Fusion systems, groups, partial groups and simplicial sets

Carles Broto
(joint work with Àlex González)

Universitat Autònoma de Barcelona

Métodos Categóricos y Homotópicos en Álgebra, Geometría y Topología
Logroño, 18 de noviembre de 2016
Outline

Introduction

Fusion systems

Partial groups

Localities

Homotopy fixed points
Introduction

In a paper published in 2003, together with Ran Levi and Bob Oliver, we introduced the concept of p-local finite group.

For a fixed prime p, this is a triple (S, F, L), where

- S is a finite p-group
- F is a saturated fusion system over S, and
- L is an associated centric linking system.

This last is a category extending the fusion system and we define the classifying space of (S, F, L) as the p-completed nerve $|L|^\wedge_p$

The aim of this talk is to describe the homotopy fixed point set

$$(|L|^\wedge_p)^{h\pi}$$

by the action of a finite p-group π on (S, F, L).

We describe new models for the classifying space due to Andy Chermak (2013) and point to a precise one, $L_?$, that carries an action of π, and for which we can prove

$$[(L_?)^\wedge_p]^{h\pi} \simeq \bigsqcup_{\sigma \in H^1(\pi, L_?)} (L_?^\sigma)^\wedge_p$$

Same result when π acts on a finite group G was shown by J. Lannes (1986).
Introduction

In a paper published in 2003, together with Ran Levi and Bob Oliver, we introduced the concept of p-local finite group.

For a fixed prime p, this is a triple $(S, \mathcal{F}, \mathcal{L})$, where

- S is a finite p-group
- \mathcal{F} is a saturated fusion system over S, and
- \mathcal{L} is an associated centric linking system.

This last is a category extending the fusion system and we define the classifying space of $(S, \mathcal{F}, \mathcal{L})$ as the p-completed nerve $|\mathcal{L}|^\wedge_p$

The aim of this talk is to describe the homotopy fixed point set

$$ (|\mathcal{L}|^\wedge_p)^{h\pi} $$

by the action of a finite p-group π on $(S, \mathcal{F}, \mathcal{L})$.

We describe new models for the classifying space due to Andy Chermak (2013) and point to a precise one, \mathbb{L}_σ, that carries an action of π, and for which we can prove

$$ \left[(\mathbb{L}_\sigma)^\wedge_p \right]^{h\pi} \simeq \coprod_{\sigma \in H^1(\pi, \mathbb{L}_\sigma)} (\mathbb{L}_\sigma)^\wedge_p $$

• Same result when π acts on a finite group G was shown by J. Lannes (1986)
Introduction

In a paper published in 2003, together with Ran Levi and Bob Oliver, we introduced the concept of p-local finite group.

For a fixed prime p, this is a triple $(S, \mathcal{F}, \mathcal{L})$, where

- S is a finite p-group
- \mathcal{F} is a saturated fusion system over S, and
- \mathcal{L} is an associated centric linking system.

This last is a category extending the fusion system and we define the classifying space of $(S, \mathcal{F}, \mathcal{L})$ as the p-completed nerve $|\mathcal{L}|_p^\wedge$

The aim of this talk is to describe the homotopy fixed point set

$$(|\mathcal{L}|_p^\wedge)^{h\pi}$$

by the action of a finite p-group π on $(S, \mathcal{F}, \mathcal{L})$.

We describe new models for the classifying space due to Andy Chermak (2013) and point to a precise one, \mathcal{L}_\ast, that carries an action of π, and for which we can prove

$$\left[(\mathcal{L}_\ast)_p^\wedge\right]^{h\pi} \simeq \bigsqcup_{\sigma \in H^1(\pi, \mathcal{L}_\ast)} (\mathcal{L}_\ast^\sigma)_p^\wedge$$

Same result when π acts on a finite group G was shown by J. Lannes (1986)
Introduction

In a paper published in 2003, together with Ran Levi and Bob Oliver, we introduced the concept of p-local finite group.

For a fixed prime p, this is a triple $(S, \mathcal{F}, \mathcal{L})$, where

- S is a finite p-group
- \mathcal{F} is a saturated fusion system over S, and
- \mathcal{L} is an associated centric linking system.

This last is a category extending the fusion system and we define the classifying space of $(S, \mathcal{F}, \mathcal{L})$ as the p-completed nerve $|\mathcal{L}|^\wedge_p$

The aim of this talk is to describe the homotopy fixed point set

$$\left(|\mathcal{L}|^\wedge_p \right)^{h\pi}$$

by the action of a finite p-group π on $(S, \mathcal{F}, \mathcal{L})$.

We describe new models for the classifying space due to Andy Chermak (2013) and point to a precise one, $\mathbb{L}_?$, that carries an action of π, and for which we can prove

$$\left((\mathbb{L}_?)_p \right)^{h\pi} \approx \bigcup_{\sigma \in H^1(\pi, \mathbb{L}_?)} (\mathbb{L}^\sigma_?)_p$$

- Same result when π acts on a finite group G was shown by J. Lannes (1986)
Fusion systems

Definition

Let G be a finite group, p a prime number, and $S \in \text{Syl}_p(G)$. The fusion system of G consists of

- Objects: $P \leq S$, the subgroups of S, and
- Morphisms:

$$\text{Hom}_{\mathcal{F}_S(G)}(P, Q) = \{ \varphi: P \to Q \mid \exists g \in G, \varphi(x) = gxg^{-1} \}$$

$$\cong N_G(P, Q)/C_G(P)$$

that compose as group homomorphisms.
Fusion systems

Definition (Puig)

A fusion system \mathcal{F} over a finite p-group S consists of a set $\text{Hom}_\mathcal{F}(P, Q)$ for every pair P, Q of subgroups of S such that

$$\text{Hom}_S(P, Q) \subseteq \text{Hom}_\mathcal{F}(P, Q) \subseteq \text{Inj}(P, Q)$$

and form a category where every morphism decomposes as an isomorphism followed by an inclusion.

