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Logroño, November 2016



Introduction

Objective: Use techniques of homotopical algebra to study topological

invariants for singular spaces (and in particular, for complex algebraic varieties).

We will consider the combination of three “enhancements” of cohomology:

Intersection cohomology (Goresky-MacPherson)

Restores Poincaré duality for singular spaces.

Defined for any topological pseudomanifold X 7→ IH∗
• (X;Q).

Topological invariant (not homotopy invariant!).

Rational homotopy (Quillen, Sullivan)

X ∈ Top 7→ A∗
pl(X) ∈ CDGAQ such that H∗(A∗

pl(X)) ∼= H∗(X;Q).

Contains more information than H∗(X;Q) (e.g. Massey products).

Mixed Hodge theory (Deligne)

If X is a complex algebraic variety, then Hk(X;Q) has a filtration W such

that Wm/Wm−1 “looks like” the cohomology of a compact Kähler manifold.

The weight filtration W is an algebraic invariant (not a topological invariant!)



The Kähler package

The rational cohomology H∗(X;Q) of a compact Kähler manifold X (or a

smooth projective variety) satisfies the Kähler package:

Poincaré duality.

Weak and Hard Lefschetz Theorems.

Hodge decomposition.

Hodge signature Theorem.

All the previous “enhancements” of H∗(X;Q) are trivial in this case:

IH∗• (X;Q) ∼= H∗(X;Q).

(Deligne-Griffiths-Morgan-Sullivan) Every Kähler manifold is formal:

A∗pl(X)
∼←− · · · ∼−→ H∗(X;Q).

In particular, higher order Massey products vanish.

The weight filtration W is pure: 0 = Wk−1 ⊂Wk = Hk(X;Q).



A question of Goresky

Theorem (Goresky-MacPherson, Beilinson-Bernstein-Deligne, Saito, ...)

If X = complex projective variety ⇒ IH∗m(X;Q) satisfies the Kähler package.

“It remains as open question whether there is an intersection homology analogue

to the rational homotopy theory of Sullivan. For example, one would like to

know when Massey triple products are defined in intersection homology and

whether they always vanish on a projective algebraic variety” (Goresky 84’).

Intersection homotopy theory (Chataur-Saralegi-Tanré ’14)

X pseudomanifold 7→ IA∗
•(X;Q) perverse cdga such that

H∗(IA∗
•(X)) ∼= IH∗

• (X;Q).

Contains Massey products in IH∗
• (X;Q).

It is a topological invariant (not homotopy invariant!).

(Chataur, C. ’16) Complex projective varieties with isolated singularities.

mixed Hodge theory for IA∗
•(X;Q).

Partial results of intersection-formality.



Intersection cohomology for varieties with isolated singularities

X = complex projective variety of dimension n. Σ := Sing(X).

Assume dim Σ = 0 (isolated singularities). Xreg := X − Σ.

In this case: perversity = non-negative integer.

m := n− 1 (middle perversity), t := 2n− 2 (top perversity).

IHk
p (X;R) ∼=


Hk(X;R) if k > p+ 1

Im
(
Hk(X;R) −→ Hk(Xreg;R)

)
if k = p+ 1

Hk(Xreg;R) if k ≤ p
.

Properties

IH∗
0
(X;R) ∼= H∗(X;R), where X −→ X is a normalization.

IH∞(X;R) ∼= H∗(Xreg;R).

IHk
p (X;R) ∼= IH2n−k

t−p (X;R)∨, for all p ≤ t and all k ≤ 2n.



Intersection homotopy equivalence

The modules IHk
p with the products IHk

p ⊗ IH l
q −→ IHk+l

p+q
and the maps

IHp −→ IHq for all p ≤ q, define a perverse commutative graded algebra:

commutative monoid in the category of functors from

P := (Z≥0,≥) −→ G∗(R−mod).

VC = complex projective varieties with isolated singularities and stratified

morphisms (f(Xreg) ⊂ Yreg). We have a functor

IH∗• (−;R) : VC −→ PCGAR.

A morphism f : X −→ Y is called intersection rational homotopy

equivalence if and only if f∗ : IH∗• (Y ;Q)
∼=−→ IH∗• (X;R).

This is stronger than rational homotopy equivalence.



