Interpolation and meromorphic extension

Manuel Bello Hernández

ORTHONET 2013

Universidad de La Rioja

February 22-23, 2013

Based on the joint work

Meromorphic continuation of functions and arbitrary distribution of interpolation points

B. de la Calle Ysern and M.B.H.

Summary

- Definitions and review
- 2 Basic ideas
- Our results
- Open problems

On the interpolation table

Let $\Sigma \subset \mathbb{C}$ be a compact set with connected complement

Multi-point interpolation. $w_n(z) = \prod_{j=1}^n (z - \zeta_{j,n})$

Let $f \in H(V)$, V be an open set, $V \supset \Sigma$, $n \in \mathbb{Z}_{\geq 0}$, $m \in \mathbb{Z}_{\geq 0}$, there exist polynomials P y Q such that:

• $\deg(P) \leq n, \deg(Q) \leq m, Q \not\equiv 0.$

$$(Qf - P)/w_{n+m+1} \in \mathcal{H}(V)$$

Any pair of such polynomials P, Q defines a unique rational function

 $\Pi_{n,m} = P/Q$ called multi-point Padé approximant

of type (n, m) for f.

Multi-point interpolation. $w_n(z) = \prod_{j=1}^n (z - \zeta_{j,n})$

Let $f \in H(V)$, V be an open set, $V \supset \Sigma$, $n \in \mathbb{Z}_{\geq 0}$, $m \in \mathbb{Z}_{\geq 0}$, there exist polynomials P y Q such that:

• $\deg(P) \leq n, \deg(Q) \leq m, Q \not\equiv 0.$

$$(Q f - P)/w_{n+m+1} \in \mathcal{H}(V) \Rightarrow (Q f - P)(\zeta_{j,n+m+1}) = 0$$

Any pair of such polynomials P, Q defines a unique rational function

 $\Pi_{n,m} = P/Q \text{ called multi-point Padé approximant}$ of type (n,m) for f.

Multi-point interpolation. Particular cases

$$\frac{Qf-P}{w_{n+m+1}}\in \mathcal{H}(V), \quad \Pi_{n,m}=P/Q.$$

• m = 0, $w_{n+1}(z) = (z - z_0)^{n+1}$, $\prod_{n,0}$ Taylor polynomials.

- m = 0, $\zeta_{j,n+1} \neq \zeta_{k,n+1}$, if $j \neq k$, $\prod_{n,0}$ Lagrange interpolation.
- m = 0, $w_{n+1}(z)/w_n(z) = (z \zeta_{n+1,n+1})$ Jacobi series.
- $w_{n+m+1}(z) = (z z_0)^{n+m+1}$, $\prod_{n,m}$ Padé approximants.

Multi-point interpolation. Particular cases

Best approximation \Rightarrow interpolation

• Uniform approximation. If r^*/s^* satisfies

$$\|f - r^*/s^*\|_{[a,b]} = \min\{\|f - r/s\|_{[a,b]} : \deg(r) \le n, \deg(s) \le m\}$$

then (Chebychev Alternation Theorem) $\exists \zeta_j \in [a, b], j = 0, ..., n + m$ such that

$$f(\zeta_j) - r^*(\zeta_j)/s^*(\zeta_j) = 0$$

where $[a, b] \subset \mathbb{R}$ and $\| \cdot \|_{[a, b]}$ is the uniform norm.

Fourier series. If μ is a nontrivial positive measure with finite moments on an interval [a, b] ⊂ ℝ, and s_n is the n-th partial sum of a function f ∈ C([a, b]) in L²(μ), then (orthogonality conditions) ∃ζ_j ∈ [a, b], j = 0, ..., n such that

$$f(\zeta_j)-s_n(\zeta_j)=0, \quad j=0,1,\ldots,n$$

Interpolation and orthogonality

$$(Q f - P)/w_{n+m+1} \in \mathcal{H}(V)$$

$$\Downarrow \quad CauchyTheorem$$

$$\int_{\Gamma} \frac{Q(\zeta)f(\zeta) - P(\zeta)}{w_{n+m+1}(\zeta)} \zeta^{k} d\zeta = 0,$$

where Γ is a closed curve in V and $k \in \mathbb{Z}_{\geq 0}$. If $\Sigma \subset int(\Gamma)$, $0 \leq k \leq m - 1$,

↓ CauchyTheorem

$$\int_{\Gamma} \zeta^k Q(\zeta) \frac{f(\zeta) d\zeta}{w_{n+m+1}(\zeta)} = 0$$

A B > A B >

Taylor Polynomials, $w_n(z) = z^n$, m = 0

Theorem (Cauchy-Abel). Let f be an analytic function on a neighborhood of 0.

