrices_def) apply (rule nrows, rule order_trans[of _ 1], simp, drule nrows_notzero, drule less_le_trans[OF _ nrows_spvec], arith)+ done lemma le_spvec_iff_sparse_row_le[rule_format]: "(sorted_spvec a) --> (sorted_spvec b) --> (le_spvec (a,b)) = (sparse_row_vector a <= sparse_row_vector b)" apply (rule le_spvec.induct) apply (simp_all add: sorted_spvec_cons1 disj_matrices_add_le_zero disj_matrices_add_zero_le disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) apply (rule conjI, intro strip) apply (simp add: sorted_spvec_cons1) apply (subst disj_matrices_add_x_le) apply (simp add: disj_sparse_row_singleton[OF less_imp_le] disj_matrices_x_add disj_matrices_commute) apply (simp add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) apply (simp, blast) apply (intro strip, rule conjI, intro strip) apply (simp add: sorted_spvec_cons1) apply (subst disj_matrices_add_le_x) apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_sparse_row_singleton[OF less_imp_le] disj_matrices_commute disj_matrices_x_add) apply (blast) apply (intro strip) apply (simp add: sorted_spvec_cons1) apply (case_tac "a=aa", simp_all) apply (subst disj_matrices_add) apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) done lemma le_spvec_empty2_sparse_row[rule_format]: "(sorted_spvec b) --> (le_spvec (b,[]) = (sparse_row_vector b <= 0))" apply (induct b) apply (simp_all add: sorted_spvec_cons1) apply (intro strip) apply (subst disj_matrices_add_le_zero) apply (simp add: disj_matrices_commute disj_sparse_row_singleton sorted_spvec_cons1) apply (rule_tac y = "snd a" in disj_sparse_row_singleton[OF order_refl]) apply (simp_all) done lemma le_spvec_empty1_sparse_row[rule_format]: "(sorted_spvec b) --> (le_spvec ([],b) = (0 <= sparse_row_vector b))" apply (induct b) apply (simp_all add: sorted_spvec_cons1) apply (intro strip) apply (subst disj_matrices_add_zero_le) apply (simp add: disj_matrices_commute disj_sparse_row_singleton sorted_spvec_cons1) apply (rule_tac y = "snd a" in disj_sparse_row_singleton[OF order_refl]) apply (simp_all) done lemma le_spmat_iff_sparse_row_le[rule_format]: "(sorted_spvec A) --> (sorted_spmat A) --> (sorted_spvec B) --> (sorted_spmat B) --> le_spmat(A, B) = (sparse_row_matrix A <= sparse_row_matrix B)" apply (rule le_spmat.induct) apply (simp add: sparse_row_matrix_cons disj_matrices_add_le_zero disj_matrices_add_zero_le disj_move_sparse_vec_mat[OF order_refl] disj_matrices_commute sorted_spvec_cons1 le_spvec_empty2_sparse_row le_spvec_empty1_sparse_row)+ apply (rule conjI, intro strip) apply (simp add: sorted_spvec_cons1) apply (subst disj_matrices_add_x_le) apply (rule disj_matrices_add_x) apply (simp add: disj_move_sparse_row_vector_twice) apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute) apply (simp add: disj_move_sparse_vec_mat[OF order_refl] disj_matrices_commute) apply (simp, blast) apply (intro strip, rule conjI, intro strip) apply (simp add: sorted_spvec_cons1) apply (subst disj_matrices_add_le_x) apply (simp add: disj_move_sparse_vec_mat[OF order_refl]) apply (rule disj_matrices_x_add) apply (simp add: disj_move_sparse_row_vector_twice) apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute) apply (simp, blast) apply (intro strip) apply (case_tac "a=aa") apply (simp_all) apply (subst disj_matrices_add) apply (simp_all add: disj_matrices_commute disj_move_sparse_vec_mat[OF order_refl]) apply (simp add: sorted_spvec_cons1 le_spvec_iff_sparse_row_le) done declare [[simp_depth_limit = 999]] consts abs_spmat :: "('a::lordered_ring) spmat => 'a spmat" minus_spmat :: "('a::lordered_ring) spmat => 'a spmat" primrec "abs_spmat [] = []" "abs_spmat (a#as) = (fst a, abs_spvec (snd a))#(abs_spmat as)" primrec "minus_spmat [] = []" "minus_spmat (a#as) = (fst a, minus_spvec (snd a))#(minus_spmat as)" lemma sparse_row_matrix_minus: "sparse_row_matrix (minus_spmat A) = - (sparse_row_matrix A)" apply (induct A) apply (simp_all add: sparse_row_vector_minus sparse_row_matrix_cons) apply (subst Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp done lemma Rep_sparse_row_vector_zero: "x ≠ 0 ==> Rep_matrix (sparse_row_vector v) x y = 0" proof - assume x:"x ≠ 0" have r:"nrows (sparse_row_vector v) <= Suc 0" by (rule nrows_spvec) show ?thesis apply (rule nrows) apply (subgoal_tac "Suc 0 <= x") apply (insert r) apply (simp only:) apply (insert x) apply arith done qed lemma sparse_row_matrix_abs: "sorted_spvec A ==> sorted_spmat A ==> sparse_row_matrix (abs_spmat A) = abs (sparse_row_matrix A)" apply (induct A) apply (simp_all add: sparse_row_vector_abs sparse_row_matrix_cons) apply (frule_tac sorted_spvec_cons1, simp) apply (simplesubst Rep_matrix_inject[symmetric]) apply (rule ext)+ apply auto apply (case_tac "x=a") apply (simp) apply (simplesubst sorted_sparse_row_matrix_zero) apply auto apply (simplesubst Rep_sparse_row_vector_zero) apply (simp_all add: neg_def) done lemma sorted_spvec_minus_spmat: "sorted_spvec A ==> sorted_spvec (minus_spmat A)" apply (induct A) apply (simp) apply (frule sorted_spvec_cons1, simp) apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spvec_abs_spmat: "sorted_spvec A ==> sorted_spvec (abs_spmat A)" apply (induct A) apply (simp) apply (frule sorted_spvec_cons1, simp) apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spmat_minus_spmat: "sorted_spmat A ==> sorted_spmat (minus_spmat A)" apply (induct A) apply (simp_all add: sorted_spvec_minus_spvec) done lemma sorted_spmat_abs_spmat: "sorted_spmat A ==> sorted_spmat (abs_spmat A)" apply (induct A) apply (simp_all add: sorted_spvec_abs_spvec) done constdefs diff_spmat :: "('a::lordered_ring) spmat => 'a spmat => 'a spmat" "diff_spmat A B == add_spmat (A, minus_spmat B)" lemma sorted_spmat_diff_spmat: "sorted_spmat A ==> sorted_spmat B ==> sorted_spmat (diff_spmat A B)" by (simp add: diff_spmat_def sorted_spmat_minus_spmat sorted_spmat_add_spmat) lemma sorted_spvec_diff_spmat: "sorted_spvec A ==> sorted_spvec B ==> sorted_spvec (diff_spmat A B)" by (simp add: diff_spmat_def sorted_spvec_minus_spmat sorted_spvec_add_spmat) lemma sparse_row_diff_spmat: "sparse_row_matrix (diff_spmat A B ) = (sparse_row_matrix A) - (sparse_row_matrix B)" by (simp add: diff_spmat_def sparse_row_add_spmat sparse_row_matrix_minus) constdefs sorted_sparse_matrix :: "'a spmat => bool" "sorted_sparse_matrix A == (sorted_spvec A) & (sorted_spmat A)" lemma sorted_sparse_matrix_imp_spvec: "sorted_sparse_matrix A ==> sorted_spvec A" by (simp add: sorted_sparse_matrix_def) lemma sorted_sparse_matrix_imp_spmat: "sorted_sparse_matrix A ==> sorted_spmat A" by (simp add: sorted_sparse_matrix_def) lemmas sorted_sp_simps = sorted_spvec.simps sorted_spmat.simps sorted_sparse_matrix_def lemma bool1: "(¬ True) = False" by blast lemma bool2: "(¬ False) = True" by blast lemma bool3: "((P::bool) ∧ True) = P" by blast lemma bool4: "(True ∧ (P::bool)) = P" by blast lemma bool5: "((P::bool) ∧ False) = False" by blast lemma bool6: "(False ∧ (P::bool)) = False" by blast lemma bool7: "((P::bool) ∨ True) = True" by blast lemma bool8: "(True ∨ (P::bool)) = True" by blast lemma bool9: "((P::bool) ∨ False) = P" by blast lemma bool10: "(False ∨ (P::bool)) = P" by blast lemmas boolarith = bool1 bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 bool10 lemma if_case_eq: "(if b then x else y) = (case b of True => x | False => y)" by simp consts pprt_spvec :: "('a::{lordered_ab_group_add}) spvec => 'a spvec" nprt_spvec :: "('a::{lordered_ab_group_add}) spvec => 'a spvec" pprt_spmat :: "('a::{lordered_ab_group_add}) spmat => 'a spmat" nprt_spmat :: "('a::{lordered_ab_group_add}) spmat => 'a spmat" primrec "pprt_spvec [] = []" "pprt_spvec (a#as) = (fst a, pprt (snd a)) # (pprt_spvec as)" primrec "nprt_spvec [] = []" "nprt_spvec (a#as) = (fst a, nprt (snd a)) # (nprt_spvec as)" primrec "pprt_spmat [] = []" "pprt_spmat (a#as) = (fst a, pprt_spvec (snd a))#(pprt_spmat as)" (*case (pprt_spvec (snd a)) of [] => (pprt_spmat as) | y#ys => (fst a, y#ys)#(pprt_spmat as))"*) primrec "nprt_spmat [] = []" "nprt_spmat (a#as) = (fst a, nprt_spvec (snd a))#(nprt_spmat as)" (*case (nprt_spvec (snd a)) of [] => (nprt_spmat as) | y#ys => (fst a, y#ys)#(nprt_spmat as))"*) lemma pprt_add: "disj_matrices A (B::(_::lordered_ring) matrix) ==> pprt (A+B) = pprt A + pprt B" apply (simp add: pprt_def sup_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp apply (case_tac "Rep_matrix A x xa ≠ 0") apply (simp_all add: disj_matrices_contr1) done lemma nprt_add: "disj_matrices A (B::(_::lordered_ring) matrix) ==> nprt (A+B) = nprt A + nprt B" apply (simp add: nprt_def inf_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp apply (case_tac "Rep_matrix A x xa ≠ 0") apply (simp_all add: disj_matrices_contr1) done lemma pprt_singleton[simp]: "pprt (singleton_matrix j i (x::_::lordered_ring)) = singleton_matrix j i (pprt x)" apply (simp add: pprt_def sup_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp done lemma nprt_singleton[simp]: "nprt (singleton_matrix j i (x::_::lordered_ring)) = singleton_matrix j i (nprt x)" apply (simp add: nprt_def inf_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply simp done lemma less_imp_le: "a < b ==> a <= (b::_::order)" by (simp add: less_def) lemma sparse_row_vector_pprt: "sorted_spvec v ==> sparse_row_vector (pprt_spvec v) = pprt (sparse_row_vector v)" apply (induct v) apply (simp_all) apply (frule sorted_spvec_cons1, auto) apply (subst pprt_add) apply (subst disj_matrices_commute) apply (rule disj_sparse_row_singleton) apply auto done lemma sparse_row_vector_nprt: "sorted_spvec v ==> sparse_row_vector (nprt_spvec v) = nprt (sparse_row_vector v)" apply (induct v) apply (simp_all) apply (frule sorted_spvec_cons1, auto) apply (subst nprt_add) apply (subst disj_matrices_commute) apply (rule disj_sparse_row_singleton) apply auto done lemma pprt_move_matrix: "pprt (move_matrix (A::('a::lordered_ring) matrix) j i) = move_matrix (pprt A) j i" apply (simp add: pprt_def) apply (simp add: sup_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply (simp) done lemma nprt_move_matrix: "nprt (move_matrix (A::('a::lordered_ring) matrix) j i) = move_matrix (nprt A) j i" apply (simp add: nprt_def) apply (simp add: inf_matrix_def) apply (simp add: Rep_matrix_inject[symmetric]) apply (rule ext)+ apply (simp) done lemma sparse_row_matrix_pprt: "sorted_spvec m ==> sorted_spmat m ==> sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)" apply (induct m) apply simp apply simp apply (frule sorted_spvec_cons1) apply (simp add: sparse_row_matrix_cons sparse_row_vector_pprt) apply (subst pprt_add) apply (subst disj_matrices_commute) apply (rule disj_move_sparse_vec_mat) apply auto apply (simp add: sorted_spvec.simps) apply (simp split: list.split) apply auto apply (simp add: pprt_move_matrix) done lemma sparse_row_matrix_nprt: "sorted_spvec m ==> sorted_spmat m ==> sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)" apply (induct m) apply simp apply simp apply (frule sorted_spvec_cons1) apply (simp add: sparse_row_matrix_cons sparse_row_vector_nprt) apply (subst nprt_add) apply (subst disj_matrices_commute) apply (rule disj_move_sparse_vec_mat) apply auto apply (simp add: sorted_spvec.simps) apply (simp split: list.split) apply auto apply (simp add: nprt_move_matrix) done lemma sorted_pprt_spvec: "sorted_spvec v ==> sorted_spvec (pprt_spvec v)" apply (induct v) apply (simp) apply (frule sorted_spvec_cons1) apply simp apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_nprt_spvec: "sorted_spvec v ==> sorted_spvec (nprt_spvec v)" apply (induct v) apply (simp) apply (frule sorted_spvec_cons1) apply simp apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spvec_pprt_spmat: "sorted_spvec m ==> sorted_spvec (pprt_spmat m)" apply (induct m) apply (simp) apply (frule sorted_spvec_cons1) apply simp apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spvec_nprt_spmat: "sorted_spvec m ==> sorted_spvec (nprt_spmat m)" apply (induct m) apply (simp) apply (frule sorted_spvec_cons1) apply simp apply (simp add: sorted_spvec.simps split:list.split_asm) done lemma sorted_spmat_pprt_spmat: "sorted_spmat m ==> sorted_spmat (pprt_spmat m)" apply (induct m) apply (simp_all add: sorted_pprt_spvec) done lemma sorted_spmat_nprt_spmat: "sorted_spmat m ==> sorted_spmat (nprt_spmat m)" apply (induct m) apply (simp_all add: sorted_nprt_spvec) done constdefs mult_est_spmat :: "('a::lordered_ring) spmat => 'a spmat => 'a spmat => 'a spmat => 'a spmat" "mult_est_spmat r1 r2 s1 s2 == add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2), add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2), add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1), mult_spmat (nprt_spmat s1) (nprt_spmat r1))))" lemmas sparse_row_matrix_op_simps = sorted_sparse_matrix_imp_spmat sorted_sparse_matrix_imp_spvec sparse_row_add_spmat sorted_spvec_add_spmat sorted_spmat_add_spmat sparse_row_diff_spmat sorted_spvec_diff_spmat sorted_spmat_diff_spmat sparse_row_matrix_minus sorted_spvec_minus_spmat sorted_spmat_minus_spmat sparse_row_mult_spmat sorted_spvec_mult_spmat sorted_spmat_mult_spmat sparse_row_matrix_abs sorted_spvec_abs_spmat sorted_spmat_abs_spmat le_spmat_iff_sparse_row_le sparse_row_matrix_pprt sorted_spvec_pprt_spmat sorted_spmat_pprt_spmat sparse_row_matrix_nprt sorted_spvec_nprt_spmat sorted_spmat_nprt_spmat lemma zero_eq_Numeral0: "(0::_::number_ring) = Numeral0" by simp lemmas sparse_row_matrix_arith_simps[simplified zero_eq_Numeral0] = mult_spmat.simps mult_spvec_spmat.simps addmult_spvec.simps smult_spvec_empty smult_spvec_cons add_spmat.simps add_spvec.simps minus_spmat.simps minus_spvec.simps abs_spmat.simps abs_spvec.simps diff_spmat_def le_spmat.simps le_spvec.simps pprt_spmat.simps pprt_spvec.simps nprt_spmat.simps nprt_spvec.simps mult_est_spmat_def (*lemma spm_linprog_dual_estimate_1: assumes "sorted_sparse_matrix A1" "sorted_sparse_matrix A2" "sorted_sparse_matrix c1" "sorted_sparse_matrix c2" "sorted_sparse_matrix y" "sorted_spvec b" "sorted_spvec r" "le_spmat ([], y)" "A * x ≤ sparse_row_matrix (b::('a::lordered_ring) spmat)" "sparse_row_matrix A1 <= A" "A <= sparse_row_matrix A2" "sparse_row_matrix c1 <= c" "c <= sparse_row_matrix c2" "abs x ≤ sparse_row_matrix r" shows "c * x ≤ sparse_row_matrix (add_spmat (mult_spmat y b, mult_spmat (add_spmat (add_spmat (mult_spmat y (diff_spmat A2 A1), abs_spmat (diff_spmat (mult_spmat y A1) c1)), diff_spmat c2 c1)) r))" by (insert prems, simp add: sparse_row_matrix_op_simps linprog_dual_estimate_1[where A=A]) *) lemma spm_mult_le_dual_prts: assumes "sorted_sparse_matrix A1" "sorted_sparse_matrix A2" "sorted_sparse_matrix c1" "sorted_sparse_matrix c2" "sorted_sparse_matrix y" "sorted_sparse_matrix r1" "sorted_sparse_matrix r2" "sorted_spvec b" "le_spmat ([], y)" "sparse_row_matrix A1 ≤ A" "A ≤ sparse_row_matrix A2" "sparse_row_matrix c1 ≤ c" "c ≤ sparse_row_matrix c2" "sparse_row_matrix r1 ≤ x" "x ≤ sparse_row_matrix r2" "A * x ≤ sparse_row_matrix (b::('a::lordered_ring) spmat)" shows "c * x ≤ sparse_row_matrix (add_spmat (mult_spmat y b, (let s1 = diff_spmat c1 (mult_spmat y A2); s2 = diff_spmat c2 (mult_spmat y A1) in add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2), add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2), add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1), mult_spmat (nprt_spmat s1) (nprt_spmat r1)))))))" apply (simp add: Let_def) apply (insert prems) apply (simp add: sparse_row_matrix_op_simps ring_simps) apply (rule mult_le_dual_prts[where A=A, simplified Let_def ring_simps]) apply (auto) done lemma spm_mult_le_dual_prts_no_let: assumes "sorted_sparse_matrix A1" "sorted_sparse_matrix A2" "sorted_sparse_matrix c1" "sorted_sparse_matrix c2" "sorted_sparse_matrix y" "sorted_sparse_matrix r1" "sorted_sparse_matrix r2" "sorted_spvec b" "le_spmat ([], y)" "sparse_row_matrix A1 ≤ A" "A ≤ sparse_row_matrix A2" "sparse_row_matrix c1 ≤ c" "c ≤ sparse_row_matrix c2" "sparse_row_matrix r1 ≤ x" "x ≤ sparse_row_matrix r2" "A * x ≤ sparse_row_matrix (b::('a::lordered_ring) spmat)" shows "c * x ≤ sparse_row_matrix (add_spmat (mult_spmat y b, mult_est_spmat r1 r2 (diff_spmat c1 (mult_spmat y A2)) (diff_spmat c2 (mult_spmat y A1))))" by (simp add: prems mult_est_spmat_def spm_mult_le_dual_prts[where A=A, simplified Let_def]) end
lemma sparse_row_vector_empty:
sparse_row_vector [] = 0
lemma sparse_row_matrix_empty:
sparse_row_matrix [] = 0
lemma foldl_distrstart:
(!!a x y. f (g x y) a = g x (f y a)) ==> foldl f (g x y) l = g x (foldl f y l)
lemma sparse_row_vector_cons:
sparse_row_vector (a # arr) =
singleton_matrix 0 (fst a) (snd a) + sparse_row_vector arr
lemma sparse_row_vector_append:
sparse_row_vector (a @ b) = sparse_row_vector a + sparse_row_vector b
lemma nrows_spvec:
nrows (sparse_row_vector x) ≤ Suc 0
lemma sparse_row_matrix_cons:
sparse_row_matrix (a # arr) =
move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0 + sparse_row_matrix arr
lemma sparse_row_matrix_append:
sparse_row_matrix (arr @ brr) = sparse_row_matrix arr + sparse_row_matrix brr
lemma sorted_spvec_empty:
sorted_spvec [] = True
lemma sorted_spvec_cons1:
sorted_spvec (a # as) ==> sorted_spvec as
lemma sorted_spvec_cons2:
sorted_spvec (a # b # t) ==> sorted_spvec (a # t)
lemma sorted_spvec_cons3:
sorted_spvec (a # b # t) ==> fst a < fst b
lemma sorted_sparse_row_vector_zero:
[| m ≤ n; sorted_spvec ((n, a) # arr) |]
==> Rep_matrix (sparse_row_vector arr) j m = (0::'a)
lemma sorted_sparse_row_matrix_zero:
[| m ≤ n; sorted_spvec ((n, a) # arr) |]
==> Rep_matrix (sparse_row_matrix arr) m j = (0::'a)
lemma sparse_row_vector_minus:
sparse_row_vector (minus_spvec v) = - sparse_row_vector v
lemma sparse_row_vector_abs:
sorted_spvec v ==> sparse_row_vector (abs_spvec v) = ¦sparse_row_vector v¦
lemma sorted_spvec_minus_spvec:
sorted_spvec v ==> sorted_spvec (minus_spvec v)
lemma sorted_spvec_abs_spvec:
sorted_spvec v ==> sorted_spvec (abs_spvec v)
lemma smult_spvec_empty:
smult_spvec y [] = []
lemma smult_spvec_cons:
smult_spvec y (a # arr) = (fst a, y * snd a) # smult_spvec y arr
lemma addmult_spvec_empty1:
addmult_spvec (y, [], a) = smult_spvec y a
lemma addmult_spvec_empty2:
addmult_spvec (y, a, []) = a
lemma sparse_row_vector_map:
[| ∀x y. f (x + y) = f x + f y; f (0::'a) = (0::'a) |]
==> sparse_row_vector (map (λx. (fst x, f (snd x))) a) =
apply_matrix f (sparse_row_vector a)
lemma sparse_row_vector_smult:
sparse_row_vector (smult_spvec y a) = scalar_mult y (sparse_row_vector a)
lemma sparse_row_vector_addmult_spvec:
sparse_row_vector (addmult_spvec (y, a, b)) =
sparse_row_vector a + scalar_mult y (sparse_row_vector b)
lemma sorted_smult_spvec:
sorted_spvec a ==> sorted_spvec (smult_spvec y a)
lemma sorted_spvec_addmult_spvec_helper:
[| sorted_spvec (addmult_spvec (y, (a, b) # arr, brr)); aa < a;
sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr) |]
==> sorted_spvec ((aa, y * ba) # addmult_spvec (y, (a, b) # arr, brr))
lemma sorted_spvec_addmult_spvec_helper2:
[| sorted_spvec (addmult_spvec (y, arr, (aa, ba) # brr)); a < aa;
sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr) |]
==> sorted_spvec ((a, b) # addmult_spvec (y, arr, (aa, ba) # brr))
lemma sorted_spvec_addmult_spvec_helper3:
[| sorted_spvec (addmult_spvec (y, arr, brr)); sorted_spvec ((aa, b) # arr);
sorted_spvec ((aa, ba) # brr) |]
==> sorted_spvec ((aa, b + y * ba) # addmult_spvec (y, arr, brr))
lemma sorted_addmult_spvec:
[| sorted_spvec a; sorted_spvec b |] ==> sorted_spvec (addmult_spvec (y, a, b))
lemma sparse_row_mult_spvec_spmat:
[| sorted_spvec a; sorted_spvec B |]
==> sparse_row_vector (mult_spvec_spmat (c, a, B)) =
sparse_row_vector c + sparse_row_vector a * sparse_row_matrix B
lemma sorted_mult_spvec_spmat:
[| sorted_spvec c; sorted_spmat B |]
==> sorted_spvec (mult_spvec_spmat (c, a, B))
lemma sparse_row_mult_spmat:
[| sorted_spmat A; sorted_spvec B |]
==> sparse_row_matrix (mult_spmat A B) =
sparse_row_matrix A * sparse_row_matrix B
lemma sorted_spvec_mult_spmat:
sorted_spvec A ==> sorted_spvec (mult_spmat A B)
lemma sorted_spmat_mult_spmat:
sorted_spmat B ==> sorted_spmat (mult_spmat A B)
lemma add_spvec_empty1:
add_spvec ([], a) = a
lemma add_spvec_empty2:
add_spvec (a, []) = a
lemma sparse_row_vector_add:
sparse_row_vector (add_spvec (a, b)) = sparse_row_vector a + sparse_row_vector b
lemma sparse_row_add_spmat:
sparse_row_matrix (add_spmat (A, B)) = sparse_row_matrix A + sparse_row_matrix B
lemma sorted_add_spvec_helper1:
add_spvec ((a, b) # arr, brr) = (ab, bb) # list
==> ab = a ∨ brr ≠ [] ∧ ab = fst (hd brr)
lemma sorted_add_spmat_helper1:
add_spmat ((a, b) # arr, brr) = (ab, bb) # list
==> ab = a ∨ brr ≠ [] ∧ ab = fst (hd brr)
lemma sorted_add_spvec_helper:
add_spvec (arr, brr) = (ab, bb) # list
==> arr ≠ [] ∧ ab = fst (hd arr) ∨ brr ≠ [] ∧ ab = fst (hd brr)
lemma sorted_add_spmat_helper:
add_spmat (arr, brr) = (ab, bb) # list