Perverse differential graded algebras

A perverse commutative differential graded algebra (over k) is a

commutative monoid in the category of functors from P = (Z≥0,≤) to C+
k :

Bigraded k-vector spaces A∗
• = {Ai

p} with i, p ≥ 0.

linear differential d : Ai
p → Ai+1

p ,

associative product µ : Ai
p ⊗Aj

q → Ai+j

p+q
with unit η : k→ A0

0
.

a poset map Ai
q → Ai

p for every q ≤ p.

+ Leibnitz, commut. and compatibility of d and µ with poset maps:

Ap ⊗Aq

��

µ // Ap+q

��
Ap′ ⊗Aq′

µ // Ap′+q′

; Ap

��

d // Ap

��
Ap′

d // Ap′

.

Quasi-isomorphisms: morphisms f : A∗• −→ B∗• such that

f∗p : H∗(Ap)
∼=−→ H∗(Bp) for all p.

Theorem (Hovey ’09)

The category of perverse cdga’s admits a Quillen model structure with

W = quasi-isomorphisms and Fib = surjections.



Perverse algebraic model

X = complex projective variety of dimension n, Σ = Sing(X). dim Σ = 0.

L = L(Σ, X) link of Σ in X (' compact real manifold of dimension 2n− 1).

We have an inclusion ι : L ↪→ Xreg.

IA∗p(X)

y
��

// τ≤pA∗pl(L)

��
A∗pl(Xreg)

ι∗ // A∗pl(L)

.

This gives a functor IA• : VC −→ Ho(PCDGAQ) such that

H∗(IA•(X)) ∼= IH∗• (X;Q).

Properties

IA0(X) ' Apl(X), where X → X is a normalization of X.

IA∞(X) ' Apl(Xreg).

IA∗•(X) is a topological invariant of X (not homotopy invariant!).



Intersection-formality

Let Q ⊆ K. Then X is intersection-formal over K if IA∗•(X)⊗K and

IH∗• (X;K) are isomorphic in Ho(PCDGAK).

X Intersection-formal ⇒ X and Xreg formal.

Let Pn := {0, 1, · · · , 2n− 2}. We have a forgetful functor

U : PCDGAK −→ PnCDGAK

defined by forgetting all products Ap ×Aq → Ap+q such that p+ q > t.

X is GM-intersection-formal if U(IA∗•(X)⊗K) and U(IH∗• (X;K)) are

isomorphic in Ho(PnCDGAK).

GM-intersection-formality detects the vanishing of Massey products in

Goresky and MacPherson’s intersection cohomology.

GM-intersection-formal ; Xreg formal.



Mixed Hodge theory

X = complex projective variety with isolated singularities. Σ = Sing(X).

(Hironaka) There is a cartesian diagram

D

g

��

j // X̃

f

��
Σ

i // X

where X̃ is smooth projective, f iso outside Σ and D := f−1(X) SNCD.

Simplification: assume D is smooth (e.g. ordinary isolated singularities).

Restriction morphism js : Hs(X̃;Q)→ Hs(D;Q).

Gysin map γs : Hs−2(D;Q)→ Hs(X̃;Q).

Er,s1 (Xreg) :=

��

Hs−2(D;Q)

Id

��

γs

// Hs(X̃;Q)

js

��
Er,s1 (L) := Hs−2(D;Q)

js◦γs

// Hs(D;Q)

r = −1 r = 0



Mixed Hodge theory

(Deligne / Durfee) E2(Xreg) ∼= H∗(Xreg;Q) and E2(L) ∼= H∗(L;Q) are

independent of the chosen resolutions.

The map H∗(X̃)×H∗(D) −→ H∗(D) given by (x, a) 7→ j∗(x) · a and the

cup products of H∗(X̃) and H∗(D) make E1(Xreg) into a cdga.

Same for E1(L) with the cup product of H∗(D).

Theorem (Chataur, C.)

The morphism E1(ι) : E1(Xreg)⊗ C −→ E1(L)⊗ C is a model of the

morphism ι : Apl(Xreg)⊗ C −→ Apl(L)⊗ C.

The (complex) intersection homotopy type of X is encoded in the perverse

weight spectral sequence:

IE∗1,p(X)

y
��

// τ≤pE
∗,∗
1 (L)

��
E∗,∗1 (Xreg)

ι∗ // E∗,∗1 (L)

.



Mixed Hodge theory

A mixed Hodge diagram A for a topological space X is a filtered cdga

(AQ,W ), such that AQ ' Apl(X), a bifiltered cdga (AC,W, F ) and a string

of quasi-isomorphisms

(AQ,W )⊗ C ∼←− · ∼−→ (AC,W ).