• Let f be analytic in $D(0, R_0)$ but not on $\overline{D(0, R_0)}$. Then $\forall z \in D(0, R_0)$,

$$\limsup_{n\to\infty} |f(z) - \prod_{n,0}(z)|^{1/n} \le \frac{|z|}{R_0} < 1.$$

Let *z* ≠ 0,

$$\limsup_{n\to\infty} |f(z) - \prod_{n,0}(z)|^{1/n} = \frac{|z|}{R} < 1,$$

then $R = R_0$; i.e., f has an analytic extension to $\{|z| < R\}$. • For $|z| > R_0$, it holds

$$\limsup_{n\to\infty} |\Pi_{n,0}(z)|^{1/n} = \frac{|z|}{R_0};$$

in particular, $\{\Pi_n(z)\}$ diverges in $\overline{D(0, R_0)}^c$.

$$w_n(z) = z^n$$
,
lim sup_{n o \infty} |f(z) - \Pi_{n,0}(z)|^{1/n} = \frac{|z|}{R} < 1, \ z \neq 0 \Rightarrow R = R_0,
lim sup_{n o \infty} |\Pi_{n,0}(z)|^{1/n} = \frac{|z|}{R_0} > 1

Multi-point analogous results?

Role of logarithmic potential, m = 0

$$\Pi_{n,0}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{w_{n+1}(\zeta) - w_{n+1}(z)}{\zeta - z} \frac{f(\zeta) d\zeta}{w_{n+1}(\zeta)},$$

 Γ a closed part $\Sigma \subset int(\Gamma)$, $\Gamma \subset V$. We have

$$\begin{split} f(z) - \Pi_{n,0}(z) &= \frac{w_{n+1}(z)}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} \frac{d\zeta}{w_{n+1}(\zeta)}, \quad z \in \operatorname{int}(\Gamma). \\ &\Rightarrow |f(z) - \Pi_{n,0}(z)| \leq C \frac{|w_{n+1}(z)|}{\min_{\zeta \in \Gamma} |w_{n+1}(\zeta)|} \end{split}$$

Role of logarithmic potential:

$$|w_{n+1}(z)|^{1/n} = e^{-\frac{n+1}{n}P_{\mu_{w_{n+1}}}(z)} := e^{\frac{n+1}{n}\int \log|z-t|d\mu_{w_{n+1}}(t)} \xrightarrow[n \to \infty]{n \to \infty} ?$$

$$P_{\mu_{w_{n+1}}}(z) := -\int \log |z-t| d\mu_{w_{n+1}}(t),$$

where $\mu_{w_{n+1}}(A) := \frac{1}{n+1} \sum_{\zeta: w_{n+1}(\zeta)=0} \delta_{\zeta}(A)$, A boreliano en \mathbb{C} .

Potential theory

Let μ , $\{\mu_n\}$ be a probability measures with compact support $K \subset \mathbb{C}$.

• Logarithmic potential of μ :

$$P_{\mu}(z) = P(\mu; z) = -\int_{\mathcal{K}} \log |z - \zeta| \, d\mu(\zeta)$$

• Energy of
$$\mu$$
: $E(\mu) = \int_{\mathcal{K}} P(\mu; z) d\mu(z)$

- Minimal energy on K: $E(K) = \inf_{\mu} E(\mu)$
- Logarithmic potential of K: $cap(K) = exp\{-E(K)\}$

• Equilibrium measure of K: μ_K if $E(K) = E(\mu_K)$ (cap(K) > 0)

Potential theory

• Weak* convergence:

$$*-\lim_{n}\mu_{n}=\mu \stackrel{\mathrm{def}}{\Leftrightarrow} \lim_{n}\int g(t)\,d\mu_{n}(t)=\int g(t)\,d\mu(t), \quad \forall g\in \mathcal{C}(\mathcal{K}),$$

$$\mathsf{taking} \stackrel{g(t) = \mathsf{log}\, |z-t|}{\Leftrightarrow} \mathsf{lim}_n \, P(\mu_n, z) = P(\mu, z), \, \, z \in \mathbb{C} \setminus \mathcal{K}.$$

