

SIGNAL PROCESSING 2016-2017

Bachelor Degree:	INDUSTRIAL ELECTRONICS AND AUTOMATION E	805G	
Course title:	Signal Processing	654	
Year/Semester:	First Semester	ECTS Credits:	4,5

DEPARTMENT

ELECTRICAL ENGINEERING						
Address:	Luis de Ulloa, 20					
City:	Logroño	Province:	La Rioja	Postal code:	26004	
Phone number:	941 299 477		Email address:	dpto.ing.electrica@die	.unirioja.es	

ENGLISH-FRIENDLY FACULTY

Name:	Antonio Zorzano Martínez				
Phone number:	941 299 486	Email address:	Antonio.zorzano@unirioja.es		
Office:	318	Building:	Department Building		

CONTENTS

A) DIGITAL SIGNAL PROCESSING

Unit1.- Introduction.

- 1.1. Digital Processing Concept
- 1.2. Typical Applications of Digital Processing

B) ANALYSIS OF DISCRETE TIME SIGNALS

- Unit 2.- Discrete-Time Signals and Systems.
 - 2.1. Discrete-Time Signals.
 - 2.2. Discrete-Time Systems.
 - 2.3. Analysis of Discrete-Time Linear Time-Invariant Systems (LTI).
 - 2.4. Discrete-Time Systems Described by Difference Equations.
- Unit 3.- The z-Transform and its application to the analysis of LTI Systems
 - 3.1. The z-Transform
 - 3.2. Properties of the z-Transform
 - 3.3. Rational z-Transforms

Unit 4.- Sampling and Signal reconstruction

- 4.1. Sampling and aliassing.
- 4.2. Analog to Digital and Digital to Analog Conversion

C) FREQUENCY ANALYSIS OF SIGNALS

- Unit 5.- Frequency Analysis of Signals and Systems.
 - 5.1. Frequency Analysis of Continuos-Time Signals
 - 5.2. Frequency Analysis of Discrete Time Signals.
 - 5.3. Frequency-Domain Characteristics of Linear Time Invariant System (LTI).
 - 5.4. Frequency Response of LTI

Unit 6.- The Discrete Fourier Transform (DFT).

- 6.1. Frequency Domain Sampling.
- 6.2. Properties of the DFT
- 6.3. Efficient Computation of the DFT (FFT).

D) DIGITAL FILTERS

Unit 7.- Digital Filters

- 7.1. LTI Systems as frequency filters
- 7.2. Finite Impulse Response Filter (FIR).
- 7.3. Infinite Impulse Response Filter (IIR).
- Unit 8.- Design of digital filters
 - 8.1. Design of FIR Filters.
 - 8.2. Design of IIR Filters.
- Unit 9.- Applications of Digital Filter.
 - 9.1. Software Digital Filters.
 - 9.2. Hardware Digital Filters.

E) PRACTICAL SESSION Applications of Digital Processing in Digital Filtering

REFERENCES

Title

"Digital Signal processing", John Proakis, ISBN: 0-13-394338-9, Publisher: Prentice Hall, 1996, Third edition "Digital Signal processing using matlab", Vinay K Ingle., 4th edition, ISBN 10:1305635124, ISBN 13:9781305635128 Publisher: CL Engineering, 2016

"Digital Filter Design handbook", Britton Rorabaugh, ISBN 10,:0079111661, ISBN 13:978-0079111661, Publisher: McGraw-Hill, 1996

EVALUATION SYSTEM

Project worth 20% of the overall grade Reporting practices worth 20% of the overall grade Examination worth 60% of the overall grade