It is saturated if it satisfies some extra axioms.

- If G is a finite group and $S \in \text{Syl}_p(G)$, then $\mathcal{F}_S(G)$ is a saturated fusion system.
- We will say that a saturated fusion system \mathcal{F} is *exotic* if it is not of this form.

* Brauer (1964) defines abstract fusion between elements in p-groups.
Fusion systems

Definition (Puig)

A fusion system \mathcal{F} over a finite p-group S consists of a set $\text{Hom}_\mathcal{F}(P, Q)$ for every pair P, Q of subgroups of S such that

$$\text{Hom}_S(P, Q) \subseteq \text{Hom}_\mathcal{F}(P, Q) \subseteq \text{Inj}(P, Q)$$

and form a category where every morphism decomposes as an isomorphism followed by an inclusion.

It is saturated if it satisfies some extra axioms.

- If G is a finite group and $S \in \text{Syl}_p(G)$, then $\mathcal{F}_S(G')$ is a saturated fusion system.
- We will say that a saturated fusion system \mathcal{F} is exotic if it is not of this form.

- Brauer (1964) defines abstract fusion between elements in p-groups.
Fusion systems

Definition (Puig)

A fusion system \mathcal{F} over a finite p-group S consists of a set $\text{Hom}_\mathcal{F}(P, Q)$ for every pair P, Q of subgroups of S such that

$$\text{Hom}_S(P, Q) \subseteq \text{Hom}_\mathcal{F}(P, Q) \subseteq \text{Inj}(P, Q)$$

and form a category where every morphism decomposes as an isomorphism followed by an inclusion.

It is saturated if it satisfies some extra axioms.

- If G is a finite group and $S \in \text{Syl}_p(G)$, then $\mathcal{F}_S(G')$ is a saturated fusion system.
- We will say that a saturated fusion system \mathcal{F} is exotic if it is not of this form.

- Brauer (1964) defines abstract fusion between elements in p-groups.
Fusion systems

There are exotic saturated fusion systems at each prime p, but only one family is known at the prime 2:

Solomon, 1974. There exists a well defined 2-local structure over the Sylow 2-subgroup of $\text{Spin}_7(q)$ (q odd prime power) which contains a unique conjugacy class of involutions. But there is no finite group with such structure.

Benson, 1994. There is a space $B\text{Sol}(q)$, related to Dwyer-Wilkerson exotic 2-local finite loop space $\text{DI}(4)$, which supports the 2-local structure defined by Solomon: A classifying space for a non-existing group.

M. Aschbacher is developing a program to classify simple fusion systems at the prime 2.
Fusion systems

There are exotic saturated fusion systems at each prime p, but only one family is known at the prime 2:

Solomon, 1974. There exists a well defined 2-local structure over the Sylow 2-subgroup of $\text{Spin}_7(q)$ (q odd prime power) which contains a unique conjugacy class of involutions. But there is no finite group with such structure.

Benson, 1994. There is a space $B\text{Sol}(q)$, related to Dwyer-Wilkerson exotic 2-local finite loop space $DI(4)$, which supports the 2-local structure defined by Solomon: A classifying space for a non-existing group!

- M. Aschbacher is developing a program to classify simple fusion systems at the prime 2.
Fusion systems

There are exotic saturated fusion systems at each prime p, but only one family is known at the prime 2:

Solomon, 1974. There exists a well defined 2-local structure over the Sylow 2-subgroup of $\text{Spin}_7(q)$ (q odd prime power) which contains a unique conjugacy class of involutions. But there is no finite group with such structure.

Benson, 1994. There is a space $B\text{Sol}(q)$, related to Dwyer-Wilkerson exotic 2-local finite loop space $DI(4)$, which supports the 2-local structure defined by Solomon: A classifying space for a non-existing group!

- M. Aschbacher is developing a program to classify simple fusion systems at the prime 2.
Fusion systems show up while studying the homotopy type of p-completed classifying spaces of finite groups.

- **Martino-Priddy conjecture (1996):**

 $$BG^\wedge_p \simeq BH^\wedge_p \iff \mathcal{F}_p(G) \simeq \mathcal{F}_p(H)$$

Two sorts of objects are introduced in the arguments of the above results:

- Linking systems (B-Levi-Oliver)
- Partial groups and localities (Chermak)
Fusion systems show up while studying the homotopy type of p-completed classifying spaces of finite groups.

- **Martino-Priddy conjecture** (1996):
 \[BG_p^\wedge \cong BH_p^\wedge \iff \mathcal{F}_p(G) \simeq \mathcal{F}_p(H) \]

Two sorts of objects are introduced in the arguments of the above results:
- Linking systems (B-Levi-Oliver)
- Partial groups and localities (Chermak)
Fusion systems

Definition

Fix a saturated fusion system \mathcal{F} over a finite p-group S. Let Δ be the family of \mathcal{F}-centric subgroups of S.

An associated centric linking system is a category defined with objects Δ and extending \mathcal{F} in the sense that

$$\text{Mor}_\mathcal{F}(P,Q) = \text{Mor}_\mathcal{L}(P,Q)/Z(P).$$

Some axioms should be satisfied.

