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Perturbed ion traps: A generalization of the three-dimensional
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This paper presents an analytical study of an axially symmetric perturbation of the Penning trap.
This system is modeled as a generalization of the three-dimensional~3D! Hénon–Heiles potential.
Thus, the same techniques which succeeded in the study of the 3D He´non–Heiles system apply
here. The departure Hamiltonian is three dimensional, although it possesses an axial symmetry. This
property, together with an averaging process, is used to reduce the original system to an integrable
one. We study the flow of the reduced Hamiltonian: equilibria, bifurcations, and stability, extracting
thereafter the relevant information about the dynamics of the original problem. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1449957#
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Since the beginning of the last century, the effect of the
application of external fields to atoms has played a cru-
cial role in the development of atomic physics. In particu-
lar, the application of static electric and magnetic fields to
create trapping phenomena is a remarkable feature.
When the trapped particle is an ion, lab experiments are
used to perform very precise spectroscopic measurement
and to construct accurate atomic clocks. In this paper we
focus on one of these experiments: the Penning trap
which is described in Sec. I. Due to physical imperfec-
tions of the real experiment, some perturbations have to
be added to the original model. The system we consider i
a three-dimensional „3D… Hamiltonian composed of the
main part „a 3D harmonic oscillator with two equal fre-
quencies… plus a small perturbation composed of cubic
terms. Hence, the model is ideal to be considered from an
analytical point of view within the framework of pertur-
bation theory. Our goal is to perform a qualitative analy-
sis of the effect caused by the imperfections on the Pen
ning trap. Taking into account the axial symmetry of the
problem and by means of an averaging process, we arrive
to a one degree of freedom system. A global analysis o
the phase flow of this reduced system indicates that one o
the control parameters involved in the design of the Pen-
ning trap serves to attenuate the nonlinear behavior.

I. INTRODUCTION

As is known, one of the most celebrated models in n
linear physics has been the perturbed harmonic oscilla
One reason is that its apparently deceptive simplicity hide
rich nonlinear behavior which converts this system to a t
field where it is possible to test the modern theories on
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namical systems. Moreover, its experimental and theoret
applicability runs over a wide and disparate fields, such
dynamical astronomy, see Refs. 1, 2, 3, particle and pla
physics, see Refs. 4, 5 or atomic physics, see Refs. 6, 7
particular, the Penning ion trap~in Refs. 8–10! stands out
because it is one of the most useful models in atomic ph
ics.

Briefly described, the Penning trap represents a thr
dimensional~3D! trapping of a charge or ion due to an ax
ally symmetric~‘‘ perfect’’ ! quadrupole electric field plus a
static magnetic field. The perfect quadrupole electric pot
tial is achieved by means of a set of three electrodes. On
the electrodes, called the ring, is shaped like the inner sur
of a toroid. The other two are like hemispheres placed ab
and below the ring. In this arrangement, the quadrupole
tential acts as a trap only in the direction of the axis betwe
the hemispheres~we call this axisz!, while the motion in the
radial plane~Oxy plane! is unstable. The presence of th
magnetic field along thez axis provides the complete trap
ping and the motion of the ion remains harmonic.

In the above-mentioned ideal configuration, the Penn
trap is modeled by means of an unperturbed thr
dimensional harmonic oscillator~as can be seen in Refs. 8
9!. However, electrostatic field perturbations may arise fr
imperfections in the physical design of the electrodes,
well as from misalignments in the experimental setup,
for instance Refs. 10–12. We can separate these pertu
tions into harmonic and anharmonic perturbations. In p
ticular, the second group is the most interesting one beca
it leads to nonlinear motion.

As we will see in Sec. II, from the point of view o
nonlinear dynamics, the Hamiltonian describing the p
turbed Penning trap can be considered as a very genera
tension of the famous He´non–Heiles model, see Ref. 13
Then, the real physical system studied in this paper is a g
© 2002 American Institute of Physics
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candidate to apply the nonlinear dynamics techniques. H
ever, despite the plethora of works dealing with the tw
dimensional~2D! Hénon–Heiles model~see Ref. 7 for a re-
view!, a general theoretical study of the perturbed Penn
trap is almost an impossible task. Hence, in this paper
only consider axially symmetric perturbations of the thre
dimensional Penning trap, which is also axially symmet
In this way we take advantage of the symmetric characte
the 3D perturbed system to reduce it to one of dimens
two. In particular, we will treat thesextupolarperturbation.

The study is performed from an analytical point of vie
We consider the Hamiltonian representing the perturbed P
ning trap as a sum of an unperturbed part, the correspon
harmonic oscillator, and the perturbation associated with
axially symmetric electrostatic imperfection. The basic id
is to transform this system into an equivalent integra
Hamiltonian easier to be studied and containing the m
features of the original system. Thus, we can extract dyna
cal information of the original system from the integrab
Hamiltonian.

We construct this new system in two steps: first we ap
an asymptotic transformation based on the Lie–De
method, see Ref. 14. Fixing a value for the energy, the tra
formed, i.e., normalized, system is of two degrees of fr
dom. The reduced phase space for the isotropic harm
oscillator is thecomplex projectivespace CP2. Second, we
reduce the axial symmetry and fix a value for the new form
integral, the third component of the angular momentum v
tor. After this process, the twice reduced system is of o
degree of freedom~integrable!. Then we analyze the dynam
cal features of this system, calculating its equilibria and th
types of bifurcation lines: saddle center, Hamiltonian Ho
and Hamiltonian flip. An estimation of the error committe
in the Lie transformation allows us to conclude that our a
proach is valid in a neighborhood of the origin. This is re
forced numerically using some Poincare´ surfaces of section
Therefore using KAM theory, we infer that the bifurcation
of the relative equilibria correspond to bifurcations of 2
invariant tori and quasiperiodic orbits of the original Ham
tonian. In the end all these mathematical considerations
mit are to establish some relevant physical aspects of
perturbed Penning trap.

The paper is structured as follows: in Sec. II we form
late the problem. In Sec. III we describe and perform
reduction. Once the integrable Hamiltonian has been de
mined, we study the normalized dynamics in Sec. IV. T
involves the determination of equilibria and bifurcations w
the corresponding analysis of the stability. In Sec. V we
scribe the phase flow evolution. Finally, in Sec. VI we esta
lish the connection between the reduced and the original
tems and present the conclusions in Sec. VII.

