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On the interpolation table

Let Σ ⊂ C be a compact set with connected complement

{ζj ,n : j = 1, . . . , n; n = 1, . . .} ⊂ Σ

ζ1,1

ζ2,1, ζ2,2

. . . . . .
ζn,1, ζn,2, . . . , ζn,n
...

wn(z) =
n∏

j=1

(z − ζj ,n), n = 1, 2, . . .
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Multi-point interpolation. wn(z) =
∏n

j=1(z − ζj ,n)

Let f ∈ H(V ), V be an open set, V ⊃ Σ, n ∈ Z≥0, m ∈ Z≥0,
there exist polynomials P y Q such that:
• deg(P) ≤ n, deg(Q) ≤ m, Q 6≡ 0.

•
(Q f − P)/wn+m+1 ∈ H(V )

Any pair of such polynomials P, Q defines a unique rational
function

Πn,m = P/Q called multi-point Padé approximant

of type (n,m) for f .
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Multi-point interpolation. wn(z) =
∏n

j=1(z − ζj ,n)

Let f ∈ H(V ), V be an open set, V ⊃ Σ, n ∈ Z≥0, m ∈ Z≥0,
there exist polynomials P y Q such that:
• deg(P) ≤ n, deg(Q) ≤ m, Q 6≡ 0.
•

(Q f − P)/wn+m+1 ∈ H(V )⇒ (Q f − P)(ζj ,n+m+1) = 0

Any pair of such polynomials P, Q defines a unique rational
function

Πn,m = P/Q called multi-point Padé approximant

of type (n,m) for f .
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Multi-point interpolation. Particular cases

Q f − P

wn+m+1
∈ H(V ), Πn,m = P/Q.

• m = 0, wn+1(z) = (z − z0)n+1, Πn,0 Taylor polynomials.

• m = 0, ζj ,n+1 6= ζk,n+1, if j 6= k , Πn,0 Lagrange interpolation.

• m = 0, wn+1(z)/wn(z) = (z − ζn+1,n+1) Jacobi series.

• wn+m+1(z) = (z − z0)n+m+1, Πn,m Padé approximants.
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Multi-point interpolation. Particular cases

Best approximation ⇒ interpolation

• Uniform aproximation. If r∗/s∗ satisfies

‖f−r∗/s∗‖[a,b] = min{‖f−r/s‖[a,b] : deg(r) ≤ n, deg(s) ≤ m}

then (Chebychev Alternation Theorem)
∃ζj ∈ [a, b], j = 0, . . . , n + m such that

f (ζj)− r∗(ζj)/s∗(ζj) = 0

where [a, b] ⊂ R and ‖ · ‖[a,b] is the uniform norm.

• Fourier series. If µ is a nontrivial positive measure with finite
moments on an interval [a, b] ⊂ R, and sn is the n−th partial
sum of a function f ∈ C([a, b]) in L2(µ), then (orthogonality
conditions) ∃ζj ∈ [a, b], j = 0, . . . , n such that

f (ζj)− sn(ζj) = 0, j = 0, 1, . . . , n.
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Interpolation and orthogonality

(Q f − P)/wn+m+1 ∈ H(V )

⇓ CauchyTheorem∫
Γ

Q(ζ)f (ζ)− P(ζ)

wn+m+1(ζ)
ζkdζ = 0,

where Γ is a closed curve in V and k ∈ Z≥0. If Σ ⊂ int(Γ),
0 ≤ k ≤ m − 1,

⇓ CauchyTheorem∫
Γ
ζkQ(ζ)

f (ζ)dζ

wn+m+1(ζ)
= 0
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Taylor Polynomials, wn(z) = zn, m = 0
Theorem (Cauchy-Abel). Let f be an analytic function on a
neighborhood of 0.

• Let f be analytic in D(0,R0) but not on D(0,R0). Then
∀z ∈ D(0,R0),

lim sup
n→∞

|f (z)− Πn,0(z)|1/n ≤ |z |
R0

< 1.