- $|\mathcal{L}|_p$, is called the classifying space of $(S, \mathcal{F}, \mathcal{L})$.
Fusion systems

- If \(G \) is a finite group and \(S \in \text{Syl}_p(G) \), then we construct a centric linking system \(\mathcal{L}_S^c(G) \) associated to \(\mathcal{F}_S(G) \) as the category with
 - Objects: \(P \leq S \) such that \(C_G(P) = Z(P) \times C_G'(P) \) with \((p, |C_G'(P)|) = 1 \)
 - Morphisms: \(\text{Mor}_{\mathcal{L}_S^c(G)}(P, G) = N_G(P, G)/C_G'(P) \)

- Then, \((S, \mathcal{F}_S(G), \mathcal{L}_S^c(G)) \) is a \(p \)-local finite group with classifying space

\[
|\mathcal{L}_S^c(G)|_p^\wedge \simeq (BG)_p^\wedge
\]

- The Martino-Priddy conjecture is first reduced to showing that a fusion system \(\mathcal{F}_S(G) \) admits a unique associated centric linking system.

- Oliver (2004, 2006): M-P conjecture is true: \(\mathcal{L}_S(G) \) is the only possible centric linking system associated to \(\mathcal{F}_S(G) \). (The proof depends on the classification of finite simple groups.)

- Chermak (2013): any (abstract) fusion system admits a unique associated centric linking system. Still depending on CFSG,

- Oliver (2013): extends Chermak’s proof

- Glauberman-Lynd (2015): Removed the assumption of the CFSG from Chermak’s proof
Fusion systems

- If G is a finite group and $S \in \text{Syl}_p(G)$, then we construct a centric linking system $\mathcal{L}_S^c(G)$ associated to $\mathcal{F}_S(G)$ as the category with
 - Objects: $P \leq S$ such that $C_G(P) = Z(P) \times C'_G(P)$ with $(p, |C'_G(P)|) = 1$
 - Morphisms: $\text{Mor}_{\mathcal{L}_S^c(G)}(P, G) = N_G(P, G)/C'_G(P)$
- Then, $(S, \mathcal{F}_S(G), \mathcal{L}_S^c(G))$ is a p-local finite group with classifying space $|\mathcal{L}_S^c(G)|_p \simeq (BG)^\wedge_p$

- The Martino-Priddy conjecture is first reduced to showing that a fusion system $\mathcal{F}_S(G)$ admits a unique associated centric linking system.
- Oliver (2004, 2006): M-P conjecture is true: $\mathcal{L}_S(G)$ is the only possible centric linking system associated to $\mathcal{F}_S(G)$. (The proof depends on the classification of finite simple groups.)
- Chermak (2013): any (abstract) fusion system admits a unique associated centric linking system. Still depending on CFSG,
- Oliver (2013): extends Chermak’s proof
- Glauberman-Lynd (2015): Removed the assumption of the CFSG from Chermak’s proof
Partial groups

Definition

A partial group is a simplicial set \mathbb{M} satisfying

(P1) \mathbb{M}_0 consists of a unique vertex

(P2) The spine operator $e^n: \mathbb{M}_n \to (\mathbb{M}_1)^n$ is injective for all $n \geq 1$.

(P3) There is an inversion $(-)^{-1}: \mathbb{M} \to \mathbb{M}$ such that for each $u \in \mathbb{M}_n$, $n \geq 1$:

(I1) There is a simplex $[\nu(u)|u] \in \mathbb{M}_{2n}$; and

(I2) $\Pi [\nu(u)|u] = 1$.
Partial groups

Definition

A partial group is a simplicial set \mathbb{M} satisfying

(P1) \mathbb{M}_0 consists of a unique vertex

(P2) The spine operator $e^n: \mathbb{M}_n \rightarrow (\mathbb{M}_1)^n$ is injective for all $n \geq 1$.

(P3) There is an inversion $(-)^{-1}: \mathbb{M} \rightarrow \mathbb{M}$ such that for each $u \in \mathbb{M}_n$, $n \geq 1$:

(I1) There is a simplex $[\nu(u)|u] \in \mathbb{M}_{2n}$; and

(I2) $\Pi[\nu(u)|u] = 1$.

Partial groups

Definition
A partial group is a simplicial set \mathbb{M} satisfying

(P1) \mathbb{M}_0 consists of a unique vertex

(P2) The spine operator $e^n: \mathbb{M}_n \rightarrow (\mathbb{M}_1)^n$ is injective for all $n \geq 1$.

It assigns to an n-simplex

(P3) There is an inversion $(-)^{-1}: \mathbb{M} \rightarrow \mathbb{M}$ such that for each $u \in \mathbb{M}_n$, $n \geq 1$:

(I1) There is a simplex $[\nu(u)u] \in \mathbb{M}_{2n}$; and

(I2) $\Pi[\nu(u)u] = 1$.
Partial groups

Definition

A **partial group** is a simplicial set \mathbb{M} satisfying

(P1) \mathbb{M}_0 consists of a unique vertex

(P2) The spine operator $e^n: \mathbb{M}_n \rightarrow (\mathbb{M}_1)^n$ is injective for all $n \geq 1$.

It assigns to an n-simplex

the sequence of edges joining the ordered vertices from 0 through n.

(P3) There is an inversion $(-)^{-1}: \mathbb{M} \rightarrow \mathbb{M}$ such that for each $u \in \mathbb{M}_n$, $n \geq 1$:

(I1) There is a simplex $[\nu(u)|u] \in \mathbb{M}_{2n}$; and

(I2) $\Pi[\nu(u)|u] = 1$.

Partial groups

Definition

A partial group is a simplicial set \mathbb{M} satisfying

(P1) \mathbb{M}_0 consists of a unique vertex

(P2) The spine operator $e^n:\mathbb{M}_n \rightarrow (\mathbb{M}_1)^n$ is injective for all $n \geq 1$.

- We write $\omega = [g_1|g_2|\ldots|g_n]$ if $\omega \in \mathbb{M}_n$ and $e^n(\omega) = (g_1,g_2,\ldots,g_n)$:

We write $1 = s_0(v)$ for $v \in \mathbb{M}_0$, and $\Pi[x_1|x_2|\ldots|x_n] = x_1 \cdot x_2 \cdot \ldots \cdot x_n$.