II. THE PERTURBED PENNING TRAP

The Hamiltonian for a single ion of massm and chargeq
trapped in aperfectPenning trap is given by
Downloaded 04 Apr 2003 to 193.146.232.9. Redistribution subject to AIP
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H5
1

2m
~px

21py
21pz

2!1wL~xpy2ypx!1
m

2 S wL
22

wz
2

2 D
3~x21y2!1

m

2
wz

2z2, ~1!

wherewz andwL are, respectively, the frequency induced
the quadrupole electric field and the Larmor frequency,
Ref. 12. The trapping condition is achieved whenw25wL

2

2wz
2/2>0, which ensures a stable motion in the radial pla

However, the perfect Penning trap is not a realistic mo
due to the imperfections of the electric field. In this way, t
potential induced by the quadrupole electric field, that is

V5
wz

2

4
~2z22x22y2!,

is substituted, as in Refs. 12 and 15, by the multipole exp
sion of the electrostatic potential. This expansion in spher
coordinates~r, u, f! takes the form

V5(
l>0

Vl ,

where

Vl5 (
k50

l

al ,kr
lPl

k~cosu!cos~kf!, ~2!

Pl
k being the Legendre functions. The termV05a0,0 defines

the origin of the electrostatic potential. The linear termV1

5a1,0 z1a1,1x gives rise to a constant force and can
dropped. Hence, the Hamiltonian of the perturbed Penn
trap ~in Cartesian coordinates! is

H5
1

2m
~px

21py
21pz

2!1wLLz1
m

2
wL

2~x21y2!

1(
l<2

Vl , ~3!

whereLz5xpy2ypx is thez component of the angular mo
mentum.

In general, Hamiltonian ~3! represents a three
dimensional dynamical system. However, by assum
z-axial symmetry, it is possible to lower the dimension of t
problem, asLz is a constant of motion. Under this assum
tion all al ,k terms in Eq.~3! with kÞ0 are zero. Now, this
Hamilton function defines a two-degree-of-freedom dynam
cal system. At this point we takeV2 andV3 ~with al ,k50 if
k.0!, which are, respectively, the~perfect! quadrupole and
the sextupole terms. The corresponding Hamiltonian yiel

H5
1

2m
~px

21py
21pz

2!1wLLz1
m

2
wL

2~x21y2!

1
a2,0

2
~2z22x22y2!1

a3,0

2
z~2z223x223y2!.

~4!

The parametera2,0 has dimensions of mass over time squa
so that it introduces a frequencywz in such a way thata2,0

5mwz
2/2. In order to simplify notation, we rewrite the sex
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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89Chaos, Vol. 12, No. 1, 2002 Perturbed ion traps
tupole parameter12a3,0 as a3 and we assume the massm
equal to one. With this new notation, Hamiltonian~4! takes
the form

H5 1
2~px

21py
21pz

2!1wLLz1
1
2w

2~x21y2!1 1
2wz

2z2

1a3z~2z223x223y2!, ~5!

where we are assuming the trapping conditionw25wL
2

2wz
2/2>0.
As we pointed out in Sec. I, owing to the cylindric

symmetry of the system, it is possible to eliminate the lin
term wL Lz in Eq. ~5! by expressing the Hamiltonian in
reference frame (x8,y8,z9) rotating with the frequencywL

around thez axis. This canonical transformation is given b
the generating function

W5px8~x coswLt1y sinwLt !

1py8~2x sinwLt1y coswLt !1pz8,

where

px5
]W

]x
, py5

]W

]y
, pz5

]W

]z
,

x85
]W

]px8
, y85

]W

]py8
, z85

]W

]pz8
.

The new Hamiltonian is given by

H85H1
]W

]t
,

which results to be, after dropping the primes,

H5 1
2~px

21py
21pz

2!1 1
2w

2~x21y2!1 1
2wz

2z2

1a3z~2z223x223y2!, ~6!

and Eq.~6! represents a three-dimensional perturbedw:w:wz

harmonic oscillator.
We note that in the particular situationwz5w ~the iso-

tropic case!, Hamiltonian ~6! corresponds to the He´non–
Heiles system in three dimensions. Hence, we can cons
Eq. ~6! as a more general He´non–Heiles system in thre
dimensions, see Refs. 16 and 17. Thus, we name the sy
described by Hamiltonian~6! the axially symmetric per-
turbedgeneralized 3D He´non–Heiles system.

III. NORMALIZATION AND REDUCTION

Our aim in this section is to simplifyH. With this pur-
pose we perform an asymptotic transformation up to sec
order of approximation. The transformation is constructed
such a way that we average the original system over on
the angles. Indeed, the high-order averaging procedure
be interpreted as a normalization technique since the ‘‘eli
nation’’ of an angle variable is completely equivalent to t
construction of a formal integral, see for instance Ref. 18.
this point we want to emphasize that these types of trans
mations are, in general, divergent. However, one can
build approximations to the original problem~e.g., normal-
ized or averaged Hamilton functions! good enough to be
Downloaded 04 Apr 2003 to 193.146.232.9. Redistribution subject to AIP
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useful for analytical purposes. This must be accompanied
an estimate of the error made after truncation of the hi
order terms.

By assuming the sextupole parametera3 small, we can
consider the system defined by Hamiltonian~6! as a weakly
perturbedw:w:wz harmonic oscillator. WhenwzÞw, in or-
der to still consider Eq.~6! as a weakly perturbed isotropi
oscillator, we will assumewz'w. This allows us to define a
small detuning parameterudu!1 in such a way that it is
possible to splitwz

25w21dw2. Therefore, Hamiltonian~6!
becomes

H5H01H1 ,

H05 1
2~px

21py
21pz

2!1 1
2w

2~x21y21z2!, ~7!

H15 1
2dw2z21a3z~2z223x223y2!,

whereH1 is the perturbation toH0 .
The goal of this section is to reduce the three-degree

freedom HamiltonianH to a simpler one, but preserving th
main features of the original system. First of all, we norm
ize system~7!. In this way we obtain a two-degree-o
freedom Hamiltonian. Fixing a value for the energy,H5h,
we pass from the original six-dimensional phase space,R6,
to the reduced one: the four-dimensional complex projec
spaceCP2. It is parametrized by nine linearly independe
generators, for example, see Ref. 16. Moreover, let us n
that bothH0 andH1 are axially symmetric. Thus, a secon
reduction can be carried out so as to obtain a one-degree
freedom reduced system. In this case, the second red
space is a semialgebraic variety of dimension two. This~sec-
ond! reduced space is generated by five linearly independ
polynomials, details appear in Ref. 19. In the subsequ
paragraphs we develop these two reductions.

The normalization procedure is carried out by means
Lie transformations following the Lie–Deprit method, se
Ref. 14. We use nodal-Lissajous variables, a set of act
angle variables which describe particularly well axially sym
metric perturbations of oscillators in1–1–1resonance, see
Ref. 20.