+ axioms making its cohomology into a graded mixed Hodge structure.

Idea of proof.

(Morgan) ∃ a mixed Hodge diagram A(Xreg) for Xreg.

(Durfee-Hain) ∃ a mixed Hodge diagram A(L) for L.

(C.-Guillén) If A −→ B is a morphism of mixed Hodge diagrams then

AC

��

M
∼oo ∼ //

��

E1(AC,W )

��
BC M ′

∼oo ∼ // E1(BC,W )

Use Navarro-Aznar’s simple sTW : ∆MHD −→ MHD to describe

E1(AQ(Xreg)) ' E1(Xreg) and E1(AQ(L)) ' E1(L).



Applications

How to use this to study intersection-formality?

Try to build a morphism of perverse cdga’s

IE∗,∗1,• (X)
∼←− · ∼−→ IE∗,∗2,• (X) ∼= IH∗• (X;Q).

This will give IA•(X)⊗ C ∼←− · ∼−→ IH∗• (X;C).

Corollary

If the weight filtration on IHk(X;Q) is trivial (pure of weight k), for all k ≥ 0,

then X is intersection-formal over C.

Examples:

Complex projective varieties whose cohomology satisfies Poincaré duality.

Complex projective varieties that are Q-homology manifolds.

Weighted projective spaces, V -manifolds, Cayley Cubic, Kummer surface.



Applications

By purely topological reasons, every simply connected projective surface is

GM-intersection-formal.

(Simpson, Kapovich, Kollár) There exist non-formal projective surfaces.

Theorem (Chataur, C.)

Every complex projective surface with isolated singularities X is

GM-intersection-formal over C. If X as only one singular point, then Xreg is

also formal and X is intersection-formal over C.



Applications

Theorem (Chataur, C.)

Let X be a complex projective variety of dimension n with isolated singularities

Σ = Sing(X).

(1) If the link of σ in X is (n− 2)-connected for all σ ∈ Σ then X is formal

over Q.

(2) If the singularities are ordinary, then X is GM-intersection-formal over C.

(3) If Σ = {∗} then Xreg is formal over Q and X is intersection-formal over C.

Examples where (1) applies:

Hypersurfaces with isolated singularities and complete intersections.

Y ↪→ X closed immersion with Sing(X) ⊂ Y . Then X/Y is formal.



Example: the Segre cubic

S :
{
x0 + x1 + x2 + x3 + x4 + x5 = 0, x30 + x31 + x32 + x33 + x34 + x35 = 0

}
.

Projective threefold with 10 ordinary isolated singular points.

Real representation of the Segre cubic



Example: the Segre cubic

Resolution of the Segre cubic:

D =
⊔

10 CP1 × CP1

g

��

j //M0,6

f

��
Σ = {10 pts } i // S

Non-trivial Betti numbers of M0,6: b0 = b6 = 1 and b2 = b4 = 16.

For σi ∈ Σ, Li := L(σi, X) ' S2 × S3.

H∗(S;Q) ∼=

Q
0

Ker(j4) ∼= Q6

Coker(j2) ∼= Q5

Ker(j2) ∼= Q
0

Q

js : Hs(M0,6;Q)→ Hs(D;Q)

denotes the restriction map

π2 ∼= Q, π3 ∼= π4 ∼= Q5,

π5 ∼= Q15, π6 ∼= Q50

π7 ∼= Q116,· · ·



Example: the Segre cubic

IH∗p (S;Q) ∼=

0 ≤ p ≤ 1

Q

0

H2(S;Q)∨ ⊕ Exc∨

V an

H2(S;Q)

0

Q

;

p = 2

Q

0

H2(S;Q)∨ ⊕ Exc∨

0

H2(S;Q)⊕ Exc

0

Q

;

3 ≤ p ≤ 4

Q

0

H2(S;Q)∨

V an∨

H2(S;Q)⊕ Exc

0

Q

V an := H3(S;Q) ∼= Coker(j2) ∼= Q5.

γs : Hs−2(D;Q)→ Hs(M0,6;Q) is the Gysin map.

Exc ∼= Q5 is defined via the decomposition

H2(M0,6;Q) ∼= Ker(j2)⊕ Coker(γ2)⊕ Exc.



Thank you!