(P3) There is an inversion $(-)^{-1}:\mathbb{M} \rightarrow \mathbb{M}$ such that for each $u \in \mathbb{M}_n$, $n \geq 1$:

(I1) There is a simplex $[v(u)|u] \in \mathbb{M}_{2n}$; and

(I2) $\Pi[v(u)|u] = 1$.
Partial groups

Definition

A partial group is a simplicial set \(M \) satisfying

(P1) \(M_0 \) consists of a unique vertex

(P2) The spine operator \(e^n : M_n \to (M_1)^n \) is injective for all \(n \geq 1 \).

(P3) There is an inversion \((-)^{-1} : M \to M \) such that for each \(u \in M_n, n \geq 1 \):

(I1) There is a simplex \([\nu(u)|u]\in M_{2n}; \text{and}\)

(I2) \(\Pi[\nu(u)|u] = 1 \).
Partial groups

Definition

A partial group is a simplicial set \mathbb{M} satisfying

(P1) \mathbb{M}_0 consists of a unique vertex

(P2) The spine operator $e^n : \mathbb{M}_n \to (\mathbb{M}_1)^n$ is injective for all $n \geq 1$.

(P3) There is an inversion $(-)^{-1} : \mathbb{M} \to \mathbb{M}$ such that for each $u \in \mathbb{M}_n$, $n \geq 1$:

(I1) There is a simplex $[\nu(u)|u] \in \mathbb{M}_{2n}$; and

(I2) $\Pi[\nu(u)|u] = 1$.

- A homomorphism of partial groups is a simplicial map
- A extension of partial groups is a fibre bundle $\mathbb{M} \xrightarrow{i} \mathbb{E} \xrightarrow{\tau} \mathbb{H}$
- It turns out that if \mathbb{H} and \mathbb{M} are partial groups, then so is \mathbb{E}
Partial groups

We now concentrate in extensions

\[\mathcal{M} \overset{i}{\longrightarrow} \mathcal{E} \overset{\tau}{\longrightarrow} BG \]

where \(G \) is a finite group.

- There is a fibration \(B^2Z(\mathcal{M}) \to B\text{aut}(\mathcal{M}) \to B\text{Out}(\mathcal{M}) \).
- The classification of extensions works exactly as in the case of finite groups.
- The extension is regular split extension if it admits a regular section. A regular section defines an action of \(G \) on \(\mathcal{M} \), and \(\mathcal{E} \) can be described as a semidirect product.
- For a regular split extension, \(H^1(G, \mathcal{M}) \) classifies equivalence classes of sections.
Localities

Definition

Let \mathbb{L} be a partial group with finite \mathbb{L}_1, $S \leq \mathbb{L}$ a p-subgroup and Δ a family of subgroups of S. Then, (\mathbb{L}, S) is a locality via Δ if the following holds

(O1) $[u_1|\ldots|u_n] \in \mathbb{L}_n$ if and only if there is a string of composable conjugation maps between objects of Δ:

$$X_0 \overset{u_1}{\leftarrow} X_1 \overset{u_2}{\leftarrow} \ldots \overset{u_n}{\leftarrow} X_n, \quad X_i \in \Delta.$$

(O2) Δ is closed by overgroups. Also, if $X \in \Delta$ and $u \in \mathbb{L}_1$ are such that $uX \leq S$, then $uX \in \Delta$.

(L1) S is maximal in the poset (ordered by inclusion) of p-subgroups of \mathbb{L}.

- Example: Let G be a finite group and fix $S \in \text{Syl}_p(G)$, set $\mathcal{F} = \mathcal{F}_S(G)$, and let Γ be a non-empty \mathcal{F}-invariant collection of subgroups of S, closed under taking overgroups. Then

$\mathbb{L}_\Gamma(G) = \{ [g_1|g_2|\ldots|g_n] \in BG \mid \exists P_0, P_1, \ldots, P_n \in \Gamma, \quad P_0 \overset{g_1}{\leftarrow} P_1 \overset{g_2}{\leftarrow} \ldots \overset{g_n}{\leftarrow} P_n \} \subseteq BG$

is a partial group, and $(\mathbb{L}_\Gamma(G), S)$ a locality via Γ.
Localities

- The locality \(\mathcal{L}(\mathcal{L}) \) of a \(p \)-local finite group \((S, \mathcal{F}, \mathcal{L})\).

This is a construction due to Chermak.

Let \(\equiv \) be the equivalence relation defined on \(\text{Iso}(\mathcal{L}) \) such that \(f \equiv g \) if one is a restriction of the other. Define

\[
\mathcal{L}(\mathcal{L})_n = \left\{ [\bar{f}_1, \bar{f}_2, \ldots, \bar{f}_n] \mid \exists P_0, P_1, \ldots, P_n \in \text{Ob}(\mathcal{L}) \right. , \\
P_0 \overset{f_1}{\leftarrow} P_1 \overset{f_2}{\leftarrow} \ldots \overset{f_n}{\leftarrow} P_n \right\}
\]

Then, \((\mathcal{L}(\mathcal{L}), S)\) is a locality via \(\Delta = \text{Ob}(\mathcal{L}) \)
Theorem (B-González)

The natural projection $|\mathcal{L}| \longrightarrow \mathbb{L}$ is a weak equivalence of simplicial sets.

Furthermore, it is $|\text{Aut}_{\text{typ}}(\mathbb{L})|$-equivariant and the action on \mathbb{L} induces an isomorphism of simplicial groups

$$|\text{Aut}_{\text{typ}}(\mathcal{L})| \cong \text{aut}(\mathbb{L}, S).$$

(This last is the simplicial subgroup of $\text{aut}(\mathbb{L})$ that leaves S stable.)