Since the solutions of perturbed oscillators in 1–1
resonance are perturbed ellipses, nodal-Lissajous varia
allow one to describe the trajectories easily. The set is gi
by ~l, g, n, L, G, N!, wherel stands for the elliptic anomaly
and describes the position of the particle in a trajectory fr
the semiminor axis. The anglesg and n are called, respec
tively, the argument of perigee and the argument of the no
Both give the position of the perturbed ellipse in the spa
since, on the one hand,g measures the position of th
semiminor axis, reckoned from the nodal line, whilen goes
from the nodal line to the orbital plane. The momentumL is
the action associated tol and is related to the energy of th
unperturbed systemH0 . Besides,G represents the modulu
of the angular momentum vectorG of the problem, while
N([Lz) refers to the third component ofG. One important
feature of these variables is precisely that the third com
nent and the modulus of the angular momentum are am
the conjugate moments. This makes it possible to unders
the effects of the perturbations on the unperturbed ellipse
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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the variations of their inclinations and eccentricities. The
of nodal-Lissajous variables is defined in the domainD,R6

such that

D5@0,2p!3@0,2p!3@0,2p!3$L.0%

3$0,G,L%3$uNu,G%.

Thus, circular (G5L), rectilinear (G50), and equatorial
trajectories (G5uNu) are excluded from the domain. For th
explicit expressions of Cartesian variables as functions
nodal-Lissajous variables, and a more detailed descriptio
them, the reader is referred to Refs. 20 and 21.

In this way, the expression ofH0 in nodal-Lissajous
variables is proportional to the actionL. Thence, normalizing
in nodal-Lissajous means ‘‘eliminating the variablel’’ up to a
certain order, obtaining an averaged orbit with respect to
elliptic anomaly. Asl represents time, it varies quickly an
we ‘‘eliminate’’ it because we are not interested in the po
tion of the particle in each moment, but in the evolution
the orbit at a large time scale.

The transformation up to orderM is a change of vari-
ablesC:( l8,g8,n8,L8,G8,N8)→( l,g,n,L,G,N) whose goal
is to transform the Hamiltonian

H~ l ,g,n,L,G,N;e!5 (
n>0

en

n!
Hn~ l ,g,n,L,G,N!,

into the new Hamiltonian

K~ l 8,g8,n8,L8,G8,N8;e!

5 (
n>0

M
en

n!
Kn~2,g8,n8,L8,G8,N8!1O~eM11!,

through a generating function

W~ l ,g,n,L,G,N;e!5 (
n>1

M
en

n!
Wn~ l ,g,n,L,G,N!.

Parametere is a small dimensionless quantity. The constru
tion of K, or averaged normalized Hamiltonian, is perform
step by step. We first identifyH0[K0 . Then, at each step
n.0 of the procedure we have to solve the homology eq
tion

$Wn ,H0%1Kn5H̃0n ,
Downloaded 04 Apr 2003 to 193.146.232.9. Redistribution subject to AIP
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where H̃0n collects all the terms known from the previou
order and$•, •% represents the standard Poisson bracket.
solution of this equation is simply an average with respec
the elliptic anomaly:

Kn5~2p!21E
0

2p

H̃0n dl,

Wn5w21E ~H̃0n2Kn!dl.

In this manner the normalization is carried out straightf
wardly. This transformation is not convergent in general,
in practice we truncate it at a certain order and the terms
take provide useful information about the original system.
this case, we compute the averaged Hamiltonian up toM
52, because at this order we have a finite number of eq
libria in the reduced phase space, as we will see in Sec
Thence, as a consequence of Morse theory,22 higher orders in
the averaged Hamiltonian do not alter the qualitative beh
ior of the reduced system.

As we have pointed out before, the presence of the a
symmetry, not only in the perturbation, but also in the unp
turbed part ofH, allows the system to be reduced again.
contrast with the first reduction, this second one is singu
the twice-reduced space is not a smooth surface. Depen
on the value of thez component of the angular momentu
the shape of this phase space is either a double-pinc
sphere~lemon!, when N50, or a single-pinched one~bal-
loon!, if NÞ0, see Ref. 19.

Fixing a value forN and L, the double-reduced spac
~from now on we call itT ! is two-dimensional and is de
scribed by the three linearly independent invaria
(t1 , t2 , t3), which are related to the nodal-Lissajous va
ables as follows:

t15 1
2w

2L2s2~4e222s22e2s214ec2 cos 2g

2e2s2 cos 4g!,

t25wL~22s22es2 cos 2g!, ~8!

t3522w2L2ehs2 sin 2g,

wherec5N/G, s5A12c2, h5G/L, ande2512h2. The
inverse change reads as
cos 2g5
2@t1~wL2t2!1~2wL2t2!~t2

22wLt222w2N2!#

@t12t2~2wL2t2!#A2t11t2
21~2wL2t2!224w2N2

,

sin 2g5
t3A4wLt222~t11t2

2!14w2N2

@t12t2~2wL2t2!#A2t11t2
21~2wL2t2!224w2N2

, ~9!

G5
1

2w
A4wLt222~t11t2

2!14w2N2.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Note that the anglesl andn have been ‘‘eliminated’’ after the
first and second reductions, respectively. The invariantst1 ,
t2 , t3 are constrained by: 2wuNu<t2<2wL and

t1
21t3

25~2wL2t2!2~t2
224w2N2!, ~10!

for each fixed value ofL andN such thatuNu<L. It is worth
noting that Eq.~10! defines the shape ofT, a surface of
revolution which is not differentiable when the second me
ber of Eq.~10! has double roots. Once we have described
two steps of the reduction process we apply them to Ham
tonian ~7!.

Carrying the normalization procedure to second ord
we obtain the following normalized Hamiltonian express
in nodal-Lissajous variables:

K5wL1
d~42d!

16
wLs2~11e cos 2g!2

3a3
2L2

32w4

3$482112s2150s41e2~28172s2125s4!

15es2@4~2215s2!cos 2g15es2 cos 4g#%.

Now, we apply the second reduction toK with the aim of
making N an integral out of this process. We need to
values forN and L, neglect the constant terms inK, and
express it in the invariants associated with the axial sym
try using formulas~8! and ~9!. The Hamiltonian we get is

K52
d~42d!

16
t22

3a3
2

16w6 ~16t1141t2
22112wLt2!.

~11!

At first glance, the parameters appearing in the problem
d, a3 , w, L, and N @which appear in Eq.~10!#. However,
some of them are redundant as is shown by introducing
dimensionless variables (t18 ,t28 ,t38) according to

t154w2L2t18 , t252wLt28 , t354w2L2t38 ,

as well as the dimensionlessz component of the angula
momentumN85N/L in such a way that 0<uN8u<1. These
variables have the Poisson structure given in Table I.

After introducing the new variables into Hamiltonia
~11!, we obtain

K52
wL

4 Fd~42d!

2
t281

3a3
2L

w5 ~16t18141t28
2256t28!G .

~12!

TABLE I. Poisson brackets for thet i8 . Thet i8 on the left must be put on the
left side of the bracket, while thet i8 on the top are placed on the right-han
side of the brackets.