• Let z 6= 0,

lim sup
n→∞

|f (z)− Πn,0(z)|1/n =
|z |
R
< 1,

then R = R0; i.e., f has an analytic extension to {|z | < R}.
• For |z | > R0, it holds

lim sup
n→∞

|Πn,0(z)|1/n =
|z |
R0

;

in particular, {Πn(z)} diverges in D(0,R0)
c
.
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wn(z) = zn,

lim supn→∞ |f (z)−Πn,0(z)|1/n = |z |
R < 1, z 6= 0⇒ R = R0,

lim supn→∞ |Πn,0(z)|1/n = |z |
R0
> 1

Multi-point analogous results?
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Role of logarithmic potential, m = 0

Πn,0(z) =
1

2πi

∫
Γ

wn+1(ζ)− wn+1(z)

ζ − z

f (ζ) dζ

wn+1(ζ)
,

Γ a closed part Σ ⊂ int(Γ), Γ ⊂ V . We have

f (z)− Πn,0(z) =
wn+1(z)

2πi

∫
Γ

f (ζ)

ζ − z

dζ

wn+1(ζ)
, z ∈ int(Γ).

⇒ |f (z)− Πn,0(z)| ≤ C
|wn+1(z)|

minζ∈Γ |wn+1(ζ)|
Role of logarithmic potential:

|wn+1(z)|1/n = e
− n+1

n
Pµwn+1

(z)
:= e

n+1
n

∫
log |z−t|dµwn+1 (t) −→

n→∞
?

Pµwn+1
(z) := −

∫
log |z − t|dµwn+1(t),

where µwn+1(A) := 1
n+1

∑
ζ:wn+1(ζ)=0 δζ(A), A boreliano en C.
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Potential theory

Let µ, {µn} be a probability measures with compact support
K ⊂ C.

• Logarithmic potential of µ:

Pµ(z) = P(µ; z) = −
∫
K

log |z − ζ| dµ(ζ)

• Energy of µ: E (µ) =

∫
K

P(µ; z) dµ(z)

• Minimal energy on K : E (K ) = infµ E (µ)

• Logarithmic potential of K : cap(K ) = exp{−E (K )}

• Equilibrium measure of K : µK if E (K ) = E (µK )
(cap(K ) > 0)
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Potential theory

• Weak∗ convergence:

∗−lim
n
µn = µ

def⇔ lim
n

∫
g(t) dµn(t) =

∫
g(t) dµ(t), ∀g ∈ C(K ),

taking
g(t)=log |z−t|⇔ limn P(µn, z) = P(µ, z), z ∈ C \ K .

• Decent principle: Moreover, if limn zn = z0,

lim
n→∞

P(µn, zn) ≥ P(µ, z0).
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Limit distribution |wn+1(z)|1/n = e−
n+1
n P(µwn+1

,z)

∗−lim
n
µwn+1 = µ

def⇔ lim
n

∫
g(t) dµn+1(t) =

∫
g(t) dµ(t), ∀g ∈ C(Σ),

g(t)=log |z−t|⇔ lim
n
|wn+1(z)|1/n = e−P(µ,z), z ∈ C \ Σ.

• Σ = {0}, wn(z) = zn, Taylor polynomials,

µ = δ{0}.

• Σ = [−1, 1], wn(z) = cos(n arccos z), z ∈ [−1, 1], Lagrange
interpolation on the zeros of Chebyshev polynomials,

dµ(t) =
1

π

dt√
1− t2

.

• Σ = [−1, 1], the zeros of wn are uniformly distributed on
[−1, 1], Lagrange interpolation on,

dµ(t) =
dt

2
.
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Runge’s phenomenon, f (z) = 1
1+a2z2

Runge’s phenomenon [1901]. Interpolation on uniform distributed
points [−1, 1],

f (z) =
1

1 + a2z2
, a > 1.

There exists a∗ ∈ (0, 1) such that

lim
n→∞

Πn,0(z) = f (z), z ∈ (−a∗, a∗),

{Πn,0(z)} diverges z ∈ ((−1, a∗) ∪ (a∗, 1)).

|f (z)− Πn,0(z)| ≤ C
|wn+1(z)|

minζ∈Γ |wn+1(ζ)|
Γ ⊂ V
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Runge’s phenomenon. f (z) = 1
1+a2z2 . Cont.

Let Rµ,0 be the largest R such that f has an analytic extension to
{z : e−P(µ,z) < R}

Dµ,0 = {z : e−P(µ,z) < e−P(µ,i/a)}, Rµ,0 = e−P(µ,i/a).

Theorem

Assume that f is an analytic function on [−1, 1].

We have

lim
n→∞

|f (z)− Πn,0(z)|1/n ≤ e−P(µ,z)

Rµ,0
< 1,

uniformly on compact subset of Dµ,0.

If f has a pole in z∗,
f ∈ H({z : e−P(µ,z) < e−P(µ,z∗)+ε} \ {z∗}), then {Πn,0(z)}
diverges in {z : e−P(µ,z∗) < e−P(µ,z)}.
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Runge’s phenomenon. f (z) = 1
1+a2z2 . Cont.