It follows $B \text{aut}(\mathcal{L}_p) \cong B|\text{Aut}_{\text{typ}}(\mathcal{L})| \cong B \text{aut}(\mathbb{L}, S).$

- Localities provide models for classifying spaces of p-local finite groups. Some questions arise:
 1. The homotopy type of (\mathbb{L}, S) depends on the set of objects Δ. We need to adjust Δ so that we get to the right homotopy type.
 2. We need a solid theory of extensions of localities.
 3. We need to construct new from old, e.g.: centralizers and mapping spaces.
Localities

Theorem (B-González)

The natural projection $|\mathcal{L}| \rightarrow L$ is a weak equivalence of simplicial sets.

Furthermore, it is $|\text{Aut}_{\text{typ}}(L)|$-equivariant and the action on L induces an isomorphism of simplicial groups

$$|\text{Aut}_{\text{typ}}(\mathcal{L})| \cong \text{aut}(L, S).$$

(This last is the simplicial subgroup of $\text{aut}(L)$ that leaves S stable.)

It follows $B \text{aut}(|\mathcal{L}|_p^\wedge) \cong B|\text{Aut}_{\text{typ}}(\mathcal{L})| \cong B \text{aut}(L, S).$

- Localities provide models for classifying spaces of p-local finite groups. Some questions arise:

 1. The homotopy type of (L, S) depends on the set of objects Δ. We need to adjust Δ so that we get to the right homotopy type.

 2. We need a solid theory of extensions of localities.

 3. We need to construct new from old, e.g.: centralizers and mapping spaces.
Theorem (B-González)

The natural projection $|\mathcal{L}| \longrightarrow \mathbb{L}$ is a weak equivalence of simplicial sets.

Furthermore, it is $|\text{Aut}_{\text{typ}}(\mathbb{L})|$-equivariant and the action on \mathbb{L} induces an isomorphism of simplicial groups

$$|\text{Aut}_{\text{typ}}(\mathcal{L})| \cong \text{aut}(\mathbb{L}, S).$$

(This last is the simplicial subgroup of $\text{aut}(\mathbb{L})$ that leaves S stable.)

It follows $B \text{aut}(\mathcal{L}^\wedge_p) \cong B|\text{Aut}_{\text{typ}}(\mathcal{L})| \cong B \text{aut}(\mathbb{L}, S).$

- Localities provide models for classifying spaces of p-local finite groups. Some questions arise:

 1. The homotopy type of (\mathbb{L}, S) depends on the set of objects Δ. We need to adjust Δ so that we get to the right homotopy type.
 2. We need a solid theory of extensions of localities.
 3. We need to construct new from old, e.g.: centralizers and mapping spaces.
Localities

Theorem (B-González)

The natural projection $|\mathcal{L}| \rightarrow \mathbb{L}$ is a weak equivalence of simplicial sets.

Furthermore, it is $|\text{Aut}_{\text{typ}}(\mathbb{L})|$-equivariant and the action on \mathbb{L} induces an isomorphism of simplicial groups

$$|\text{Aut}_{\text{typ}}(\mathcal{L})| \cong \text{aut}(\mathbb{L}, S').$$

(This last is the simplicial subgroup of $\text{aut}(\mathbb{L})$ that leaves S stable.)

It follows $B\text{aut}(|\mathcal{L}|_p^{\wedge}) \cong B|\text{Aut}_{\text{typ}}(\mathcal{L})| \cong B\text{aut}(\mathbb{L}, S').$

- Localities provide models for classifying spaces of p-local finite groups. Some questions arise:
 1. The homotopy type of (\mathbb{L}, S') depends on the set of objects Δ. We need to adjust Δ so that we get to the right homotopy type.
 2. We need a solid theory of extensions of localities
 3. We need to construct new from old, e.g.: centralizers and mapping spaces
Localities

1. Concerning the homotopy type.

- If (\mathcal{L}, S) is a locality via Δ and $H \in \Delta$, then
 \[N_{\mathcal{L}}(H) = \{ u \in \mathcal{L}_1 | u^H = H \}. \]

 and
 \[C_{\mathcal{L}}(H) = \{ u \in \mathcal{L}_1 | u^h = h, \ \forall h \in H \}. \]

 are subgroups of \mathcal{L}.

- This allows the association of fusion and linking systems, as we did for groups.

- A locality (\mathcal{L}, S) via Δ is centric if it satisfies
 1. $C_{\mathcal{L}}(P)$ is a p-group for all $P \in \Delta$, and
 2. Δ contains all centric subgroups, that is, all $P \leq S$ such that $C_{\mathcal{L}}(P) = Z(P)$.

- Centric localities have the right homotopy type.
3. Centralizers and mapping spaces

- For a locality \((L, S)\) and an arbitrary subgroup \(T \leq S\), define the centralizer of \(T\) in \(L\) as the partial subgroup \(C_L(T) \leq L\) with \(n\)-simplices

\[
C_L(T)_n = \{ [u_1|u_2|\ldots|u_n] \in L \mid u_i h = h, \forall h \in H, \ i = 1, \ldots, n \}.
\]

Proposition

Let \((L, S)\) be a centric locality via \(\Delta\). If \(T \leq S\) is fully centralized, then

- \((C_L(T), C_S(T))\) is a centric locality via \(\Delta_T = \{ C_P(T) \mid T \leq P \in \Delta \}\).