$,% t18 t28 t38

t18 0 2
2

L
t38 2

2

L
~12t28!~t2822t28

21N82!

t28
2

L
t38 0 2

2

L
t18

t38
2

L
~12t28!~t2822t28

21N82!
2

L
t18 0
Downloaded 04 Apr 2003 to 193.146.232.9. Redistribution subject to AIP
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At this point we note that the factora3
2L/w5 is dimensionless

becausea3
2L has dimensions of time25. Hence, we define a

new dimensionless parametera53a3
2L/w5, which indicates

the ratio between the frequency of the unperturbed oscilla
and the frequency induced by the sextupolar term. After t
transformation and the corresponding rescaling in tim
Hamiltonian~12! becomes

K5
d~42d!

2
t281a~16t18141t28

2256t28!,

where K is dimensionless and contains all the dynami
information of systemH. We finish the simplifications by
introducing the parameterg5d(42d)/(2a), which in fact
accounts for the relative influence between the detuning
the sextupolar perturbation. The final Hamiltonian is giv
by

Kd5a~gt28116t18141t28
2256t28!. ~13!

Hence, Hamiltonian~13! contains the relevant dynamical in
formation of systemH, depending on the two parametersg
andN8 @which appears in Eq.~10! after being expressed in
the new variables#.

The equation determining the reduced phase space in
dimensionless variables and parameters is

t18
21t38

25~12t28!2~t28
22N82!. ~14!

Each point in the double-reduced phase space defined by
~14! corresponds to a family of perturbed ellipses in t
original phase space. The trajectories with the same en
and with the same third component of the angular mom
tum are all represented in the same balloon or lemon. As
advantage over the nodal-Lissajous variables, all kind of
bits for H are contained inT. For instance, polar orbits
(N850) are represented in lemons. Rectilinear orbitsG
50) correspond to the upper~non-negative! part of the me-
ridian t3850 in lemons. The singularity~0,0,0! represents the
rectilinear orbitx5px5y5py50. The other singular poin
~in lemons or balloons! ~0,1,0! represents the family of equa
torial orbits. In Fig. 1, we draw the projections of a balloo
and a lemon onto the planet3850 with the location of some
types of trajectories.

IV. EQUILIBRIA AND BIFURCATIONS

Taking into account the Poisson brackets between
variables we derive the equations of the motion,

ṫ15$t1 ,Kd%52
2a

L
~82t22561g!t3 ,

ṫ25$t2 ,Kd%5
32a

L
t3 , ~15!

ṫ35$t3 ,Kd%5
2a

L
@16N2~12t2!1~82t22561g!t1

116~123t212t2
2!t2#.

Note that we have dropped the primes for the sake of s
plicity.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 1. Projections of a balloon and a lemon onto the planet3850, showing special types of trajectories. On the left-hand side,c stands for the family of
circular orbits whilee denotes the family of equatorial orbits. On the right-hand side,r represents the arc corresponding to rectilinear trajectories, whiler-Oz
are the trajectories in theOz axis, r-e denotes rectilinear orbits on the equatorial plane andc-p are circular-polar trajectories.
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A. Equilibria

The equilibria of the system are the local extrema ofKd

on the semialgebraic variety~14!. They are the roots of the
system formed by the right-hand members of Eq.~15!
equated to 0 together with the constraint~14!.

From the second equation of~15!, it follows that the
equilibrium points are located on the planet350. Besides,
the first equation also vanishes fort350 and, from the third
equation, the whole system vanishes if

t15
16N2~t221!2t2~2t2

223t211!

82t22561g
, ~16!

provided 82t22561gÞ0. Finally, by substitution of~16!
into ~14! and makingt350, it follows that the coordinatet2

of the equilibria must satisfy the following polynomial equ
tion:

~12t2!2@5700t2
414~41g22040!t2

3

1~288025700N2112g1g2!t2
224N2~41g22168!t2

2N2~31361256N22112g1g2!#50, ~17!

together with the restrictionuNu<t2<1.
From Eq.~17! we observe that there always exists o

equilibrium point, namely~0,1,0!. Note that this point corre-
sponds to a singular point of the variety~14!, the only one if
NÞ0, and it accounts for equatorial orbits. The remain
equilibria are obtained from the real roots of the second f
tor of the polynomial Eq.~17! verifying uNu<t2<1. Being
that this factor is a fourth degree polynomial it is possible
explicitly derive the coordinates of the equilibria. Howev
it is not easy to decide whether they are real or complex
well as if they belong to the interval@ uNu,1#. It is for this
reason that we focus on the number of roots of this fac
rather than on the explicit expressions of them. In this way
we denote byP(t2) the fourth degree polynomial in Eq
~17!, that is,

P~t2!55700t2
414~41g22040!t2

31~288025700N2

2112g1g2!t2
224N2~41g22168!t2

2N2~31361256N22112g1g2!,

we have the following two basic results.
~i! The maximum number of equilibria is four.
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Indeed, we have that limt2→2`P(t2)51`. On the
other hand,

P~0!52N2@256N21~g256!2#,0 ~NÞ0!.

Thus, we can conclude thatP always has a negative roo
for NÞ0. Consequently, the number of roots in the interv
@ uNu,1# is at most three and, hence, the total number of eq
libria is at most four.~The caseN50 will be treated in detail
in the following.!

~ii ! The minimum number of equilibria is two.
This is a consequence of the Index Theorem.23 We only

need to realize that the Euler characteristic of the variety~14!
is two and the indices of the equilibria must be 0, 1, or21.

The key point now is to decide whenever the number
equilibria is two, three, or four depending on the values
the parametersg and N; more specifically, according to th
values ofg and N2, since system~15! is symmetric with
respect to the lineN50. A change in the number of equilib
ria implies a change in the number of real roots ofP(t2) in
the interval@ uNu,1#. This change is due to two different rea
sons. The first one is that one of the roots enters or leaves
interval taking the extreme valuesuNu or 1, whereas the sec
ond is that two or more roots explode from a multiple roo

A root is located at the extrema of the interval@ uNu,1# if
and only if one of the following equations are satisfied:

P~ uNu!52256N2~12uNu!250,
~18!P~1!5~12N2!~420152g1g21256N2!50.

If we dispose of the caseuNu51 ~the phase space gets r
duced to a point! we find that along the curvesN50 and

A[420152g1g21256N250, ~19!

the polynomialP has a root located at the extrema of t
interval @ uNu,1#. Thus, a change in the number of equilibr
is expected when crossing the lineN50 and when traversing
A. On the one hand, due to the symmetry with respect toN
50, the crossing ofN50 does not mean a change in th
number of equilibria. On the other hand, when the ellipseA
is crossed the number of equilibria does change.

