

Fase Local XXX Olimpiada Española de Química

Logroño 9 de marzo de 2017

INSTRUCCIONES

- A. La duración de la prueba será de 2 horas.
- B. Conteste en la Hoja de Respuestas.
- C. Sólo hay una respuesta correcta para cada cuestión.
- D. Cada respuesta correcta se valorará con 1 punto y las incorrectas con 0,25 negativo.
- E. No se permite la utilización de libros de texto o Tabla Periódica.
- F. Se autoriza el empleo de calculadora no programable.
- G. Para optar a un premio debe alcanzarse una puntuación mínima de 20 puntos.

CONSTANTES

 $R=8.31 \text{ J} \cdot \text{mol}^{-1} \cdot K^{-1} = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1}$

 $N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$

MASAS ATÓMICAS

H = 1; C=12; O=16; Na=23; P=31; S=32; Cl=35,5; K=39; Cu=63,5; Br=80; Pb=207

- 1.- ¿Qué masa de K contendría doble número de átomos que 2 g de C?:
- a) 13,0 g
- b) 4,0 g
- c) 6,5 g
- d) 3,2 g
- 2.- ¿Cuántos neutrones, protones y electrones tiene el isótopo ²²Ne?:
- a) 12, 10 y 10
- b) 10, 12 y 12
- c) 11, 11 y 11
- d) 10, 12 y 10
- 3.- ¿Cuál de los siguientes compuestos tiene menor ángulo F-E-F?:
- a) BF₃
- b) CF₄
- c) BeF₂
- d) OF₂
- 4.- ¿El valor de qué propiedad disminuye con el aumento de las fuerzas intermoleculares?:
- a) Viscosidad
- b) Presión de vapor
- c) Tensión superficial
- d) Temperatura de ebullición

5.- El metano se quema de acuerdo con esta ecuación:

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

Si el aire contiene oxígeno (21% volumen), ¿qué volumen de aire se requiere para quemar 5,0 L de metano, ambos a la misma temperatura y presión?

- a) 11,9 L
- b) 23,8 L
- c) 33,7 L
- d) 47,6 L
- 6.- Cuál de las siguientes reacciones NO es de oxidación-reducción:

a)
$$6Fe^{2+}(ac) + 14H^{+}(ac) + Cr_2O_7^{2-}(ac) \rightarrow 6Fe^{3+}(ac) + 2Cr^{3+}(ac) + 7H_2O(l)$$

b)
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

$$c)H_2SO_4(ac) + 2KOH(ac) \rightarrow K_2SO_4(ac) + 2H_2O(l)$$

d)
$$Cl_2(g) + 2NaBr(ac) \rightarrow Br_2(l) + 2NaCl(ac)$$

7.- Teniendo en cuenta los siguientes datos (a 298 K y 1 atm):

Entalpía normal de formación de metano: -74,9 kJ/mol

Calor de sublimación de grafito: 718,4 kJ/mol

Energía de disociación de la molécula de H₂: 436,0 kJ/mol

La energía media del enlace C-H del metano es:

- a) 1229,3 kJ/mol
- b) 416,3 kJ/mol
- c) 269,8 kJ/mol
- d) 378,9 kJ/mol
- 8.- El producto de solubilidad para $PbBr_2(s)$ en agua a 25°C es 6,6x10⁻⁶. Entonces, la solubilidad en gramos por litro del $PbBr_2(s)$ en agua a 25°C es:
- a) 6,88
- b) 4,33
- c) 5,46
- d) 0,66
- 9.- ¿Cuál es la base conjugada del anión HSO₄-?:
- a) H⁺
- b) H₂SO₄
- c) OH-
- d) SO₄²⁻
- 10.- La hibridación del As en AsF₅ que mejor describe la geometría molecular es:
- a) sp³
- b) sp⁴
- c) sp³d
- d) $sp^3 d^2$
- 11.- Para la reacción $C_2H_5OH(l)+O_2(g)\to CH_3COOH(l)+H_2O(l)$ a 25°C se dispone de los datos recogidos en la tabla adjunta:

Calcular ΔG° e indicar si es espontánea a dicha temperatura

- a) ΔG°=-479,2 kJ/mol, sí es espontánea
- b) ΔG°=-452,2 kJ/mol, sí es espontánea
- c) ΔG°= +506,2 kJ/mol, no es espontánea
- d) ΔG°=+452,2 kJ/mol, no es espontánea

Sustancia	S° (J K ⁻¹ mol ⁻¹)	ΔH ^o f (kJ mol ⁻¹)
C ₂ H ₅ OH	160,7	-277,6
CH₃COOH	159,8	-484,5
H ₂ O	70,0	-285,8
O ₂	205,1	

- 12.- ¿Cuál es la configuración electrónica del ion Fe³⁺ en su estado fundamental?
- a) [Ar] 3d⁵
- b) [Ar] 3d⁶
- c) [Ar] 4s² 3d³
- d) [Ar] 4s² 3d⁶
- 13.- El análisis elemental de un determinado hidrocarburo gaseoso determina que contiene 88,82% de carbono y 11,18% de hidrógeno. Una muestra de 62,6 mg de este gas ocupa 34,9 mL a 772 mm Hg y 100,0°C. La fórmula molecular del hidrocarburo será:
- a) C₂H₆
- b) C₂H₃
- c) CH₂
- d) C₄H₆
- 14.- Ordena las siguientes moléculas CH₄, C₂H₆, CH₃OH, CH₃CH₂OH de acuerdo con la entalpía molar de vaporización creciente:
- a) CH₄, C₂H₆, CH₃OH, CH₃CH₂OH
- b) CH₃CH₂OH, C₂H₆, CH₃OH, CH₄
- c) CH₄, CH₃OH, C₂H₆, CH₃CH₂OH
- d) CH₃CH₂OH, CH₃OH, C₂H₆, CH₄
- 15.- En cuál de los siguientes casos la entropía de la sustancia aumenta:
- a) $H_2O(g,75 \ Torr,300K) \rightarrow H_2O(g,150 \ Torr,300K)$
- b) $Br_2(l, 1 \ bar, 25^{\circ} \ C) \rightarrow Br_2(g, 1 \ bar, 25^{\circ} \ C)$
- c) $I_2(g, 1 \ bar, 200^{\circ} C) \rightarrow I_2(g, 1 \ bar, 125^{\circ} C)$
- d) $Fe (s, 10 \ bar, 250^{\circ} C) \rightarrow Fe (s, 1 \ bar, 250^{\circ} C)$
- 16.- La reacción $CuCl_2(ac) + H_2S(ac) \rightarrow 2HCl(ac) + CuS(ac)$ es de tipo:
- a) Redox.
- b) Ácido-base de desplazamiento.
- c) Ácido-base de neutralización.
- d) Precipitación.
- 17.- El voltaje generado por la siguiente célula electroquímica es 20,0 mV a 25°C.

$$Zn(s) \Big| Zn^{2+}(ac, 0, 100M) \Big\| Zn^{2+}(ac) \Big| Zn(s)$$

- El valor de [Zn²+] de la derecha de la pila será:
- a) Mayor que 0,100 M
- b) Menor que 0,100 M
- c) 0,100 M
- d) La concentración estándar 1,000 M
- 18.- Dada la reacción: $Cu(s) + H_2SO_4(ac) \rightarrow CuSO_4(ac) + SO_2(g) + H_2O(l)$

(no ajustada), indica cuál será el volumen de ácido sulfúrico de densidad 1,98 g/mL y 95% de riqueza en masa necesario para que reaccionen totalmente 10 g de cobre.