And the adjoint of the product map provides a homotopy equivalence

\[
\xymatrix{ C_L(T)_p^\wedge \ar[r]^-{\cong} & \text{Map}(BT, L_p^\wedge)_{\text{incl}}}.
\]
Localities

2. Extensions

- Let \((\mathbb{L}, S)\) be a locality via \(\Delta\) and let \(G\) be a discrete group. An extension

\[
\mathbb{L} \longrightarrow \mathbb{E} \longrightarrow BG
\]

is called *isotypical* if the structural group is \(\text{aut}(\mathbb{L}; S)\).

- If this is the case, then \(\mathbb{E}\) is also a locality. More precisely:

 (a) There is an associated group extension

\[
BN_{\mathbb{L}}(S) \longrightarrow BN_{\mathbb{E}}(S) \longrightarrow BG
\]

\[
\begin{array}{c}
\downarrow \\
\downarrow \\
\mathbb{L} \longrightarrow \mathbb{E} \longrightarrow BG
\end{array}
\]

(b) Fix \(\tilde{S} \in \text{Syl}_p(N_{\mathbb{E}}(S))\). Then \((\mathbb{E}, \tilde{S})\) is a locality via \(\tilde{\Delta} = \{P \leq \tilde{S} \mid P \cap S \in \Delta\}\).

(c) If \(\mathbb{L}\) is a centric locality, then \(\mathcal{F}_{\tilde{S}}(\mathbb{E})\) is saturated and \(\tilde{\Delta}\) contains all of the \(\mathcal{F}_{\tilde{S}}(\mathbb{E})\)-centric \(\mathcal{F}_{\tilde{S}}(\mathbb{E})\)-radical subgroups of \(\tilde{S}\).
Localities

Definition
Let \((L, S)\) be a locality via \(\Delta\) and \(L \xrightarrow{\iota} E \xrightarrow{\tau} BG\) an isotypical extension, where \(G\) is a finite group.

A centric equivariant replacement for \((L, \Delta, S)\) with respect to the extension \(\tau\) is a partial group \(L_{eq}\) together with a map of extensions

\[
\begin{array}{ccc}
L & \xrightarrow{\iota} & E & \xrightarrow{\tau} & BG \\
\downarrow{j} & & \downarrow{} & & \downarrow{}
\end{array}
\]

\[
\begin{array}{ccc}
L_{eq} & \xrightarrow{} & E_{eq} & \xrightarrow{\tau_{eq}} & BG \\
\downarrow{} & & \downarrow{} & & \downarrow{}
\end{array}
\]

where \(j: L \to L_{eq}\) is a trivial cofibration and \(E_{eq}\) is a centric locality.

Theorem (B-González)
Let \((L, \Delta, S)\) be a centric locality. If \(\pi\) is a finite \(p\)-group and \(L \xrightarrow{\iota} E \xrightarrow{\tau} B\pi\) is an isotypical extension, then, there exists a centric equivariant replacement of \((L, \Delta, S)\) with respect to the extension \(\tau\).
Localities

Definition

Let \((L, S)\) be a locality via \(\Delta\) and \(L \xrightarrow{\iota} E \xrightarrow{\tau} BG\) an isotypical extension, where \(G\) is a finite group.

A centric equivariant replacement for \((L, \Delta, S)\) with respect to the extension \(\tau\) is a partial group \(L_{eq}\) together with a map of extensions

\[
\begin{array}{ccc}
L & \xrightarrow{\iota} & E \xrightarrow{\tau} BG \\
\downarrow{\jmath} & & \downarrow \quad \\
L_{eq} & \xrightarrow{\jmath_{eq}} & E_{eq} \xrightarrow{\tau_{eq}} BG
\end{array}
\]

where \(\jmath: L \to L_{eq}\) is a trivial cofibration and \(E_{eq}\) is a centric locality.

Theorem (B-González)

Let \((L, \Delta, S)\) be a centric locality.

If \(\pi\) is a finite \(p\)-group and \(L \to E \xrightarrow{\tau} B\pi\) is an isotypical extension, then, there exists a centric equivariant replacement of \((L, \Delta, S)\) with respect to the extension \(\tau\).
Homotopy fixed points

Definition

Let \((S, F, L)\) be a \(p\)-local finite group and \(\pi\) be a finite \(p\)-group. By an action of \(\pi\) on \((S, F, L)\) we understand an action of \(\pi\) on a classifying space \(X \simeq |L|^\wedge_p\).

- Borel construction gives a fibration \(X \longrightarrow X \times \pi E \pi \longrightarrow B \pi\).
- This fibration is the fibrewise \(p\)-completion of a fibre bundle \(|L| \longrightarrow Y \longrightarrow B \pi\) with structure group \(|\text{Aut}_\text{ty}_p(L)|\) (B-Levi-Oliver).
- Let \(\mathbb{L} = \mathbb{L}(L)\) be the locality of \((S, F, L)\), then the weak equivalence \(|L| \longrightarrow \mathbb{L}\) extends to a diagram of fibre bundles

\[
\begin{array}{ccc}
\mathbb{L} & \simeq_w & |L| \\
\downarrow & & \downarrow \\
\mathbb{E} & \simeq_w & Y \\
\downarrow & & \downarrow \\
B \pi & = & B \pi \\
\end{array}
\]

\[
\begin{array}{ccc}
|L| & \kappa_p & X \\
\downarrow & & \downarrow \\
Y & \kappa_p & X_{h \pi} \\
\downarrow & & \downarrow \\
B \pi & = & B \pi \\
\end{array}
\]
Homotopy fixed points

- The extension $\mathbb{L} \to \mathbb{E} \to B\pi$ admits a centric equivariant replacement:

\[
\begin{array}{ccc}
\mathbb{L}_{eq} & \xleftarrow{\simeq w} & \mathbb{L} & \xleftarrow{\simeq w} & |\mathcal{L}| & \xrightarrow{\kappa_p} & X \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\mathbb{E}_{eq} & \xleftarrow{\simeq w} & \mathbb{E} & \xleftarrow{\simeq w} & Y & \xrightarrow{\kappa_p} & X_{h\pi} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
B\pi & = & B\pi & = & B\pi & = & B\pi
\end{array}
\]

- It follows that $X^{h\pi} \simeq [(\mathbb{L}_{eq})^\wedge]^\wedge_{h\pi}$.