Now, we focus on the presence of a multiple root. To t
end we consider the discriminant of the polynomialP which,
after dropping constant factors, results in
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



93Chaos, Vol. 12, No. 1, 2002 Perturbed ion traps
D~N2,g!5N2~284013362N2171g2g2!2~223 887 872 0001151 787 520 000N22280 713 600 000N4

1185 193 000 000N612 786 918 400g210 533 888 000N2g110 916 640 000N4g2133 263 360g2

1302 630 400N2g2297 470 000N4g213 340 288g324 245 120N2g3246 272g4124 012N2g41336g52g6!.
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Thence, wheneverD50, the polynomialP has a multiple
root. Moreover, if given a root (N0

2,g0) of D @i.e.,
D(N0

2,g0)50# then, whether

]D

]N2U
N

0
2
,

]D

]gU
g0

do not vanish at the same time, the multiplicity of the root
two and is higher otherwise~see, e.g., for example, Ref. 24!.
This fact helps one to know the number of equilibria i
volved in the splitting of the multiple root.

The discriminant is made of the product of three fact
~respectively,F1 , F2 , F3! and hence, it vanishes whenev
one of them is equal to 0. So we must consider the follow
three cases:

~1! F150. This case is special because the variety of
corresponding phase space now has the aspect of a do
pinched sphere rather than a single-pinched one. Bes
along the lineN50, t250 is a root of the polynomialP.
That is to say, the point~0,0,0! is an equilibrium point and it
coincides with the other singular point of the semialgebr
variety ~14! for N50. In this manner, the singular points o
the double reduced phase space are always equilibria.
sides, the polynomialP can be factorized as

~50t21g240!~114t21g272!t2
2,

giving rise to three critical points in the lemons, namely

M1[~0,0,0!,

M3[S ~421g!~g272!

12996
,
722g

114
,0D ,

M4[S ~402g!~101g!

2500
,
402g

50
,0D .

WhereasM1 exists independently of the value ofg, M3 ex-
ists only if gP@242,72# and M4 exists only if g
P@210,40#. Accordingly, the lineN50 can be divided in
different segments where the number of equilibria chan
Thus, we may conclude that forg<242 there are two equi
libria; for 242,g,210 there are three equilibria; fo
210<g,40 there are four equilibria; for 40<g,72 there
are three equilibria; forg>72 there are two equilibria.

~2! F250. This case does not constitute an effect
change in the number of equilibria. In fact, it arises from
symmetric configuration of the critical points with respect
the planet150. This is what happens when the denomina
in Eq. ~16!, namely 82t21g256, vanishes. Indeed, now th
third equation in~15! becomes
Downloaded 04 Apr 2003 to 193.146.232.9. Redistribution subject to AIP
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~261g!~284013362N2171g2g2!.

It vanishes at the same time as the second factorF2 of the
discriminant. Being thatt25(562g)/82, t1 is not longer
determined by~16! but by ~14! and, givent2 , we find two
different values fort1 ,

t156~12t2!At2
22N2.

In this case the presence of a multiple root does not imp
change of the number of equilibria.

~3! F350. IdentityF350 defines an algebraic curve i
the plane (g,N), symmetric with respect to the lineN50,
made of two branches. Moreover, the first branch is defi
for gP(2`,40# while the second one is defined forg
P@72,̀ ). We note that the curve is not defined forg
P(40,72), which corresponds with one of the segments
tained in the caseN50. We name this segmentC.

Along F350 the polynomialP has a double root excep
for the values (g,N)5(40,0) and (g,N)5(72,0) where the
root becomes triple. The goal now is to decide when
double root belongs to the interval@ uNu,1# or not. To this end
we need to recall that a root enters or leaves the inte
@ uNu,1# only if one of the linesA or N50 is crossed. Thus, if
along the branches ofF350 the double root is outside~in-
side! the interval@ uNu,1# it will be so until one of the linesA
or N50 be crossed. One the one hand, the curveF350
intersectsN50 at the points~40,0! and~72,0!. On the other
hand, since the curveF350 and the ellipseA are tangent at
the points (2810/41,6(1425/1681)1/2), the branch defined
for gP(2`,40) is divided into two parts.

Take now this branch withN>0. For the part of it de-
fined for gP(2`,2810/41), the double root is bigger tha
1. Thus, traversing this part of the branch does not impl
modification of the number of equilibria. Nevertheless, f
the part of the branch defined forgP@2810/41,40#, which
we callB, the multiple root is located in the interval@ uNu,1#.
Consequently, when crossing this part of the branch the n
ber of equilibria changes. Finally, for the branch defined
gP(72,̀ ), the double root is negative and traversing th
branch does not imply a change of the number of equilib

Taking into account the results obtained forN50 and
the curvesA, B, andC, the parameter plane is divided int
different regions where the number of equilibria can be
termined~see Fig. 2!.

B. Bifurcation lines and stability

As we have seen in Sec. IV A, there is a corresponde
between the valid roots of the polynomialP and the number
of equilibria. In this respect, the curvesA, B and the segmen
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 2. Bifurcation diagram and meridian sectionst350 of balloons and lemons. Stable points (index51) are characterized by a closed circle while unsta
points with index-1 are by an open one and the ones with index 0 are represented by an open–closed circle.
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C divide the parametric plane (g,N) into several regions
(R1 , R2 , R3 , R4) for which the number of equilibria and
consequently, their stability change, see also Fig. 2. In o
words, A, B, and C constitute the bifurcation lines of th
problem.

In order to study the stability of the equilibria appeari
in all regions of the parametric plane, we combine two te
niques. On the one hand, for the equilibria appearing in
regular points of the balloons and lemons we use the s
dard method of Lagrange multipliers; on the other hand,
stability of the singular points can be deduced from the Ind
Theorem once the stability behavior of the regular equilib
has been established. Due to the complexity of a treatm
for an arbitrary balloon or lemon~i.e., NP@21,1# and g
PR!, we accomplish the stability analysis of the proble
fixing specific values of the parametersN andg according to
the different regions defined by the bifurcation lines. In th
manner, we find the following.

~i! In regionsR1 andR4 there are only two stable equ
libria.

~ii ! In region R2 and on the segmentC there are three
equilibria: two stable and the other one unstable w
index 0.

~iii ! In region R3 there are four equilibria: three of them
with a stable character and the other one unstable w
index equal to21.

At this point, we are able to establish the type of bifu
cation that takes place when linesA, B, or C are crossed. In
this way, we detect the following four different bifurcation

A saddle-centerbifurcation takes place when passin
from R3 to R4 ~or from R4 to R3!. In regionR3 there is a
center and a saddle on the upper part of the balloon~and of
the lemon! that come together at the bifurcation lineB, giv-
ing rise to a degenerate point of parabolic type, and he
unstable. After crossingB, i.e., in zoneR4 of the parametric
plane, the equilibrium disappears.

