

ROBOT PROGRAMMING AND CONTROL 2016-2017

Bachelor Degree:	Industrial Electronics and Automation Engineering	805G	
Course title:	Robot programming and control		640
Year/Semester:	3/1S	ECTS Credits:	6

DEPARTMENT

Electrical Engineering					
Address:	Luis de Ulloa, 20				
City:	Logroño	Province:	La Rioja	Postal code:	26004
Phone number:	941299477		Email address:	dpto.die@unirioja.es	

ENGLISH-FRIENDLY FACULTY

Name:	Carlos Elvira Izurrategui		
Phone number:	941299481	Email address:	carlos.elvira@unirioja.es
Office:		Building:	Polytechnic building

CONTENTS

UNIT1. Introduction to Robotics Introduction and definition History

Automation and Robotics

Classifications of robots

Industrial robots and their applications

Robot mechanical structure

Robot features

Typical manipulator structures: cartesian, cylindrical, spherical, antropomorphic, Scara, other structures

UNIT2. Review of mathematics and physics

Introduction to joint and task spaces

Task, operational space. Task coordenates

Joint space. Joint coordenates

Introduction to redundant robots

Spatial transformations applied to a rigid body

Pose of a rigid body. Position description and translation transformation

Planar rotation matrix

3D elementary rotations

Rotation of a vector

Composition of rotation matrices

Translation and rotation transformations

Euler angles. Wrist angles. Direct, inverse and singular solutions Roll, pitch and yaw angles. Direct, inverse and singular solutions Angle and axis

Unit quaternion

Homogeneous transformations. Robots (arm, wrist, end efector) examples

Graphic model to describe the position and orientation of a rigid body. Transformation diagrams applied to a robotic system

Physics transformations applied to a rigid body

Vector derivate in rotating frame

Cylindrical kinematic structure: position, linear velocity and linear acceleration Spherical kinematic structure: position, linear velocity and linear acceleration Combination (simultaneous) motions. Robotic examples: spherical structure motion and Euler wrist motion Centroid. Basic examples: triangle, semisphere Center of mass. Basic axamples: semisphere Moment of inertia. Basic axamples: cylinder, cone Inertia matrix for spatial movement of a rigid body. Basic example: parallelepiped Mechanical energy Kinematic energy of a rigid body: translational energy and rotational energy Potential energy of a rigid body Static laws of a rigid body **UNIT3. Kinematics** Direct Kinematics Problem (D.K.P.) Introduction to the Direct Kinematics Problem Direct kinematics analysis and solution Denavit-Hartenber convention. Conditions and parameters Procedure applied to the D.K.P. Kinematics of typical manipulator structures: two-link planar arm, three-link planar robot, scara manipulator, Stanford manipulator, Euler wrist Inverse Kinematics Problem (I.K.P.) Introduction to the Direct Kinematics Problem Existence and uniqueness of I.K.P. solutions Geometric and algebraic methods I.K.P. of a 2D planar arm. Geometric and algebraic solutions I.K.P. decoupling into two subproblems: the position arm I.K.P. and the orientation wrist I.K.P. I.K.P. of a threelink planar manipulator I.K.P. of a Scara robot Velocity mapping. The Jacobian matrix The geometric Jacobian Derivate of a rotation matrix Link velocities and accelerations Jacobian computation Jacobian of typical manipulator structures: two-link planar arm, three-link planar arm, scarar robot Kinematic singularities Singularity decoupling: arm and wrist singularities Singularities of typical manipulator structures: two-link planar arm, Euler wrist, Scara robot Statics and manipulator design Static laws applied to a link Forces acting on a link i Moments acting on a link i Static laws applied to a two-link manipulator Recursive calculations. Force and moments vectors Static of a two-link planar arm UNIT4. Dynamics Lagrange-Euler formulation Lagrange equation Computation of kinetic energy Computation of potential energy Equations of motion Dynamic model of simple manipulator structures: two-link cartesian arm, two-link planar arm Newton-Euler formulation Introduction to the Newton-Euler formulation

	Link velocities y accelerations
	Recursive algorithm
	Dinamic model of simple manipulator structures: two-link cartesian arm, two-link planar arm
UNIT5.	Kinematic control.
	Introduction to path planning
	Kinematic model and kinematic control Trajectory spaces and types of paths Path primities
UNIT6.	Introduction to robot control Introduction to control problem Control spaces and types of control Independent joint control and multivariable control
	PID independent control
	Feedforward compensation
	PD control with gravity compensation
UNIT7.	Robot programming
	Robot programming methods Robot control system hardware Programming languages
	Robot programming examples
UNIT8.	Introduction to robotics technology
	Introduction to robotics components
	Actuators: electric actuators (stepper motors, dc motors, brushless motors, ac motors), pneumatic actuators (cylinder and motors), hydraulic actuators (cylinder and motors)
	Internal sensors: position sensors (encoders, potenciometers, LVDT, synchros and resolvers), velocity sensors
	(tachometers, hall-effect sensors), acceleration sensors, force sensors
	Grippers: mechanical grippers, magnetic grippers, vacuum grippers, adherise grippers, other grippers Mechanical gears
	5

REFERENCES

Title

Modelling and Control of Robot Manipulators. L. Sciavicco B. Siciliano. Springer-Verlag. ISBN: 1852332212

Introduction to robotics : mechanics and control / John J. Craig-- 3rd ed-- Upper Saddle River (New Jersey) : Pearson Education International, [2005]

Robot dynamics and control / Mark W. Spong, M. Vidyasagar-- New York : John Wiley & Sons, cop. 1989

Theory of Robot Control. Carlos Canudas de Wit. Springer-Verlag. ISBN: 3540760547.

Introduction to robotics. Mc Kerrow P.J. Addison Wesley. ISBN: 0201182408.

Robot Manipulators. Mathematics, programming and control. Paul R. P. MIT-Press. ISBN: 026216082X

Fundamentals of robotics : analysis and control / Robert J. Schilling-- Englewood Cliffs, New Jersey : Prentice Hall, cop. 1990 Analytical robotics and mechatronics / Wolfram Stadler-- New York : McGraw-Hill, cop. 1995

Theory of applied robotics : kinematics, dynamics, and control / Reza N. Jazar-- New York : Springer, [2007]

Robot analysis : the mechanics of serial parallel manipulators / Lung-Wen Tsai-- New York [etc.] : John Wiley & Sons, [1999]

EVALUATION SYSTEM

End-of-term exam: 60% Oral exam: 20% Continuous assessment: 20%