- a) 16,4 mL
- b) 14,8 mL
- c) 7,4 mL
- d) 8,2 mL
- 19.- Los elementos **A**, **B**, **C** y **D** se encuentran en el tercer período y tiene 1, 3, 5 y 7 electrones de valencia, respectivamente. ¿Cuáles serán las fórmulas de los compuestos que forme **D** con **A**, **B** y **C**?:

- a) DA, D₃B y D₅C
- b) AD, B₃D y C₅D
- c) AD, BD₃ y CD₅
- d) DA, DB₃ y DC₅
- 20.- ¿Cuál es la relación estructural entre las dos moléculas dibujadas?
- a) idénticas
- b) isómeros geométricos
- c) isómeros estructurales
- d) enantiómeros
- 21.- Considera la siguiente reacción química:

$$C(s) + 2H_2(g) \rightleftharpoons CH_4(g)$$

$$\Delta H_r^0 = -74,6kJ / mol$$

- El equilibrio se desplazará hacia la formación de metano si se produce:
- a) adición de C(s)
- b) incremento de la presión de H₂(g)
- c) incremento de la presión de CH₄(g)
- d) aumento del volumen de reacción
- 22.- La ecuación cinética para la producción de fosgeno, Cl₂CO(g), a partir de CO(g) y Cl₂(g) es la siguiente:

$$Cl_2(g) + CO(g) \rightarrow Cl_2CO(g)$$

$$\mathbf{v} = k \left[C l_2 \right]^{3/2} \left[C O \right]$$

Las unidades de la constante cinética serán:

- a) $M^{-3/2} s^{-1}$
- b) M-1 s-1
- c) $M^{+1} s^{-1}$
- \dot{d} $\dot{M}^{-5/2}$ s^{-1}
- 23.- El ángulo de enlace O-N-O del ion nitrito NO₂- es cercano a:
- a) 180°
- b) 150°
- c) 120°
- d) 109°
- 24.- Indica cuál de las siguientes combinaciones son conjuntos válidos de números cuánticos para un electrón de un átomo de carbono en su estado fundamental:
- a) (1, 0, 1, ½)
- b) $(2, 2, -1, -\frac{1}{2})$
- c) $(3, 1, -1, \frac{1}{2})$
- d) $(2, 0, 0, -\frac{1}{2})$
- 25.- ¿Cuál de las siguientes formas resonantes es la que más contribuye a la estructura de N2O?:

$$: N :: N :: O$$
:

$$: N :: N : O$$
:

d)

- 26.- El pH para una disolución acuosa 0,50 M de etilamina, $CH_3CH_2NH_2$ (ac), es 12,17 a 25°C. El valor de la constante de basicidad K_b será:
- a) 4.5x10⁻⁵
- b) 4,5x10⁻⁴
- c) 2,9x10⁻²
- d) 2,2x10⁻¹⁰
- 27.- Dados los siguientes equilibrios:

$$C(s) + 2H_2O(g) \rightleftharpoons CO_2(g) + 2H_2(g)$$

$$K_{n1} = 3,85$$

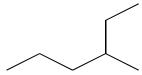
$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

$$K_{p2} = 0.71$$

Calcula el valor de la constante K_p para el equilibrio:

$$C(s) + CO_2(g) \rightleftharpoons 2CO(g)$$

- a) 1,9
- b) 5,4
- c) 4,7
- d) 3,1
- 28.- El grupo funcional amida es:
- a) -NH₂
- b) -NH-
- c) -CN
- d) -CONH₂
- 29.- ¿Cuál de las siguientes moléculas es polar?
- a) BeCl₂
- b) PCl₃
- c) CCI₄
- d) BCl₃
- 30.- La descomposición acuosa de peróxido de hidrógeno en presencia de $I^-(ac)$ y $H^+(ac)$ sucede según la reacción:


$$2H_2O_2(ac) \to 2H_2O(l) + O_2(g)$$

En un experimento se tomaron las siguientes medidas cinéticas:

= : a.: oxpo:oxto co toa. ox oxganorito modificato anticato.					
[H ₂ O ₂] ₀ /M	[I ⁻] ₀ /M	[H ⁺] ₀ /M	V ₀ /M.s ⁻¹		
0,20	0,010	0,010	2,0x10 ⁻³		
0,40	0,010	0,010	4,0x10 ⁻³		
0,20	0,020	0,010	8,0x10 ⁻³		
0.20	0,020	0,020	1,6x10 ⁻²		

Indica si hay catalizador(es), cuál es la ecuación cinética y qué especie reactiva se consumirá antes:

- a) sí, v=k [H₂O₂], l⁻(ac)
- b) sí, v=k $[H_2O_2][I^-][H^+]$, $H^+(ac)$
- c) no, v=k $[H_2O_2][I^-]^2[H^+]$, $I^-(ac)$
- d) sí, v=k $[H_2O_2][I^-]^2[H^+]$, $H_2O_2(ac)$
- 31.- ¿Cuál es el nombre según la IUPAC para la siguiente molécula?
- a) heptano
- b) 2-etilpentano
- c) 3-metilhexano
- d) 4-etilpentano

32 Indica cuál de los siguientes elementos tiene mayor energía de ionización: a) S b) Al c) Cl d) As
33 A 400°C el hidrogenocarbonato de sodio se descompone parcialmente según el equilibrio: $2NaHCO_3(s) \rightleftarrows Na_2CO_3(s) + CO_2(g) + H_2O(g)$ Si tras introducir una cierta cantidad de hidrogenocarbonato de sodio en un recipiente cerrado y calentar a 400°C, al alcanzarse el equilibrio la presión total es de 0,962 atm, ¿cuál será el valor de Kp a esa temperatura?: a) 0,231 atm b) 0,481 atm c) 0,481 atm² d) 0,231 atm²
34 Calcula el volumen que se necesita de una disolución acuosa de NaOH de concentración 0,2M para que neutralice totalmente 20 mL de otra disolución acuosa de H ₂ SO ₄ 0,2M. a) 10 mL b) 20 mL c) 40 mL d) 60 mL
35La fosfina, PH ₃ , puede ser preparada mediante la siguiente reacción: $P_4(s) + 3NaOH(ac) + 3H_2O(l) \rightarrow PH_3(g) + 3NaH_2PO_2(ac)$ Si 20,0 g de fósforo y una disolución que contiene 50g de NaOH reaccionan con H ₂ O(l) en exceso ¿cuántos g de fosfina se obtendrán? a) 5,49 g b) 14,7 g c) 22,6 g d) 7,9 g
36 El nitrito de sodio, un importante compuesto químico en la industria de colorantes, se produce mediante la reacción de nitrato de sodio con plomo de acuerdo con: $NaNO_3(ac) + Pb \ (s) \rightarrow NaNO_2(ac) + PbO \ (s)$ La especie oxidante es: a) Pb b) NO_3^- c) NO_2^- d) Pb^{2+}
37 ¿Cuál de las siguientes especies tiene el número de protones, electrones y neutrones en la proporción 27:24:33? a) 47 Cr b) 60 Co ³⁺ c) 24 Mg ²⁺ d) 35 Cl ⁻
38 ¿Qué dos elementos poseen 2 electrones desapareados en su capa de valencia? a) Se y Sn b) Sb y Te c) Se y Al d) Ga y As

39.- A 250°C el pentacloruro de fósforo se descompone según el equilibrio:

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

Teniendo en cuenta que K_c (250°C) = 0,044, indica cuál será la concentración de cada una de las especies en equilibrio cuando éste se alcanza tras introducir 20,85 g de pentacloruro de fósforo en un recipiente cerrado de 1 L y calentarlo a esa temperatura.

- a) $[PCI_5] = 0.0337 \text{ M}$; $[PCI_3] = [CI_2] = 0.0663 \text{ M}$
- b) $[PCI_5] = 0.0954 \text{ M}$; $[PCI_3] = [CI_2] = 0.0135 \text{ M}$
- c) $[PCI_5] = 0.0663 \text{ M}$; $[PCI_3] = [CI_2] = 0.0337 \text{ M}$
- d) $[PCI_5] = 0.0521 \text{ M}$; $[PCI_3] = [CI_2] = 0.0479 \text{ M}$
- 40.- Respecto a la adicción de un catalizador positivo a un sistema reaccionante, señala la preposición correcta:
- a) Hace más negativo el valor de ΔH, es más exotérmica y, por lo tanto, más rápida.
- b) Hace más negativo el valor de ΔG, es más espontánea y, por lo tanto, más rápida
- c) Aumenta las velocidades de reacción directa e inversa
- d) Disminuye la energía de activación, pero aumenta únicamente la velocidad de la reacción directa.