A Hamiltonian flip bifurcation occurs when traversin
line A1 , that is, going fromR2 to R1 or from R2 to R4 ~and
vice versa!. What happens is that the~stable! singular equi-
librium ~0,1,0! in regionR1 ~or in R4!, bifurcates when pass
ing to R2 , losing its stability and giving rise to a new~stable!
equilibria. Once inR2 this point becomes a saddle and a
other center emerges from it at the lower part of balloons
lemons. Note that atA1 the point~0,1,0! remains stable, as
the index indicates. The Hamiltonian flip bifurcation is al
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called period doubling bifurcation as the usual scenario fo
is that of a periodic orbit losing its stability, giving rise to
stable periodic orbit of twice the period, see Ref. 25. In R
26 the terminologysubtle divisionis used. See also Ref. 1
for a full analysis of the Hamiltonian flip bifurcation in
similar context to that studied here.

The passage fromR2 to R3 or vice versa through the line
A2 undergoes anotherHamiltonian flipbifurcation. Now, be-
ing in zoneR2 , the point~0,1,0! is an unstable equilibrium
of index 0 which splits into a center and a saddle once
curveA2 is crossed. Specifically, in regionR3 there are four
equilibria, three centers@one of them is the point~0,1,0!# and
one saddle in the upper part of the balloons and lemo
After traversing A2 the saddle and the center located
~0,1,0! meet in ~0,1,0! forming an unstable equilibrium o
index 0. Abraham and Marsden26 term this bifurcation with
the name ofmurder.

A Hamiltonian Hopfbifurcation occurs when the valu
g572 is reached while moving alongN50. This is a bifur-
cation of the equilibrium with coordinates~0,0,0!. Indeed,
the lemons withgP@40,72) have three equilibria, two cen
ters located at~0,1,0! and in the lower part of the lemon an
one unstable point of index 0 placed at the origin. Wheng
572 the center at the lower part of the lemon and the
stable equilibrium coalesce in~0,0,0! and become a cente
This is the typical scenario of the Hamiltonian Hopf bifurc
tion, where two pairs of imaginary eigenvalues meet a
split off the imaginary axis, forming a quartet6d6 i e; see
another example in Ref. 17.

Finally, the segmentC corresponds to a bifurcation be
cause there we find two centers and one unstable p
whose index is 0 as it is detailed in the previous paragra
Now, moving up and down to regionR4 , the singular point
at ~0,0,0! disappears, but the two centers remain.

V. PHASE FLOW EVOLUTION

Complementary information about the dynamics of t
system is obtained from the phase flow evolution. Since
reduced HamiltonianKd defines a dynamical system of on
degree of freedom, we can obtain the trajectories, after fix
a valueh of the energy, as the curves resulting from t
intersections of the Hamilton functionKd5h with the sur-
face~14!, that is to say, they are the level curves ofKd5h on
Eq. ~14!. This feature allows us to plot the phase flow of t
system quite rapidly and accurately without even integrat
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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numerically the differential equations~15!. In fact, we do not
draw the level curves, but on the contrary we assign to ev
point on Eq.~14! the value that the Hamiltonian functionKd

takes there. Hence, those points associated with the s
value belong to the same level curveKd5h. This is the main
idea of the technique known aspainting by number~see Ref.
27!.

Calculations involved to determine the phase flow
straightforward. First, we construct a two-dimensional g
which is orthographically projected on the lemons and b
loons. Then, HamiltonianKd is evaluated at the correspon
ing points of Eq.~14! according to the grid we have chose
Thereafter the resulting matrix is submitted as input to
commercial softwareTransform,28 which computes and
draws the level curves on the selected orthographic pro
tion. This technique has been used to produce all the p
appearing in this section.

The phase flow is mainly commanded by the equilib
and their stability. Hence, making use of the conclusio
arising from Sec. IV, we have studied the phase flow evo
tion choosing three ‘‘representative’’ paths on the parame
plane (g,N) for which the stability and/or the number o
equilibria change. Note that we only represent the phase
for N>0, as the parametric plane is symmetric with resp
to the lineN50. Moreover, note that the singular points
the double reduced phase space, i.e., the points of co
nates~0,0,0! and ~0,1,0!, are always equilibria. More pre
cisely, the origin is a singular point ofT only for N50 and
we name it asM1 . For NÞ0, we also denote byM1 the
equilibrium that forN50 is located at~0,0,0!. On the other
hand,~0,1,0! is always a singular point ofT that we term by
M2 .

Figure 3 shows the evolution of the system in pha
space forN50 andg>40. For 40<g,72, there are three
equilibria, namely,M1 , M2 , andM3 . Thus, it is easily con-
cluded that the phase flow consists in rotations around
two centersM2 andM3 . These rotations are split off by th
separatrix passing through the pointM1 ~equilibrium whose
index is 0!. As g tends to the value 72,M3 approachesM1 .
Thus, wheng reaches this value, the equilibriaM2 and M3

come together and a Hamiltonian Hopf bifurcation tak
place. As a consequence, onlyM1 and M2 survive for g
572, and furthermore,M1 becomes stable. This situatio
keeps on forg>72.

In Fig. 4 we present the phase flow evolution of t
system along a path crossing the curveB. WhenN50 and
210,g,40 ~see Fig. 4 forN50 andg535! we find the
four equilibria: M1 , M2 , M3 , andM4 . A homoclinic loop
~separatrix! asymptotic to the unstable equilibriumM4 , that
surroundsM1 and M2 , divides the phase space into thr
different zones of rotations around the stable equilibriaM1 ,
M2 , andM3 . For NÞ0 but still in regionR3 ~see Fig. 4 for
N50.2 andg515!, we encounter the same type of equilibr
as in caseN50 and gP(10,40) and an equivalent phas
flow structure. However, as we get close to the bifurcat
curve B, the equilibriaM1 and M4 begin to approach eac
other in such a way that whenB is crossed, a saddle-cent
bifurcation occurs: the equilibriaM1 andM4 meet atB and
disappear once regionR4 is reached. Hence, forNÞ0 and
Downloaded 04 Apr 2003 to 193.146.232.9. Redistribution subject to AIP
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above the bifurcation curve~see Fig. 4 forN50.2 andg
540!, the phase flow is made of rotations aroundM2 and
M3 . The sequence of plots finishes in the zoneN50 and
40,g,72 ~see Fig. 4 forN50 andg545!, where we find
again the three equilibriaM1 , M2 , and M3 , and whose
phase flow structure has already been detailed. The app
ance ofM1 obeys the presence of the singular point~0,0,0!
for N50.

Finally, in Fig. 5 the evolution of the phase flow along
path traversing the lineA is shown. The sequence starts i
side the ellipse~see Fig. 5 forN50.2 andg5215!. In this
region (R2) there are three equilibria, namely,M1 , M2 , and
M3 . The phase flow consists of rotations around the sta
equilibria M1 and M3 . These rotations are split off by
separatrix passing through the third equilibriumM2 whose
index is 0.