• Decent principle: Moreover, if $\lim_n z_n = z_0$,

$$\lim_{n\to\infty} P(\mu_n, z_n) \geq P(\mu, z_0).$$

Limit distribution $|w_{n+1}(z)|^{1/n} = e^{-rac{n+1}{n}P(\mu_{w_{n+1}},z)}$

$$*-\lim_{n} \mu_{w_{n+1}} = \mu \stackrel{\text{def}}{\Leftrightarrow} \lim_{n} \int g(t) \, d\mu_{n+1}(t) = \int g(t) \, d\mu(t), \quad \forall g \in \mathcal{C}(\Sigma),$$
$$\overset{g(t) = \log |z-t|}{\Leftrightarrow} \lim_{n} |w_{n+1}(z)|^{1/n} = e^{-P(\mu,z)}, \ z \in \mathbb{C} \setminus \Sigma.$$

• $\Sigma = \{0\}, w_n(z) = z^n$, Taylor polynomials,

$$\mu = \delta_{\{\mathbf{0}\}}$$

Σ = [-1,1], w_n(z) = cos(n arccos z), z ∈ [-1,1], Lagrange interpolation on the zeros of Chebyshev polynomials,

$$d\mu(t)=rac{1}{\pi}rac{dt}{\sqrt{1-t^2}}$$

• $\Sigma = [-1, 1]$, the zeros of w_n are uniformly distributed on [-1, 1], Lagrange interpolation on,

$$d\mu(t)=\frac{dt}{2}$$

Runge's phenomenon, $f(z) = \frac{1}{1+a^2z^2}$

Runge's phenomenon [1901]. Interpolation on uniform distributed points [-1, 1],

$$f(z) = rac{1}{1+a^2z^2}, \quad a>1.$$

There exists $a^* \in (0, 1)$ such that

$$\lim_{n \to \infty} \Pi_{n,0}(z) = f(z), \quad z \in (-a^*, a^*),$$

$$\{\Pi_{n,0}(z)\} \quad \text{diverges } z \in ((-1, a^*) \cup (a^*, 1)).$$

$$|f(z) - \Pi_{n,0}(z)| \le C \frac{|w_{n+1}(z)|}{\min_{\zeta \in \Gamma} |w_{n+1}(\zeta)|}$$

Runge's phenomenon. $f(z) = \frac{1}{1+a^2z^2}$. Cont.

Let $R_{\mu,0}$ be the largest R such that f has an analytic extension to $\{z : e^{-P(\mu,z)} < R\}$

$$D_{\mu,0} = \{ z : e^{-P(\mu,z)} < e^{-P(\mu,i/a)} \}, \quad R_{\mu,0} = e^{-P(\mu,i/a)}$$

Theorem

Assume that f is an analytic function on [-1,1].

• We have

$$\lim_{n\to\infty} |f(z) - \Pi_{n,0}(z)|^{1/n} \leq \frac{e^{-P(\mu,z)}}{R_{\mu,0}} < 1,$$

uniformly on compact subset of $D_{\mu,0}$.

• If f has a pole in z^* , $f \in \mathcal{H}(\{z : e^{-P(\mu,z)} < e^{-P(\mu,z^*)+\epsilon}\} \setminus \{z^*\})$, then $\{\Pi_{n,0}(z)\}$ diverges in $\{z : e^{-P(\mu,z^*)} < e^{-P(\mu,z)}\}$. Runge's phenomenon. $f(z) = \frac{1}{1+a^2z^2}$. Cont.

◆ 同 ▶ → (目 ▶

Review

- Walsh [1935], m = 0 fixed, general interpolation table. Convergence in $D_{\mu,0}$ and divergence result for particular interpolation table (roots of the unit).
- Kakehashi [1955], m = 0 fixed, divergence in $\overline{D_{\mu,0}}^c$ for particular interpolacin table.
- Saff [1972], $m \ge 0$ fixed, convergence of $\{\prod_{n,m}\}_{n\in\mathbb{N}}$ in $D^*_{\mu,m}$ for general interpolation table.
- Vavilov [1976], m ≥ 0 fixed, inverse-type theorem for Padé interpolation.
- Wallin [1984], $m \ge 0$ fixed, type-Runge theorem for functiones meromorfas and general interpolation table.
- Grothmann [1996], m = 0 fixed, inverse theorem for extremal interpolation table.
- Khistoforov [2008], m = 0 fixed, a Jentzsch-Szegő-type theorem a, Hadamard-type theorem for Kakehashi interpolation table.