Dµ,0 = {z : e−P(µ,z) < e−P(µ,i/a)}, Rµ,0 = e−P(µ,i/a).
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Review

• Walsh [1935], m = 0 fixed, general interpolation table.
Convergence in Dµ,0 and divergence result for particular
interpolation table (roots of the unit).

• Kakehashi [1955], m = 0 fixed, divergence in Dµ,0
c

for
particular interpolacin table.

• Saff [1972], m ≥ 0 fixed, convergence of {Πn,m}n∈N in D∗µ,m
for general interpolation table.

• Vavilov [1976], m ≥ 0 fixed, inverse-type theorem for Padé
interpolation.

• Wallin [1984], m ≥ 0 fixed, type-Runge theorem for funciones
meromorfas and general interpolation table.

• Grothmann [1996], m = 0 fixed, inverse theorem for extremal
interpolation table.

• Khistoforov [2008], m = 0 fixed, a Jentzsch-Szegő-type
theorem a, Hadamard-type theorem for Kakehashi
interpolation table.
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Our results

Let Rµ,m be the largest R such that f has a meromorphic extension
to {z : e−P(µ,z) < R} with at most m poles counting multiplicities.

Dµ,m := {z : e−P(µ,z) < Rµ,m}.

We characterize this region in terms of the behavior of {Πn,m}n.
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Hausdorff contents

Let A ⊂ C and U(A) be the class of all coverings of A by a
denumerable set of disks. Set

σ(A) = inf

{∑
i∈I
|Ui | : {Ui}i∈I ∈ U(A)

}
,

where |Ui | is the radius of Ui . σ(A) denotes the 1−dimensional
Hausdorff contents of A. This function is an exterior Caratheodory
measure; so it is monotone and σ−subaditive.
σ−content converge: {ϕn} converges in σ− content to ϕ on
compact subsets of D if ∀ε > 0, ∀K ⊂ D, K compact, we have

lim
n→∞

σ ({z ∈ K : |ϕn(z)− ϕ(z)| > ε}) = 0.
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Divergence results

Theorem

Let the measure µ be the asymptotic zero distribution of the
sequence of interpolation points given by {wn}n∈N. Suppose that
the sequence {Πn,m}n≥m converges in σ-content on compact
subsets of a neighborhood of the point z0 ∈ C \ Σ. Then,
z0 ∈ Dµ,m.

Corollary

From above theorem and Osgood-Caratheodory’s Theorem it
follows that if the sequence {Πn,m}n≥m converges pointwise on a
neighborhood of the point z0 ∈ C \ Σ, then z0 ∈ Dµ,m. So,
{Πn,m}n∈N diverges in a dense subset of Dµ,m

c
.

Manuel Bello Hernández Interpolation and meromorphic extension



Inverse-type Theorem

Set
ρµ(K ) := sup{e−P(µ;z) : z ∈ K} := ‖e−P(µ;·)‖K .

Theorem

Let the measure µ be the asymptotic zero distribution of the
sequence of interpolation points given by {wn}n∈N. Let K be a
regular compact set for which the value ρµ(K ) is attained at a
point that does not belong to the interior of Σ. Suppose that the
function f is defined on K and fulfills

lim sup
n→∞

‖f − Πn,m‖1/n
K ≤ ρµ(K )

R
< 1. (1)

Then, Rµ,m ≥ R, that is, f admits meromorphic continuation with
at most m poles on the set {z : e−P(µ,z) < R}.
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Inverse-type theorem. Cont.

lim sup
n→∞

‖f − Πn,m‖1/n
K ≤ ρµ(K )

R
< 1.

Then, Rµ,m ≥ R, i.e. f has a meromorphic continuation to
{z : e−Vµ(z) < R} with at most m poles.
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Some open problems

Inverse problem: A Hadamard formula for Rµ,0. Gonchar’s
conjecture

1

Rµ,0
= lim sup

n→∞

∣∣∣∣∫
Γ

f (ζ)

wn+1(ζ)
dζ

∣∣∣∣1/n
where Γ is an arbitrary closed part such that Σ ⊂ int(Γ) and
f ∈ H(int(Γ)).
Buslaev (2006), Kristoforov (2008).

Direct problems:

Divergence: Prove or disprove the divergence of Πn,0 in Dµ,0
c
.

Quantitative results. Estimate the rate of convergence of
f − Πn,m when f has singularity at Σ.
Rakhmanov (1984). López Lagomasino-Mart́ınez Finkelshtein
(1995)
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Thank you!
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