==> arr ≠ [] ∧ ab = fst (hd arr) ∨ brr ≠ [] ∧ ab = fst (hd brr)
lemma add_spvec_commute:
add_spvec (a, b) = add_spvec (b, a)
lemma add_spmat_commute:
add_spmat (a, b) = add_spmat (b, a)
lemma sorted_add_spvec_helper2:
[| add_spvec ((a, b) # arr, brr) = (ab, bb) # list; aa < a;
sorted_spvec ((aa, ba) # brr) |]
==> aa < ab
lemma sorted_add_spmat_helper2:
[| add_spmat ((a, b) # arr, brr) = (ab, bb) # list; aa < a;
sorted_spvec ((aa, ba) # brr) |]
==> aa < ab
lemma sorted_spvec_add_spvec:
[| sorted_spvec a; sorted_spvec b |] ==> sorted_spvec (add_spvec (a, b))
lemma sorted_spvec_add_spmat:
[| sorted_spvec A; sorted_spvec B |] ==> sorted_spvec (add_spmat (A, B))
lemma sorted_spmat_add_spmat:
[| sorted_spmat A; sorted_spmat B |] ==> sorted_spmat (add_spmat (A, B))
lemma disj_matrices_contr1:
[| disj_matrices A B; Rep_matrix A j i ≠ (0::'a) |]
==> Rep_matrix B j i = (0::'a)
lemma disj_matrices_contr2:
[| disj_matrices A B; Rep_matrix B j i ≠ (0::'a) |]
==> Rep_matrix A j i = (0::'a)
lemma disj_matrices_add:
[| disj_matrices A B; disj_matrices C D; disj_matrices A D; disj_matrices B C |]
==> (A + B ≤ C + D) = (A ≤ C ∧ B ≤ D)
lemma disj_matrices_zero1:
disj_matrices 0 B
lemma disj_matrices_zero2:
disj_matrices A 0
lemma disj_matrices_commute:
disj_matrices A B = disj_matrices B A
lemma disj_matrices_add_le_zero:
disj_matrices A B ==> (A + B ≤ 0) = (A ≤ 0 ∧ B ≤ 0)
lemma disj_matrices_add_zero_le:
disj_matrices A B ==> (0 ≤ A + B) = (0 ≤ A ∧ 0 ≤ B)
lemma disj_matrices_add_x_le:
[| disj_matrices A B; disj_matrices B C |] ==> (A ≤ B + C) = (A ≤ C ∧ 0 ≤ B)
lemma disj_matrices_add_le_x:
[| disj_matrices A B; disj_matrices B C |] ==> (B + A ≤ C) = (A ≤ C ∧ B ≤ 0)
lemma disj_sparse_row_singleton:
[| i ≤ j; sorted_spvec ((j, y) # v) |]
==> disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)
lemma disj_matrices_x_add:
[| disj_matrices A B; disj_matrices A C |] ==> disj_matrices A (B + C)
lemma disj_matrices_add_x:
[| disj_matrices A B; disj_matrices A C |] ==> disj_matrices (B + C) A
lemma disj_singleton_matrices:
disj_matrices (singleton_matrix j i x) (singleton_matrix u v y) =
(j ≠ u ∨ i ≠ v ∨ x = (0::'a) ∨ y = (0::'a))
lemma disj_move_sparse_vec_mat:
[| j ≤ a; sorted_spvec ((a, c) # as) |]
==> disj_matrices (sparse_row_matrix as)
(move_matrix (sparse_row_vector b) (int j) i)
lemma disj_move_sparse_row_vector_twice:
j ≠ u
==> disj_matrices (move_matrix (sparse_row_vector a) j i)
(move_matrix (sparse_row_vector b) u v)
lemma le_spvec_iff_sparse_row_le:
[| sorted_spvec a; sorted_spvec b |]
==> le_spvec (a, b) = (sparse_row_vector a ≤ sparse_row_vector b)
lemma le_spvec_empty2_sparse_row:
sorted_spvec b ==> le_spvec (b, []) = (sparse_row_vector b ≤ 0)
lemma le_spvec_empty1_sparse_row:
sorted_spvec b ==> le_spvec ([], b) = (0 ≤ sparse_row_vector b)
lemma le_spmat_iff_sparse_row_le:
[| sorted_spvec A; sorted_spmat A; sorted_spvec B; sorted_spmat B |]
==> le_spmat (A, B) = (sparse_row_matrix A ≤ sparse_row_matrix B)
lemma sparse_row_matrix_minus:
sparse_row_matrix (minus_spmat A) = - sparse_row_matrix A
lemma Rep_sparse_row_vector_zero:
x ≠ 0 ==> Rep_matrix (sparse_row_vector v) x y = (0::'a)
lemma sparse_row_matrix_abs:
[| sorted_spvec A; sorted_spmat A |]
==> sparse_row_matrix (abs_spmat A) = ¦sparse_row_matrix A¦
lemma sorted_spvec_minus_spmat:
sorted_spvec A ==> sorted_spvec (minus_spmat A)
lemma sorted_spvec_abs_spmat:
sorted_spvec A ==> sorted_spvec (abs_spmat A)
lemma sorted_spmat_minus_spmat:
sorted_spmat A ==> sorted_spmat (minus_spmat A)
lemma sorted_spmat_abs_spmat:
sorted_spmat A ==> sorted_spmat (abs_spmat A)
lemma sorted_spmat_diff_spmat:
[| sorted_spmat A; sorted_spmat B |] ==> sorted_spmat (diff_spmat A B)
lemma sorted_spvec_diff_spmat:
[| sorted_spvec A; sorted_spvec B |] ==> sorted_spvec (diff_spmat A B)
lemma sparse_row_diff_spmat:
sparse_row_matrix (diff_spmat A B) = sparse_row_matrix A - sparse_row_matrix B
lemma sorted_sparse_matrix_imp_spvec:
sorted_sparse_matrix A ==> sorted_spvec A
lemma sorted_sparse_matrix_imp_spmat:
sorted_sparse_matrix A ==> sorted_spmat A
lemma sorted_sp_simps:
sorted_spvec [] = True
sorted_spvec (a # as) =
(case as of [] => True | b # bs => fst a < fst b ∧ sorted_spvec as)
