Algunos aspectos computacionales

en geometría algebraica

Philippe Gimenez (Universidad de Valladolid)

Algunos aspectos computacionales

en geometría algebraica

Philippe Gimenez (Universidad de Valladolid)

Basado en un proyecto común con

Isabel Bermejo (Universidad de La Laguna)

Part I:

Basic computations in algebraic geometry

- dimension and Hilbert function
- syzygies
- projective dimension and depth, regularity

Dimension and Hilbert function (polynomial and series)

Let K be an arbitrary field and $R = K[x_0, \ldots, x_n]$ the polynomial ring in n + 1 variables. Consider $I \subset R$, a **homogeneous** ideal.

Dimension and Hilbert function (polynomial and series)

Let K be an arbitrary field and $R = K[x_0, \ldots, x_n]$ the polynomial ring in n + 1 variables. Consider $I \subset R$, a **homogeneous** ideal.

KEY IDEA: 'Reduce questions on arbitrary ideals to questions on monomial ideals which are much easier (in fact, often combinatorial in nature)'. [Decker-Lossen, 2006]

Dimension and Hilbert function (polynomial and series)

Let K be an arbitrary field and $R = K[x_0, ..., x_n]$ the polynomial ring in n + 1 variables. Consider $I \subset R$, a **homogeneous** ideal.

KEY IDEA: 'Reduce questions on arbitrary ideals to questions on monomial ideals which are much easier (in fact, often combinatorial in nature)'. [Decker-Lossen, 2006]

KEY INGREDIENTS:

• Gröbner basis (and Buchberger's algorithm) in order to determine in (I), the initial ideal of I w.r.t. some monomial ordering.

• Macaulay's theorem (1927): R/I and R/in(I) have the same Hilbert function (polynomial and series).

In particular, dim $R/I = \dim R/\operatorname{in}(I)$ which is easy to compute (see [Cox-Little-O'Shea, 92]).

Finer numerical information: syzygies

Consider a minimal graded free resolution (m.g.f.r.) of I,

$$0 \to \bigoplus_{j} R(-j)^{\beta_{p,j}} \xrightarrow{\phi_{p}} \cdots \xrightarrow{\phi_{2}} \bigoplus_{j} R(-j)^{\beta_{1,j}} \xrightarrow{\phi_{1}} \bigoplus_{j} R(-j)^{\beta_{0,j}} \xrightarrow{\phi_{0}} I \to 0.$$

The $\beta_{i,j} \neq 0$ are the **graded Betti numbers** of I (and setting

 $\beta_i := \sum_j \beta_{i,j}$, one has that β_0, \ldots, β_p are its **Betti numbers**).

This is a finer numerical information because one gets the Hilbert function of R/I from $\{\beta_{i,j}(I)\}$, the set of Betti numbers of I.

A g.f.r. of in (I) –in particular a minimal one– can be 'lifted' to a g.f.r. of I –not minimal in general–

$$\Rightarrow \quad \beta_{i,j}(I) \leq \beta_{i,j}(\operatorname{in}(I)), \ \forall i,j \ .$$

Equality does not hold in general.

Construction of a minimal graded free resolution

Buchberger's algorithm also gives the first syzygies of a module and hence provides a minimal graded free resolution.

EXAMPLE. Consider the ideal $I \subset \mathbb{Q}[x_0, \dots, x_3]$ generated by $x_0^2 - 3x_0x_1 + 5x_0x_3, \ x_0x_1 - 3x_1^2 + 5x_1x_3, \ x_0x_2 - 3x_1x_2,$ $2x_0x_3 - x_1x_3, \ x_1^2 - x_1x_2 - 2x_1x_3.$

For the reverse lexicographic order, in $(I) = (x_0^2, x_0x_1, x_0x_2, x_0x_3, x_1^2, x_1x_2x_3)$, and the m.g.f.r. of I and in (I) are

$$0 \longrightarrow R(-4)^2 \longrightarrow R(-3)^6 \longrightarrow R(-2)^5 \longrightarrow I \longrightarrow 0$$

Projective dimension and depth, regularity

$$0 \to \bigoplus_{j} R(-j)^{\beta_{p,j}} \xrightarrow{\phi_p} \cdots \xrightarrow{\phi_1} \bigoplus_{j} R(-j)^{\beta_{0,j}} \xrightarrow{\phi_0} I \to 0.$$

DEFINITION. The size of a the minimal resolution is given by

- the projective dimension of I, pd(I) := p, and
- the Castelnuovo-Mumford regularity of I,

reg (I) := max{
$$j - i$$
 such that $\beta_{i,j} \neq 0$ }.

By the Auslander-Buchsbaum formula, depth (R/I) = n - pd(I)and hence

$$\begin{array}{rrr} \operatorname{reg}(I) &\leq & \operatorname{reg}(\operatorname{in}(I)) \\ \operatorname{pd}(I) &\leq & \operatorname{pd}(\operatorname{in}(I)) \\ \operatorname{depth}(R/I) &\geq & \operatorname{depth}(R/\operatorname{in}(I)). \end{array}$$

Part II:

Computation of the regularity

- Bayer and Stillman
- monomial ideals of nested type
- projective changes of coordinates
- implementation of the algorithms

One would like to find some conditions (C) such that:

• When I satisfies (C), $\operatorname{reg}(I) = \operatorname{reg}(\operatorname{in}(I))$ and $\operatorname{depth}(R/I) = \operatorname{depth}(R/\operatorname{in}(I)).$

One would like to find some conditions (C) such that:

- When I satisfies (C), $\operatorname{reg}(I) = \operatorname{reg}(\operatorname{in}(I))$ and depth $(R/I) = \operatorname{depth}(R/\operatorname{in}(I))$.
- When I satisfies (C), in (I) should have 'good' properties that make easy the computation of reg (in (I)) and depth (R/in (I)).