Note that the ellipse can be crossed in two differe
ways: along a path crossingA2 , or along a path crossingA1 .
When the ellipse is traversed in the first way~see Fig. 5 with
N50.2 andg525!, M2 undergoes a~murder! Hamiltonian
flip bifurcation: fromM2 ~which becomes stable! an unstable
equilibrium namedM4 emanates. Now, a homoclinic orb
asymptotic toM4 surroundsM1 and M2 , and the corre-
sponding phase flow has already been described. When
ellipse is crossed throughA1 , the phase flow evolution is
different. As we get close to the ellipse,M3 approachesM2

in such a way that when the ellipse is reached, they meet
after crossing, onlyM2 survives and it becomes stable.
~subtle division! Hamiltonian flip bifurcation has taken
place, and the phase flow is simply made of rotations aro
M1 andM2 ~see Fig. 5 forN50.8 andg525!.

FIG. 3. Phase flow evolution of the system forN50 as the parameterg
increases from 45 to 80. Rows~a! and ~b! correspond to ortographics pro
jections onto the plane (t1 ,t3) viewed fromt250 and fromt251, respec-
tively. Rows ~c! and ~d! correspond to ortographics projections onto t
plane (t2 ,t3) viewed fromt1.0 and fromt1,0, respectively.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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VI. CONNECTION TO THE ORIGINAL SYSTEM

A. Estimate of the error of the Lie transformation

The ~formal and symplectic! change of variablesC con-
structed in Sec. III can be used to calculate an upper bo
of the error committed in the truncation of the Lie transfo
mation approach. Indeed, we start by callingx the set of
variables (x, y, z, px , py , pz) and x8 the set of the trans
formed variables (x8, y8,z8, px8 , py8 , pz8).

Now we calculate the changex85X8(x;«). Note thatX8
is actually the changeC but written in Cartesian variable
and gives explicit expressions of the new~transformed! vari-
ablesx8 in terms of the old~original! variablesx. Further-
more, we computex5X(x8;«) obtaining expressions of th
old variablesx as functions of the new variablesx8. At this
step we have to mention that bothX andX8 are constructed
by means of the generating functionW, expressed in Carte
sians and using the formulas given in Ref. 14. Moreover b
changesX andX8 are built up to second order in the sma
parameter«.

We can composeX with X8 and compute explicitly the
vector fieldX(X8(x;«);«), which must indeed be a secon
order approximation tox. Hence we arrive at

ix2X~X8~x;«!;«!i5«3E~x!1O~«4!, ~21!

wherei•i denotes the Euclidean norm inR6 andE(x) is the

FIG. 4. Phase flow evolution of the system along a path crossing the sa
center bifurcation curve. Rows~a! and ~b! correspond to ortographics pro
jections onto the plane (t1 ,t3) viewed fromt250 and fromt251, respec-
tively. Rows ~c! and ~d! correspond to ortographics projections onto t
plane (t2 ,t3) viewed fromt1.0 and fromt1,0, respectively.
Downloaded 04 Apr 2003 to 193.146.232.9. Redistribution subject to AIP
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h

global error term, which is obtained explicitly and depen
on the three coordinates, their three conjugate moments,
the two significant parameters of the problem, sayg and a
or, going back to the original Hamiltonian, the parametersa3

andd. Note that for this particular problem the paramete«
can be set equal to 1 as the real small parameters are in
the functionE.

Now we have to bound the functionE. Assuming thata3

and d satisfy ua3u<531022 and udu<331021, we have
checked numerically thatuE(x)u<531023 provided that
ixi<1.25. This calculation shows the efficiency of the an
lytical approach, valid in a neighborhood of the origin ofR6.
Note that this result is in agreement with the values obtai
after truncation of the Lie transformation at second ord
sinceuE(x)u is of the order ofO(«3).

Alternatively, one could obtain an equivalent estimate
Eq. ~21! working with Hamiltonians. Indeed, composin
Hamilton function~6! with the changeC truncated after sec
ond order, we have

uC+H2Ku,c«3,

with c a function depending on the nodal-Lissajous variab
and on the parameters of the problem. After writing this
timate in Cartesian variables, one gets a similar expressio
that obtained forE(x). However, we have preferred to com
pose the change of variables instead of the Hamiltoni
since the expressions involved in the process are shorter
therefore easier to be handled with the algebraic manipula

We end this section by mentioning that the validity
our Lie transformation~either in the formC, X or X8! is on
a time scale 1/«. Nevertheless, other upper bounds of t
time validity could be obtained based on Nehorosˇev theory,
see, e.g., Ref. 29, although this is outside the scope of
present paper.

FIG. 5. Phase flow evolution of the system along a path crossing the b
cation curvesA2 and B. Rows ~a! and ~b! correspond to ortographics pro
jections onto the plane (t1 ,t3) viewed fromt250 and fromt251, respec-
tively. Rows ~c! and ~d! correspond to ortographics projections onto t
plane (t2 ,t3) viewed fromt1.0 and fromt1,0, respectively.
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B. Poincaré surfaces of section

We can validate the estimation of Sec. IV C by the ana
sis of the original Hamiltonian by means of the technique
Poincare´ surfaces of section. To this end, it is convenient
express Hamiltonian~6! in cylindrical coordinates. In this
way we obtain

H5
1

2
~pr

21rz
2!1

pf
2

2r2 1
1

2
~r21z2!

1 1
2dz21a3z~2z223r2!, ~22!

wherepf5Lz is the z component of the total angular mo
mentum and we have setv51.

We describe the dynamics of the system by keepingH,
pf , anda3 fixed and varying the detuning parameterd. We
will show that the behavior obtained with the surfaces
section is in very good agreement with the dynamics
served in the lemons and balloons in Sec. V.

For the sake of simplicity we focus on the casepf50
~e.g.,N50 in the reduced system!, though analogous result
can be shown for other valuesuNu>1. For this case we de
fine the surface of section asr50, pr.0. Under these con
ditions, the surface of section appears as a closed regio
the plane (z,pz) bounded by the curves

pz56A2H2~11d!z224a3z3.

It is worth noting that the boundary of the section cor
sponds to a periodic rectilinear orbit, namelyr50.

We fix the energyH50.75. The reason is twofold: o
the one hand the estimation of the error of the Lie trans
mation is satisfied; on the other hand we find a regular
gime for all the values of the parameters that are conside
In addition we seta350.05 as it is a small parameter an
also in accordance with the estimation of the error. Tak
into account the definition of the nodal-Lissajous variab
and neglecting the contribution of the perturbative terms,
takeL'0.75 and thus

g5
d~42d!

6a3
2L

'
d~42d!

0.011 25
.