Our results

Let $R_{\mu,m}$ be the largest R such that f has a meromorphic extension to $\{z : e^{-P(\mu,z)} < R\}$ with at most m poles counting multiplicities.

$$D_{\mu,m} := \{ z : e^{-P(\mu,z)} < R_{\mu,m} \}.$$

We characterize this region in terms of the behavior of $\{\Pi_{n,m}\}_n$.

Hausdorff contents

Let $A \subset \mathbb{C}$ and $\mathcal{U}(A)$ be the class of all coverings of A by a denumerable set of disks. Set

$$\sigma(A) = \inf \left\{ \sum_{i \in I} |U_i| : \{U_i\}_{i \in I} \in \mathcal{U}(A) \right\},\$$

where $|U_i|$ is the radius of U_i . $\sigma(A)$ denotes the 1-dimensional Hausdorff contents of A. This function is an exterior Caratheodory measure; so it is monotone and σ -subaditive.

σ-content converge: { $φ_n$ } converges in σ- content to φ on compact subsets of D if ∀ε > 0, ∀K ⊂ D, K compact, we have

$$\lim_{n\to\infty}\sigma\left(\{z\in K: |\varphi_n(z)-\varphi(z)|>\varepsilon\}\right)=0.$$

Theorem

Let the measure μ be the asymptotic zero distribution of the sequence of interpolation points given by $\{w_n\}_{n\in\mathbb{N}}$. Suppose that the sequence $\{\prod_{n,m}\}_{n\geq m}$ converges in σ -content on compact subsets of a neighborhood of the point $z_0 \in \mathbb{C} \setminus \Sigma$. Then, $z_0 \in D_{\mu,m}$.

Corollary

From above theorem and Osgood-Caratheodory's Theorem it follows that if the sequence $\{\Pi_{n,m}\}_{n\geq m}$ converges pointwise on a neighborhood of the point $z_0 \in \mathbb{C} \setminus \Sigma$, then $z_0 \in D_{\mu,m}$. So, $\{\Pi_{n,m}\}_{n\in\mathbb{N}}$ diverges in a dense subset of $\overline{D_{\mu,m}}^c$. Set

$$\rho_{\mu}(K) := \sup\{e^{-P(\mu;z)} : z \in K\} := \|e^{-P(\mu;\cdot)}\|_{K}.$$

Theorem

Let the measure μ be the asymptotic zero distribution of the sequence of interpolation points given by $\{w_n\}_{n\in\mathbb{N}}$. Let K be a regular compact set for which the value $\rho_{\mu}(K)$ is attained at a point that does not belong to the interior of Σ . Suppose that the function f is defined on K and fulfills

$$\limsup_{n \to \infty} \|f - \Pi_{n,m}\|_{K}^{1/n} \le \frac{\rho_{\mu}(K)}{R} < 1.$$
(1)

Then, $R_{\mu,m} \ge R$, that is, f admits meromorphic continuation with at most m poles on the set $\{z : e^{-P(\mu,z)} < R\}$.

Inverse-type theorem. Cont.

Inverse problem: A Hadamard formula for *R*_{μ,0}. Gonchar's conjecture

$$\frac{1}{R_{\mu,0}} = \limsup_{n \to \infty} \left| \int_{\Gamma} \frac{f(\zeta)}{w_{n+1}(\zeta)} d\zeta \right|^{1/n}$$

where Γ is an arbitrary closed part such that $\Sigma \subset int(\Gamma)$ and $f \in \mathcal{H}(\overline{int(\Gamma)})$. Buslaev (2006), Kristoforov (2008).

- Direct problems:
 - Divergence: Prove or disprove the divergence of $\Pi_{n,0}$ in $\overline{D_{\mu,0}}^c$.
 - Quantitative results. Estimate the rate of convergence of $f \prod_{n,m}$ when f has singularity at Σ . Rakhmanov (1984). López Lagomasino-Martínez Finkelshtein (1995)

通 と イ ヨ と イ ヨ と

Thank you!

回 と く ヨ と く ヨ と

æ