(* Title: HOL/Matrix/LP.thy ID: $Id: LP.thy,v 1.2 2007/06/23 17:33:23 nipkow Exp $ Author: Steven Obua *) theory LP imports Main begin lemma linprog_dual_estimate: assumes "A * x ≤ (b::'a::lordered_ring)" "0 ≤ y" "abs (A - A') ≤ δA" "b ≤ b'" "abs (c - c') ≤ δc" "abs x ≤ r" shows "c * x ≤ y * b' + (y * δA + abs (y * A' - c') + δc) * r" proof - from prems have 1: "y * b <= y * b'" by (simp add: mult_left_mono) from prems have 2: "y * (A * x) <= y * b" by (simp add: mult_left_mono) have 3: "y * (A * x) = c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x" by (simp add: ring_simps) from 1 2 3 have 4: "c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x <= y * b'" by simp have 5: "c * x <= y * b' + abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)" by (simp only: 4 estimate_by_abs) have 6: "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <= abs (y * (A - A') + (y * A' - c') + (c'-c)) * abs x" by (simp add: abs_le_mult) have 7: "(abs (y * (A - A') + (y * A' - c') + (c'-c))) * abs x <= (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x" by(rule abs_triangle_ineq [THEN mult_right_mono]) simp have 8: " (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x <= (abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x" by (simp add: abs_triangle_ineq mult_right_mono) have 9: "(abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x" by (simp add: abs_le_mult mult_right_mono) have 10: "c'-c = -(c-c')" by (simp add: ring_simps) have 11: "abs (c'-c) = abs (c-c')" by (subst 10, subst abs_minus_cancel, simp) have 12: "(abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + δc) * abs x" by (simp add: 11 prems mult_right_mono) have 13: "(abs y * abs (A-A') + abs (y*A'-c') + δc) * abs x <= (abs y * δA + abs (y*A'-c') + δc) * abs x" by (simp add: prems mult_right_mono mult_left_mono) have r: "(abs y * δA + abs (y*A'-c') + δc) * abs x <= (abs y * δA + abs (y*A'-c') + δc) * r" apply (rule mult_left_mono) apply (simp add: prems) apply (rule_tac add_mono[of "0::'a" _ "0", simplified])+ apply (rule mult_left_mono[of "0" "δA", simplified]) apply (simp_all) apply (rule order_trans[where y="abs (A-A')"], simp_all add: prems) apply (rule order_trans[where y="abs (c-c')"], simp_all add: prems) done from 6 7 8 9 12 13 r have 14:" abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <=(abs y * δA + abs (y*A'-c') + δc) * r" by (simp) show ?thesis apply (rule_tac le_add_right_mono[of _ _ "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"]) apply (simp_all only: 5 14[simplified abs_of_nonneg[of y, simplified prems]]) done qed lemma le_ge_imp_abs_diff_1: assumes "A1 <= (A::'a::lordered_ring)" "A <= A2" shows "abs (A-A1) <= A2-A1" proof - have "0 <= A - A1" proof - have 1: "A - A1 = A + (- A1)" by simp show ?thesis by (simp only: 1 add_right_mono[of A1 A "-A1", simplified, simplified prems]) qed then have "abs (A-A1) = A-A1" by (rule abs_of_nonneg) with prems show "abs (A-A1) <= (A2-A1)" by simp qed lemma mult_le_prts: assumes "a1 <= (a::'a::lordered_ring)" "a <= a2" "b1 <= b" "b <= b2" shows "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1" proof - have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" apply (subst prts[symmetric])+ apply simp done then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b" by (simp add: ring_simps) moreover have "pprt a * pprt b <= pprt a2 * pprt b2" by (simp_all add: prems mult_mono) moreover have "pprt a * nprt b <= pprt a1 * nprt b2" proof - have "pprt a * nprt b <= pprt a * nprt b2" by (simp add: mult_left_mono prems) moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2" by (simp add: mult_right_mono_neg prems) ultimately show ?thesis by simp qed moreover have "nprt a * pprt b <= nprt a2 * pprt b1" proof - have "nprt a * pprt b <= nprt a2 * pprt b" by (simp add: mult_right_mono prems) moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1" by (simp add: mult_left_mono_neg prems) ultimately show ?thesis by simp qed moreover have "nprt a * nprt b <= nprt a1 * nprt b1" proof - have "nprt a * nprt b <= nprt a * nprt b1" by (simp add: mult_left_mono_neg prems) moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1" by (simp add: mult_right_mono_neg prems) ultimately show ?thesis by simp qed ultimately show ?thesis by - (rule add_mono | simp)+ qed lemma mult_le_dual_prts: assumes "A * x ≤ (b::'a::lordered_ring)" "0 ≤ y" "A1 ≤ A" "A ≤ A2" "c1 ≤ c" "c ≤ c2" "r1 ≤ x" "x ≤ r2" shows "c * x ≤ y * b + (let s1 = c1 - y * A2; s2 = c2 - y * A1 in pprt s2 * pprt r2 + pprt s1 * nprt r2 + nprt s2 * pprt r1 + nprt s1 * nprt r1)" (is "_ <= _ + ?C") proof - from prems have "y * (A * x) <= y * b" by (simp add: mult_left_mono) moreover have "y * (A * x) = c * x + (y * A - c) * x" by (simp add: ring_simps) ultimately have "c * x + (y * A - c) * x <= y * b" by simp then have "c * x <= y * b - (y * A - c) * x" by (simp add: le_diff_eq) then have cx: "c * x <= y * b + (c - y * A) * x" by (simp add: ring_simps) have s2: "c - y * A <= c2 - y * A1" by (simp add: diff_def prems add_mono mult_left_mono) have s1: "c1 - y * A2 <= c - y * A" by (simp add: diff_def prems add_mono mult_left_mono) have prts: "(c - y * A) * x <= ?C" apply (simp add: Let_def) apply (rule mult_le_prts) apply (simp_all add: prems s1 s2) done then have "y * b + (c - y * A) * x <= y * b + ?C" by simp with cx show ?thesis by(simp only:) qed end
lemma linprog_dual_estimate:
[| A * x ≤ b; (0::'a) ≤ y; ¦A - A'¦ ≤ δA; b ≤ b'; ¦c - c'¦ ≤ δc; ¦x¦ ≤ r |]
==> c * x ≤ y * b' + (y * δA + ¦y * A' - c'¦ + δc) * r
lemma le_ge_imp_abs_diff_1:
[| A1.0 ≤ A; A ≤ A2.0 |] ==> ¦A - A1.0¦ ≤ A2.0 - A1.0
lemma mult_le_prts:
[| a1.0 ≤ a; a ≤ a2.0; b1.0 ≤ b; b ≤ b2.0 |]
==> a * b
≤ pprt a2.0 * pprt b2.0 + pprt a1.0 * nprt b2.0 + nprt a2.0 * pprt b1.0 +
nprt a1.0 * nprt b1.0
lemma mult_le_dual_prts:
[| A * x ≤ b; (0::'a) ≤ y; A1.0 ≤ A; A ≤ A2.0; c1.0 ≤ c; c ≤ c2.0; r1.0 ≤ x;
x ≤ r2.0 |]
==> c * x
≤ y * b +
(let s1 = c1.0 - y * A2.0; s2 = c2.0 - y * A1.0
in pprt s2 * pprt r2.0 + pprt s1 * nprt r2.0 + nprt s2 * pprt r1.0 +
nprt s1 * nprt r1.0)