So, fixedd, a value ofg is obtained and we can compare t
corresponding surface of section with the flow on the
duced phase space.

Figure 6 shows a sequence of surfaces of section ford in
the interval @20.06,0.22# that yields values ofg in @222,
74#. We observe several fixed points on the surfaces of s
tion that correspond to periodic orbits. To each periodic o
we can associate a fixed point in the reduced phase sp
Indeed, if we consider the caseg50, we find five fixed
points on the surface of section plus the boundary of
section. The periodic orbits are labeled asL1 , L2 ~rectilinear
orbits!, C1 , C2 ~almost circular orbits!, and EQ ~almost
equatorial orbit!.

We notice that the rectilinear polar orbitr50 ~the
boundary of the surface of section! is associated with the
equilibrium ~0,0,0! on the lemon. The two rectilinear orbit
L1 and L2 correspond to the unstable equilibriumM4 ,
whereas the almost circular orbitsC1 andC2 correspond to
Downloaded 04 Apr 2003 to 193.146.232.9. Redistribution subject to AIP
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the stable equilibriumM3 . Finally, the almost equatorial or
bit EQ is related to the equilibrium~0,1,0! on the lemon. In
this way, we find a direct connection between periodic orb
in the original system and critical points in the reduced ph
space. Besides this remarkable connection we also obs
the same qualitative evolution asg increases. In fact, both
the original and the twice-reduced system~T ! undergo the
same sequence of bifurcations. Concretely, the Hamilton
flip bifurcation in balloons and lemons turns to be a pitchfo
bifurcation in the surfaces of section. This is due to the
covering of the twice-reduced phase space~see Ref. 17!.
Moreover, the Hamiltonian Hopf bifurcation remains th
same in both the surfaces of section and the lemons
balloons.

It is interesting to mention that the values ofg for which
the bifurcations are observed in the sequence of the Poin´
surfaces of section are in very good agreement with the
ues of g for the bifurcation lines obtained in Sec. IV (g
5210,g540,g572).

C. Dynamics of the full system: KAM theory

Since the normalized HamiltonianK has been obtained
after two reduction procedures~the second-order normaliza
tion followed by the exact axial-symmetry reduction!, we
have to attach a 2D torus to any point of the reduced ph
spaceT. More concretely, if uNu,G,L, i.e., when the
nodal-Lissajous variables are well defined, the 2D tori
parametrized by the anglesl and n. ~However, in case of
equatorial or circular trajectories it is still possible to defi
other action-angle variables and perform the reconstruc
of the invariant manifolds similarly.!

In particular one should speak of families of 2D to
depending on the parametersL andN. This means that equi
librium points on the balloons and on the lemons must
understood as invariant 2D tori inR6. Moreover they enjoy
the same type of stability whenever all the eigenvalues of
linearization of each equilibrium have non-null real part. O
can even compute explicit formulas of the~truncated! invari-
ant 2D tori using the direct change of the Lie transformatio
Notice that a second-order theory has been enough to s
the dynamics of the original problem, but the higher ord
we reach with the Lie transformation process the more ac
rate the invariant manifolds of the original Hamiltonian w
have encountered could be computed, provided that the
bal error after truncation will be maintained adequately.

In those equilibria ofT where the linearization gives
eigenvalues with null real part, a specific analysis should
performed. Nevertheless, in this problem such situations
cur only on the bifurcation curvesA, B and the point
(g,N)5(72,0), which correspond, respectively, to Ham
tonian flip, saddle-center, and Hamiltonian Hopf bifurcatio
~note that this has been numerically verified in the latter s
section using the surfaces of section!. For the analysis of
these cases we refer to Refs. 17 and 19 where these bifu
tions also occur. Hence, all the details about the reconst
tion process can be followed in those papers. The bifur
tions of relative equilibria are translated into bifurcations
2D invariant tori or quasiperiodic orbits. Moreover the pe
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 6. Evolution of the Poincare´ sur-
faces of section as a function ofg for a
fixed energy H50.75, pf50, a3
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sistence of these bifurcations is guaranteed by the estim
derived in Sec. VI A.

We do not give more details here about the reconstr
tion of the full system using KAM theory, as the analysis
analogous to the one performed in Refs. 17 and 19. Ins
of that we have preferred to establish the connection to
original system by using the estimates of the error of the
transformation and the calculation of Poincare´ surfaces of
section.

D. Physical interpretation

From the physical point of view, a weakly perturbed io
trap is the most frequent situation encountered when work
Downloaded 04 Apr 2003 to 193.146.232.9. Redistribution subject to AIP
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on trapping phenomena. In this sense, starting from a re
tic model, this work provides a systematic study of the ph
~orbit! space structure of a single ion trapped in a perturb
Penning trap.

In this paper we have shown that, for a fixed value ofN,
the dynamics is governed by the parameter which indica
the relative influence between the detuningd and the sextu-
polar imperfectiona3 . If we focus on the polar caseN50,
which is the easiest to be achieved experimentally,30 wheng
goes from 0 (d50) to g.72 or to g,242, in both cases
the phase space evolve to rotations around the stable equ
ria M1 andM2 through several bifurcations. It is worth no
ing that this situation is equivalent to the one where
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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sextupolar perturbation is not present (a350). As for a3

50 the system is integrable and the nonlinear characte
the problem is provided by the sextupolar term. Thus, we
conclude that the presence of the detuning attenuates
nonlinear effects caused by the sextupolar perturbation. T
ing into account that the value of the detuning can be c
trolled, this perturbative study can serve to decide wh
detuning added to the sextupolar perturbations would s
press the chaotic behavior induced by the sextupolar t
when one treats the complete problem.

VII. CONCLUSIONS

We have shown that the sextupole approach to the P
ning trap results in a generalization of the 3D He´non–Heiles
problem. Since the system is an axially symmetric pertur
harmonic oscillator, two reductions are made to get a
degree of freedom system. It is established that the ph
space of the reduced system is a two-dimensional semia
braic variety described by three linearly independent inv
ants. In this reduced phase space all kinds of perturbed
lipses of the original system are represented, avoiding
singularities introduced by other sets of variables.

A global analysis of the phase flow is made in terms
the two essential parameters of the problem. In this man
the equilibria and their stability are determined, as well
the bifurcation lines in the parameter plane. It is worth not
that one of the essential parameters~N! accounts for the in-
clination of the perturbed ellipses. Thence, critical inclin
tions arise along the bifurcation curves in such a way that
stability of the family of orbits changes. These changes
produced mainly through three different types of bifurc
tions, the saddle-center bifurcation, the Hamiltonian Ho
bifurcation, and the Hamiltonian flip bifurcation.

The analysis derived through the paper indicates that
detuning parameter serves to prevent the appearance of
ratrices, and therefore to attenuate the effects of the nonli
chaotic dynamics.
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