

STRUCTURAL DETERMINATION 2016-2017

Bachelor Degree:	CHEMISTRY	702G	
Course title:	STRUCTURAL DETERMINATION		542
Year/Semester:	3rd/2nd	ECTS Credits:	6

DEPARTMENT

Department of Chemistry					
Address:	Madre de Dios, 53				
City:	Logroño	Province:	La Rioja	Postal code:	26006
Phone number:	+34 941 299 607		Email address:	dpto.dq@unirioja.es	

ENGLISH-FRIENDLY FACULTY

Name:	Lalinde Peña, Elena		
Phone number:	+34 941 299 643	Email address:	elena.lalinde@unirioja.es
Office:	1207	Building:	Faculty of Sciences and Technology

Name:	Peregrina García, Jesús Manuel		
Phone number:	+34 941 299 654	Email address:	jesusmanuel.peregrina@unirioja.es
Office:	1218	Building:	Faculty of Sciences and Technology

CONTENTS

PART A. STRUCTURAL DETERMINATION OF ORGANIC COMPOUNDS.

UNIT1. Ultraviolet-visible (UV-Vis), infrared (IR) and RAMAN spectroscopies. Mass spectrometry (MS).

UNIT2. General aspects of nuclear magnetic resonance spectroscopy (NMR). Introduction and parameters

UNIT3. Proton nuclear magnetic resonance spectroscopy. Chemical shift, coupling constants and nuclear Overhauser effect.

UNIT4. Carbon-13 nuclear magnetic resonance spectroscopy and two dimensional experiments (COSY: COrrelated

SpectroscopY, TOCSY: TOtal Correlated SpectroscopY, NOESY: NOE SpectroscopY, HETCOR: HETeronuclear CORrelated spectroscopy, HSQC: Heteronuclear Simple Quantum Coherence, HMQC: Heteronuclear Multiple Quantum Coherence HMBC: Heteronuclear Multiple Bond Coherence).

UNIT5. Structural determination of organic compounds. Resolution of problems and prediction of spectra.

PART B. STRUCTURAL DETERMINATION OF INORGANIC AND ORGANOMETALLIC COMPOUNDS.

UNIT6. Multinuclear magnetic resonance. Physical properties of nuclei.

UNIT7. Multinuclear magnetic resonance. Parameters of active nuclei in nuclear magnetic resonance.

UNIT8. Analysis and interpretation of NMR spectra.

UNIT9. Dynamic processes and nuclear magnetic resonance.

REFERENCES

Title

NMR spectroscopy in inorganic chemistry

Structural methods in inorganic chemistry

NMR, NQR, EPR and Mossbaüer spectroscopy in inorganic chemistry

Organic structures from spectra

Nuclear magnetic resonance

Spectrometric identification of organic compounds

EVALUATION SYSTEM

Tasks before final exam referred to determination of structures from spectra and simulation of spectra (20%, unrecoverable)

Final exam (70%, recoverable)

Observation techniques (10%, unrecoverable)