sorted_spmat [] = True
sorted_spmat (a # as) = (sorted_spvec (snd a) ∧ sorted_spmat as)
sorted_sparse_matrix A == sorted_spvec A ∧ sorted_spmat A
lemma bool1:
(¬ True) = False
lemma bool2:
(¬ False) = True
lemma bool3:
(P ∧ True) = P
lemma bool4:
(True ∧ P) = P
lemma bool5:
(P ∧ False) = False
lemma bool6:
(False ∧ P) = False
lemma bool7:
(P ∨ True) = True
lemma bool8:
(True ∨ P) = True
lemma bool9:
(P ∨ False) = P
lemma bool10:
(False ∨ P) = P
lemma boolarith:
(¬ True) = False
(¬ False) = True
(P ∧ True) = P
(True ∧ P) = P
(P ∧ False) = False
(False ∧ P) = False
(P ∨ True) = True
(True ∨ P) = True
(P ∨ False) = P
(False ∨ P) = P
lemma if_case_eq:
(if b then x else y) = (case b of True => x | False => y)
lemma pprt_add:
disj_matrices A B ==> pprt (A + B) = pprt A + pprt B
lemma nprt_add:
disj_matrices A B ==> nprt (A + B) = nprt A + nprt B
lemma pprt_singleton:
pprt (singleton_matrix j i x) = singleton_matrix j i (pprt x)
lemma nprt_singleton:
nprt (singleton_matrix j i x) = singleton_matrix j i (nprt x)
lemma less_imp_le:
a < b ==> a ≤ b
lemma sparse_row_vector_pprt:
sorted_spvec v ==> sparse_row_vector (pprt_spvec v) = pprt (sparse_row_vector v)
lemma sparse_row_vector_nprt:
sorted_spvec v ==> sparse_row_vector (nprt_spvec v) = nprt (sparse_row_vector v)
lemma pprt_move_matrix:
pprt (move_matrix A j i) = move_matrix (pprt A) j i
lemma nprt_move_matrix:
nprt (move_matrix A j i) = move_matrix (nprt A) j i
lemma sparse_row_matrix_pprt:
[| sorted_spvec m; sorted_spmat m |]
==> sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)
lemma sparse_row_matrix_nprt:
[| sorted_spvec m; sorted_spmat m |]
==> sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)
lemma sorted_pprt_spvec:
sorted_spvec v ==> sorted_spvec (pprt_spvec v)
lemma sorted_nprt_spvec:
sorted_spvec v ==> sorted_spvec (nprt_spvec v)
lemma sorted_spvec_pprt_spmat:
sorted_spvec m ==> sorted_spvec (pprt_spmat m)
lemma sorted_spvec_nprt_spmat:
sorted_spvec m ==> sorted_spvec (nprt_spmat m)
lemma sorted_spmat_pprt_spmat:
sorted_spmat m ==> sorted_spmat (pprt_spmat m)
lemma sorted_spmat_nprt_spmat:
sorted_spmat m ==> sorted_spmat (nprt_spmat m)
lemma sparse_row_matrix_op_simps:
sorted_sparse_matrix A ==> sorted_spmat A
sorted_sparse_matrix A ==> sorted_spvec A
sparse_row_matrix (add_spmat (A, B)) = sparse_row_matrix A + sparse_row_matrix B
[| sorted_spvec A; sorted_spvec B |] ==> sorted_spvec (add_spmat (A, B))
[| sorted_spmat A; sorted_spmat B |] ==> sorted_spmat (add_spmat (A, B))
sparse_row_matrix (diff_spmat A B) = sparse_row_matrix A - sparse_row_matrix B
[| sorted_spvec A; sorted_spvec B |] ==> sorted_spvec (diff_spmat A B)
[| sorted_spmat A; sorted_spmat B |] ==> sorted_spmat (diff_spmat A B)
sparse_row_matrix (minus_spmat A) = - sparse_row_matrix A
sorted_spvec A ==> sorted_spvec (minus_spmat A)
sorted_spmat A ==> sorted_spmat (minus_spmat A)
[| sorted_spmat A; sorted_spvec B |]
==> sparse_row_matrix (mult_spmat A B) =
sparse_row_matrix A * sparse_row_matrix B
sorted_spvec A ==> sorted_spvec (mult_spmat A B)
sorted_spmat B ==> sorted_spmat (mult_spmat A B)
[| sorted_spvec A; sorted_spmat A |]
==> sparse_row_matrix (abs_spmat A) = ¦sparse_row_matrix A¦
sorted_spvec A ==> sorted_spvec (abs_spmat A)
sorted_spmat A ==> sorted_spmat (abs_spmat A)
[| sorted_spvec A; sorted_spmat A; sorted_spvec B; sorted_spmat B |]
==> le_spmat (A, B) = (sparse_row_matrix A ≤ sparse_row_matrix B)
[| sorted_spvec m; sorted_spmat m |]
==> sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)
sorted_spvec m ==> sorted_spvec (pprt_spmat m)
sorted_spmat m ==> sorted_spmat (pprt_spmat m)
[| sorted_spvec m; sorted_spmat m |]
==> sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)
sorted_spvec m ==> sorted_spvec (nprt_spmat m)
sorted_spmat m ==> sorted_spmat (nprt_spmat m)
lemma zero_eq_Numeral0:
(0::'a) = Numeral0
lemma sparse_row_matrix_arith_simps:
mult_spmat [] A = []
mult_spmat (a # as) A =
(fst a, mult_spvec_spmat ([], snd a, A)) # mult_spmat as A
mult_spvec_spmat (c, [], brr) = c
mult_spvec_spmat (c, y # z, []) = c
mult_spvec_spmat (c, a # arr, b # brr) =
(if fst a < fst b then mult_spvec_spmat (c, arr, b # brr)