- There are bijections

\[H^1(\pi; \mathbb{L}) \cong H^1(\pi; \mathbb{L}_{eq}) \cong \pi_0((\mathbb{L}_{eq}^\wedge)^{h\pi}).\]

- Since \mathbb{E}_{eq} is a centric locality, the adjoint of the evaluation provides a mod p homotopy equivalence

\[\mathcal{C}_{\mathbb{E}_{eq}}(\sigma(\pi)) \xrightarrow{\simeq p} \text{Map}(B\pi, (\mathbb{E}_{eq})^\wedge)_{\sigma}\]
The extension $L \rightarrow E \rightarrow B\pi$ admits a centric equivariant replacement:

\[
\begin{array}{cccccc}
L_{eq} & \sim w & L & \sim w & |L| & \kappa_p \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
E_{eq} & \sim w & E & \sim w & Y & X_{h\pi} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
B\pi & \sim w & B\pi \sim w & B\pi \sim w & B\pi
\end{array}
\]

It follows that $X^{h\pi} \simeq [(L_{eq})^p]^{h\pi}$.

There are bijections

\[H^1(\pi; L) \simeq H^1(\pi; L_{eq}) \simeq \pi_0([(L^p)^h\pi]) \]

Since E_{eq} is a centric locality, the adjoint of the evaluation provides a mod p homotopy equivalence

\[
C_{E_{eq}}(\sigma(\pi)) \xrightarrow{\simeq p} \text{Map}(B\pi, (E_{eq})^p)_{\sigma}
\]
Homotopy fixed points

- The extension \(\mathbb{L} \rightarrow \mathcal{E} \rightarrow B\pi \) admits a centric equivariant replacement:

\[
\begin{array}{cccc}
\mathbb{L}_{eq} & \xleftarrow{\simeq_w} & \mathbb{L} & \xleftarrow{\simeq_w} & |\mathcal{L}| & \xrightarrow{\kappa_p} & X \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\mathcal{E}_{eq} & \xleftarrow{\simeq_w} & \mathcal{E} & \xleftarrow{\simeq_w} & \mathcal{Y} & \xrightarrow{\kappa_p} & X_{h\pi} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
B\pi & = & B\pi & = & B\pi & = & B\pi \\
\end{array}
\]

- It follows that \(X^{h\pi} \simeq \left((\mathbb{L}_{eq})_p^\wedge \right)^{h\pi} \).

- There are bijections

\[
H^1(\pi; \mathbb{L}) \simeq H^1(\pi; \mathbb{L}_{eq}) \simeq \pi_0((\mathbb{L}_p^\wedge)^{h\pi})
\]

- Since \(\mathcal{E}_{eq} \) is a centric locality, the adjoint of the evaluation provides a mod \(p \) homotopy equivalence

\[
\mathcal{C}_{\mathcal{E}_{eq}}(\sigma(\pi)) \xrightarrow{simeq_p} \text{Map}(B\pi, (\mathcal{E}_{eq})_p^\wedge)_\sigma
\]
Homotopy fixed points

- The fixed points set \((\mathbb{L}^\sigma_{\text{eq}}, S^\sigma)\) is a centric locality and the above equivalence extends to

\[
\begin{array}{ccc}
\mathbb{L}^\sigma_{\text{eq}} & \xrightarrow{\sim_p} & (\mathbb{L}_{\text{eq}})^\wedge_{\mathbb{L}} h\pi
\\
\downarrow & & \downarrow
\\
\mathbb{C}_{\mathbb{L}_{\text{eq}}}(\sigma(\pi)) & \xrightarrow{\sim_p} & \text{Map}(B\pi, (\mathbb{L}_{\text{eq}})^\wedge_{\mathbb{L}})_\sigma
\\
\downarrow & & \downarrow
\\
B\mathbb{Z}(\pi) & \xrightarrow{\sim} & \text{Map}(B\pi, B\pi)_{\text{id}}
\end{array}
\]

Theorem (B-González)

Let \((S, \mathcal{F}, \mathcal{L})\) be a \(p\)-local finite group and \(\pi\) a finite \(p\)-group. Assume that \(\pi\) acts on a classifying space \(X \simeq |\mathcal{L}|_p^\wedge\). Then,

(a) \(\pi\) acts on the locality \(\mathbb{L}(\mathcal{L})\), and

(b) if \(\mathbb{L}_{\text{eq}}\) is a centric equivariant replacement for \(\mathbb{L}(\mathcal{L})\), then

\[
X^{h\pi} \simeq \bigsqcup_{\sigma \in H^1(\pi; \mathbb{L})} (\mathbb{L}_{\text{eq}})^\wedge_{\mathbb{L}}
\]
Homotopy fixed points

- The fixed points set \((\mathbb{L}_\sigma^\sigma, S^\sigma)\) is a centric locality and the above equivalence extends to

\[
\begin{align*}
\mathbb{L}_\text{eq} & \xrightarrow{\sim^p} [((\mathbb{L}_\text{eq})_p^\wedge)^h \pi^\sigma] \\
\mathbb{C}_{\mathbb{L}_\text{eq}}(\sigma(\pi)) & \xrightarrow{\sim^p} \text{Map}(B\pi, (\mathbb{L}_\text{eq})_p^\wedge)_\sigma \\
B\mathbb{Z}(\pi) & \xrightarrow{\sim} \text{Map}(B\pi, B\pi)_{\text{Id}}
\end{align*}
\]

