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Solutions
1. Find all positive integers n such that 17n−1 + 19n−1 divides 17n + 19n.

Solution. We have that 17(17n−1 + 19n−1) < 17n + 19n < 19(17n−1 + 19n−1) as
can be easily checked. Since 17n−1 + 19n−1 divides 17n + 19n, then 17n + 19n =
18(17n−1 + 19n−1) = (17 + 1)17n−1 + (19− 1)19n−1 = 17n + 17n−1 + 19n − 19n−1

from which follows 17n−1 = 19n−1.The preceding is only possible for n = 1 for which
17n−1 + 19n−1 = 2 that divides 17n + 19n = 36, and we are done. �

2. Prove that
n∑

k=1

√
k −
√
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where n is a positive integer.

Solution. Squaring both sides, yields(
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√
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√
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k(k + 1)
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n
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Applying CBS inequality to the vectors ~u = (1, 1, . . . , 1) and
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we get (
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√
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√
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√
k − 1

k

)
= n

√
n

n+ 1

and we are done.
�

3. Find all functions f : Q+ → Q+ such that for all x, y ∈ Q+, satisfy

y =
1

2

[
f

(
x+

y

x

)
−
(
f(x) +

f(y)

f(x)

)]
,
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where Q+ represents the set of positive rational numbers.

Solution. Rearranging terms the equation claimed may be written in the form

f

(
x+

y

x

)
= f(x) +

f(y)

f(x)
+ 2y

Setting (x, y) = (1, 1), (x, y) = (1, 2) and (x, y) = (2, 2), we obtain f(2) = f(1) + 3,

f(3) = f(1) +
f(2)

f(1)
+ 4 and f(3) = f(2) + 5, respectively. Form the preceding we

obtain f(1) = 1, f(2) = 4 and f(3) = 9. Now we claim that for all positive integer n
is f(n) = n2. Indeed, putting x = y = n we get f(n + 1) = f(n) + 2n + 1 which
is satisfied when f(n) = n2. It can be easily proven using mathematical induction.
Now, we assume that the only solution to our functional equation is f(x) = x2 for
all x ∈ Q+. To prove it we consider the pairs (x, y) = (n,m) and (x, y) = (m/n,m)
where n,m ∈ N. We get

f

(
n+

m

n

)
= f(n) +

f(m)

f(n)
+ 2m = n2 +

m2

n2
+ 2m,

f

(
m

n
+m

)
= f

(
m

n

)
+

f(m)

f(m/n)
+ 2m = f

(
m

n

)
+

m2

f(m/n)
+ 2m.

From the preceding immediately follows

f

(
m

n

)
−
m2

n2
− n2 +

m2

f(m/n)
= f

(
m

n

)
−
m2

n2
−
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(
f

(
m

n

)
−
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)

=

(
f

(
m

n

)
−
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)(
1−

n2
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)
= 0

Let
a

b
∈ Q+, (a, b) = 1. Then, we distinguish two cases:

• If 1−
b2

f(a/b)
6= 0, then f

(
a

b

)
−
a2

b2
= 0. That is, f

(
a

b

)
=

(
a

b

)2

.

• If 1−
b2

f(a/b)
= 0, then

f(2b)

f(2a/2b)
=

4b2

f(a/b)
6=

b2

f(a/b)
= 1. Thus,

f(2b)

f(2a/2b)
6= 1,

and then putting n = 2b and m = 2a into the above equality, yields again

f

(
a

b

)
= f

(
2a

2b

)
=

(2b)2

(2a)2
=

(
a

b

)2

So, the only solution is f(x) = x2 as can be easily checked and we are done. �

4. Find all real solutions of the equation

3 · 1331x + 4 · 363x = 34 · 99x + 77 · 27x

Solution. Dividing both sides of the given equation by 27x we obtain

3

(
1331

27

)x

+ 4

(
363

27

)x

= 34

(
99

27

)x

+ 77
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or

3

(
11

3

)3x

+ 4

(
11

3

)2x

= 34

(
11

3

)x

+ 77

Putting t = (11/3)x in the preceding equation, we get

3t3 + 4t2 − 34t− 77 = 0

Factoring it yields
(3t− 11)(t2 + 5t+ 7) = 0

which only real root is t = 11/3. Therefore, we have(
11

3

)x

=
11

3

from which follows that x = 1 is the unique real root of the equation to be solved,
and we are done.

�

5. Let n be an odd positive integer and let p be a prime number of the form 3n + 2.
Prove that if

a

b
=

2n+1∑
i=1

(−1)i+1

i
,

then p divides a.

Solution. We have
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+ . . .−
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1 +
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2
+
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3
+ . . .+

1
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)
=

1
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+
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+

1
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. . .+

1

2n− 1
+

1

2n
+

1

2n+ 1︸ ︷︷ ︸
even number of terms

=

(
1

n+ 1
+

1

2n+ 1

)
+

(
1

n+ 2
+

1

2n

)
+ . . .+

(
1

(3n+ 1)/2
+

1

(3n+ 3)/2

)
=

∑
r+s=3n+2

(
1

r
+

1

s

)
= (3n+ 2)

∑
r+s=3n+2

1

rs
= (3n+ 2)

c

d
,

where c is a positive integer and d = (n+1)(n+2) . . . (2n+1). Since 3n+2 is prime
and every factor of d is smaller then 3n+ 2, then (d, 3n+ 2) = 1. Thus,

a

b
=

(3n+ 2)c

d
⇔ ad = (3n+ 2)bc

So, (3n+ 2)|a and we are done.
�

6. Let a, b, c and α be positive real numbers such that a3 + b3 + c3 < αabc. Find the
values of α for which a, b, c are the length of the sides of a triangle.
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Solution. First, we observe that applying AM-GM inequality we have

αabc > a3 + b3 + c3 ≥ 3abc

Therefore, α > 3. To find the range of values of α that verify the statement we argue
by contradiction. Supposing that c ≥ a+ b, then exist x ≥ 0 such that c = a+ b+ x
and the condition a3+b3+c3 < αabc becomes a3+b3+(a+b+x)3 < αab(a+b+x),
or equivalently,

x3 + 3x2(a+ b) + 3x(a2 + b2) + abx(6− α) + (a+ b)
(
2a2 + (1− α)ab+ 2b2

)
< 0

Now we have that 2a2 + (1− α)ab+ 2b2 ≥ 0 when its discriminant

∆ =
(
(1− α)2 − 16

)
b2 ≤ 0

which occurs when −3 ≤ α ≤ 5. So, for 3 < α ≤ 5 we have

x3 + 3x2(a+ b) + 3x(a2 + b2) + abx(6− α) > 0

From the preceding follows that

x3 + 3x2(a+ b) + 3x(a2 + b2) + abx(6− α) + (a+ b)
(
2a2 + (1− α)ab+ 2b2

)
> 0

Contradiction. Therefore, a, b, c are the length of the sides of a triangle. We conclude
that for 3 < α ≤ 5 the statement holds and we are done. �
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