else if fst b < fst a then mult_spvec_spmat (c, a # arr, brr)
else mult_spvec_spmat (addmult_spvec (snd a, c, snd b), arr, brr))
addmult_spvec (y, arr, []) = arr
addmult_spvec (y, [], ae # af) = smult_spvec y (ae # af)
addmult_spvec (y, a # arr, b # brr) =
(if fst a < fst b then a # addmult_spvec (y, arr, b # brr)
else if fst b < fst a then (fst b, y * snd b) # addmult_spvec (y, a # arr, brr)
else (fst a, snd a + y * snd b) # addmult_spvec (y, arr, brr))
smult_spvec y [] = []
smult_spvec y (a # arr) = (fst a, y * snd a) # smult_spvec y arr
add_spmat ([], bs) = bs
add_spmat (w # x, []) = w # x
add_spmat (a # as, b # bs) =
(if fst a < fst b then a # add_spmat (as, b # bs)
else if fst b < fst a then b # add_spmat (a # as, bs)
else (fst a, add_spvec (snd a, snd b)) # add_spmat (as, bs))
add_spvec (arr, []) = arr
add_spvec ([], ab # ac) = ab # ac
add_spvec (a # arr, b # brr) =
(if fst a < fst b then a # add_spvec (arr, b # brr)
else if fst b < fst a then b # add_spvec (a # arr, brr)
else (fst a, snd a + snd b) # add_spvec (arr, brr))
minus_spmat [] = []
minus_spmat (a # as) = (fst a, minus_spvec (snd a)) # minus_spmat as
minus_spvec [] = []
minus_spvec (a # as) = (fst a, - snd a) # minus_spvec as
abs_spmat [] = []
abs_spmat (a # as) = (fst a, abs_spvec (snd a)) # abs_spmat as
abs_spvec [] = []
abs_spvec (a # as) = (fst a, ¦snd a¦) # abs_spvec as
diff_spmat A B == add_spmat (A, minus_spmat B)
le_spmat ([], []) = True
le_spmat (a # as, []) = (le_spvec (snd a, []) ∧ le_spmat (as, []))
le_spmat ([], b # bs) = (le_spvec ([], snd b) ∧ le_spmat ([], bs))
le_spmat (a # as, b # bs) =
(if fst a < fst b then le_spvec (snd a, []) ∧ le_spmat (as, b # bs)
else if fst b < fst a then le_spvec ([], snd b) ∧ le_spmat (a # as, bs)
else le_spvec (snd a, snd b) ∧ le_spmat (as, bs))
le_spvec ([], []) = True
le_spvec (a # as, []) = (snd a ≤ (0::'a) ∧ le_spvec (as, []))
le_spvec ([], b # bs) = ((0::'a) ≤ snd b ∧ le_spvec ([], bs))
le_spvec (a # as, b # bs) =
(if fst a < fst b then snd a ≤ (0::'a) ∧ le_spvec (as, b # bs)
else if fst b < fst a then (0::'a) ≤ snd b ∧ le_spvec (a # as, bs)
else snd a ≤ snd b ∧ le_spvec (as, bs))
pprt_spmat [] = []
pprt_spmat (a # as) = (fst a, pprt_spvec (snd a)) # pprt_spmat as
pprt_spvec [] = []
pprt_spvec (a # as) = (fst a, pprt (snd a)) # pprt_spvec as
nprt_spmat [] = []
nprt_spmat (a # as) = (fst a, nprt_spvec (snd a)) # nprt_spmat as
nprt_spvec [] = []
nprt_spvec (a # as) = (fst a, nprt (snd a)) # nprt_spvec as
mult_est_spmat r1.0 r2.0 s1.0 s2.0 ==
add_spmat
(mult_spmat (pprt_spmat s2.0) (pprt_spmat r2.0),
add_spmat
(mult_spmat (pprt_spmat s1.0) (nprt_spmat r2.0),
add_spmat
(mult_spmat (nprt_spmat s2.0) (pprt_spmat r1.0),
mult_spmat (nprt_spmat s1.0) (nprt_spmat r1.0))))
lemma spm_mult_le_dual_prts:
[| sorted_sparse_matrix A1.0; sorted_sparse_matrix A2.0;
sorted_sparse_matrix c1.0; sorted_sparse_matrix c2.0; sorted_sparse_matrix y;
sorted_sparse_matrix r1.0; sorted_sparse_matrix r2.0; sorted_spvec b;
le_spmat ([], y); sparse_row_matrix A1.0 ≤ A; A ≤ sparse_row_matrix A2.0;
sparse_row_matrix c1.0 ≤ c; c ≤ sparse_row_matrix c2.0;
sparse_row_matrix r1.0 ≤ x; x ≤ sparse_row_matrix r2.0;
A * x ≤ sparse_row_matrix b |]
==> c * x
≤ sparse_row_matrix
(add_spmat
(mult_spmat y b,
let s1 = diff_spmat c1.0 (mult_spmat y A2.0);
s2 = diff_spmat c2.0 (mult_spmat y A1.0)
in add_spmat
(mult_spmat (pprt_spmat s2) (pprt_spmat r2.0),
add_spmat
(mult_spmat (pprt_spmat s1) (nprt_spmat r2.0),
add_spmat
(mult_spmat (nprt_spmat s2) (pprt_spmat r1.0),
mult_spmat (nprt_spmat s1) (nprt_spmat r1.0))))))
lemma spm_mult_le_dual_prts_no_let:
[| sorted_sparse_matrix A1.0; sorted_sparse_matrix A2.0;
sorted_sparse_matrix c1.0; sorted_sparse_matrix c2.0; sorted_sparse_matrix y;
sorted_sparse_matrix r1.0; sorted_sparse_matrix r2.0; sorted_spvec b;
le_spmat ([], y); sparse_row_matrix A1.0 ≤ A; A ≤ sparse_row_matrix A2.0;
sparse_row_matrix c1.0 ≤ c; c ≤ sparse_row_matrix c2.0;
sparse_row_matrix r1.0 ≤ x; x ≤ sparse_row_matrix r2.0;
A * x ≤ sparse_row_matrix b |]
==> c * x
≤ sparse_row_matrix
(add_spmat
(mult_spmat y b,
mult_est_spmat r1.0 r2.0 (diff_spmat c1.0 (mult_spmat y A2.0))
(diff_spmat c2.0 (mult_spmat y A1.0))))