Theorem (B-González)

Let \((S, \mathcal{F}, \mathcal{L})\) be a \(p\)-local finite group and \(\pi\) a finite \(p\)-group. Assume that \(\pi\) acts on a classifying space \(X \simeq |\mathcal{L}|_p^\wedge\). Then,

(a) \(\pi\) acts on the locality \(\mathbb{L}(\mathcal{L})\), and

(b) if \(\mathbb{L}_\text{eq}\) is a centric equivariant replacement for \(\mathbb{L}(\mathcal{L})\), then

\[
X^h\pi \simeq \bigsqcup_{\sigma \in H^1(\pi; \mathbb{L})} [\mathbb{L}_\text{eq}^\wedge]^\sigma_p
\]
Thank you for your attention
Saturation Axioms for fusion systems

Let \mathcal{F} be a fusion system over a p-group S.

1. A subgroup $P \leq S$ is fully centralized in \mathcal{F} if $|C_S(P)| \geq |C_S(P')|$ for all $P' \leq S$ which is \mathcal{F}-conjugate to P.

2. A subgroup $P \leq S$ is fully normalized in \mathcal{F} if $|N_S(P)| \geq |N_S(P')|$ for all $P' \leq S$ which is \mathcal{F}-conjugate to P.

Definition

A fusion system \mathcal{F} over a p-group S is a saturated if the following two conditions hold:

(I) For all $P \leq S$ which is fully normalized in \mathcal{F}, P is fully centralized in \mathcal{F} and $\text{Aut}_S(P) \in \text{Syl}_p \text{Aut}_\mathcal{F}(P)$.

(II) If $P \leq S$ and $\varphi \in \text{Hom}_\mathcal{F}(P, S)$ are such that φP is fully centralized, and if we set

$$N_\varphi = \{ g \in N_S(P) | \varphi g \varphi^{-1} \in \text{Aut}_S(\varphi P) \},$$

then there is $\overline{\varphi} \in \text{Hom}_\mathcal{F}(N_\varphi, S)$ such that $\overline{\varphi}|_P = \varphi$.

Return
Centric linking systems

Given a fusion system \mathcal{F} over a finite p-group S we say that
- P is \mathcal{F}-conjugate to P' if there is an isomorphism $\varphi: P \to P'$ in \mathcal{F}.
- $P \leq S$ is \mathcal{F}-centric if all P' \mathcal{F}-conjugate to P satisfies $C_S(P') = Z(P')$.

Let \mathcal{F} be a fusion system over the p-group S. A centric linking system associated to \mathcal{F} is a category \mathcal{L} whose objects are the \mathcal{F}-centric subgroups of S, together with a functor

$$\pi: \mathcal{L} \to \mathcal{F},$$

and “distinguished” monomorphisms $P \xrightarrow{\delta_P} \text{Aut}_\mathcal{L}(P)$ for each \mathcal{F}-centric subgroup $P \leq S$, which satisfy the following conditions.
Centric linking systems

(A) π is the identity on objects and surjective on morphisms. More precisely, for each pair of objects $P, Q \in \mathcal{L}$, $Z(P)$ acts freely on $\text{Mor}_\mathcal{L}(P, Q)$ by composition (upon identifying $Z(P)$ with $\delta_P(Z(P)) \leq \text{Aut}_\mathcal{L}(P)$), and π induces a bijection

$$\text{Mor}_\mathcal{L}(P, Q)/Z(P) \xrightarrow{\simeq} \text{Hom}_\mathcal{F}(P, Q).$$

(B) For each \mathcal{F}-centric subgroup $P \leq S$ and each $g \in P$, π sends $\delta_P(g) \in \text{Aut}_\mathcal{L}(P)$ to $c_g \in \text{Aut}_\mathcal{F}(P)$.

(C) For each $f \in \text{Mor}_\mathcal{L}(P, Q)$ and each $g \in P$, the following square commutes in \mathcal{L}:

$$
\begin{array}{ccc}
P & \xrightarrow{f} & Q \\
\downarrow{\delta_P(g)} & & \downarrow{\delta_Q(\pi(f)(g))} \\
P & \xrightarrow{f} & Q
\end{array}
$$
Fusion systems

Definition

Let \((S, \mathcal{F}, \mathcal{L})\) be a \(p\)-local finite group. A self-equivalence of \(\mathcal{L}\) is called isotypical if it maps subgroups of \(S\) to isomorphic subgroups and inclusions to inclusions.

- \(\text{Aut}_{\text{typ}}(\mathcal{L})\) is the group of isotypical self-equivalences of \(\mathcal{L}\).
- \(\text{Out}_{\text{typ}}(\mathcal{L})\) is the group of isotypical self equivalences of \(\mathcal{L}\) modulo natural equivalence.
- \(\text{Aut}_{\text{typ}}(\mathcal{L})\) is the strict monoidal category with objects \(\text{Aut}_{\text{typ}}(\mathcal{L})\) and morphisms the natural equivalences

Theorem

The nerve \(\text{Nerve} \ | \text{Aut}_{\text{typ}}(\mathcal{L})|\) is a simplicial group that acts naturally on the nerve \(\text{Nerve} \ \mathcal{L}\), and

\[
\pi_i(\text{Nerve} \ \text{Aut}_{\text{typ}}(\mathcal{L})) = \begin{cases}
\text{Out}_{\text{typ}}(\mathcal{L}) & i = 1, \\
\pi_i(\text{Nerve} \ \mathcal{L}) & i = 2 \\
0 & i \geq 3
\end{cases}
\]

Furthermore, \(\text{B}\text{Nerve} \ \text{Aut}_{\text{typ}}(\mathcal{L}) \simeq B\text{aut}(\mathcal{L}^\wedge_p)\).