One would like to find some conditions (C) such that:

- When I satisfies (C), $\operatorname{reg}(I) = \operatorname{reg}(\operatorname{in}(I))$ and $\operatorname{depth}(R/I) = \operatorname{depth}(R/\operatorname{in}(I)).$
- When I satisfies (C), in (I) should have 'good' properties that make easy the computation of reg (in (I)) and depth (R/in (I)).
- One should easily **check** when conditions **(C)** are satisfied.

One would like to find some conditions (C) such that:

- When I satisfies (C), $\operatorname{reg}(I) = \operatorname{reg}(\operatorname{in}(I))$ and $\operatorname{depth}(R/I) = \operatorname{depth}(R/\operatorname{in}(I)).$
- When I satisfies (C), in (I) should have 'good' properties that make easy the computation of reg (in (I)) and depth (R/in (I)).
- One should easily **check** when conditions **(C)** are satisfied.
- Given a homogeneous ideal *I* that does not satisfy (C), one should get an ideal satisfying (C) making some projective change of coordinates (which?).

From now on, the monomial order is the **reverse lexicographic** order. Denote by $d := \dim R/I$ and by $I^{\text{sat}} := I : (x_0, \dots, x_n)^{\infty}$.

[BS87] D. Bayer and M. Stillman.
 A criterion for detecting *m*-regularity.
 Invent. Math. 87:1–11, 1987.

The **BS-Conditions:** x_n is a nzd (nonzero divisor) on R/I^{sat} , x_{n-1} is a nzd on $R/(I, x_n)^{\text{sat}}$, ...

 $\forall i, n \geq i \geq n-d+1, x_i \text{ is a nzd on } R/(I, x_n, \dots, x_{i+1})^{\text{sat}}.$

THEOREM ([BS87]). If *I* satisfies the BS-Conditions then

reg (I) = reg (in (I))depth (R/I) = depth (R/in (I)).

THEOREM ([BS87]).

Let $I \subset R := K[x_0, \ldots, x_n]$ be a homogeneous ideal.

- I satisfies the BS-Conditions \Leftrightarrow in (I) does.
- There is a dense Zariski open subset U ⊂ GL(n + 1, K) such that in (φ(I)) is constant and Borel fixed for φ ∈ U (Galligo, 74) (generic initial ideal, Gin (I))

and Borel fixed ideals satisfy the BS-Conditions.

- If the characteristic of K is 0 and I is Borel fixed, then
 - * pd(R/I) = p where p is the least integer such that none of the minimal generators of I involve x_{p+1}, \ldots, x_n , and hence depth (R/I) = n - p.

* reg (I) = maxdeg (I).

• Choose randomly an element φ in GL(n+1, K) and compute in $(\varphi(I))$, which is (hopefully!) Gin (I).

- Choose randomly an element φ in GL(n+1, K) and compute in $(\varphi(I))$, which is (hopefully!) Gin (I).
- reg (I) = maxdeg (Gin(I)) and depth (R/I) = n p where p is the least integer such that none of the m.g. of Gin(I) involve x_{p+1}, \ldots, x_n if Char (K) = 0.

- Choose randomly an element φ in GL(n+1, K) and compute in $(\varphi(I))$, which is (hopefully!) Gin (I).
- reg (I) = maxdeg (Gin (I)) and depth (R/I) = n p where p is the least integer such that none of the m.g. of Gin (I) involve x_{p+1}, \ldots, x_n if Char (K) = 0.

PROBLEMS.

- Choose randomly an element φ in GL(n+1, K) and compute in $(\varphi(I))$, which is (hopefully!) Gin (I).
- reg (I) = maxdeg (Gin (I)) and depth (R/I) = n p where p is the least integer such that none of the m.g. of Gin (I) involve x_{p+1}, \ldots, x_n if Char (K) = 0.

PROBLEMS.

• Probabilistic algorithm : no test for Gin(I).

- Choose randomly an element φ in GL(n+1, K) and compute in $(\varphi(I))$, which is (hopefully!) Gin (I).
- reg (I) = maxdeg (Gin(I)) and depth (R/I) = n p where p is the least integer such that none of the m.g. of Gin(I) involve x_{p+1}, \ldots, x_n if Char(K) = 0.

PROBLEMS.

- Probabilistic algorithm : no test for Gin(I).
- Char(K) > 0?

- Choose randomly an element φ in GL(n+1, K) and compute in $(\varphi(I))$, which is (hopefully!) Gin (I).
- reg (I) = maxdeg (Gin(I)) and depth (R/I) = n p where p is the least integer such that none of the m.g. of Gin(I) involve x_{p+1}, \ldots, x_n if Char (K) = 0.

PROBLEMS.

- Probabilistic algorithm : no test for Gin(I).
- Char(K) > 0?
- in $(\varphi(I))$ can not be obtained in general.

Monomial ideals of nested type

One would like to

- compute depth and regularity of monomial ideals satisfying the BS-conditions,
- check easily when a monomial ideal satisfies the BS-conditions,
- in general, find 'smaller' changes of coordinates (not the generic ones) that put variables in the correct position.

[BG06] I. Bermejo and P.G. Saturation and Castelnuovo-Mumford regularity. J. Algebra **303**: 592–617, 2006.

Let $I \subset R = K[x_0, ..., x_n]$ be a monomial ideal with $d := \dim R/I$ (*K* arbitrary field).

DEFINITION/PROPOSITION ([BG06]). *I* is **of nested type** if one of the following equivalent properties holds:

- 1. *I* satisfies the BS-Conditions.
- 2. For any prime ideal $\mathfrak{p} \subset R$ associated to *I*, there exists $i \in \{0, \ldots, n\}$ such that $\mathfrak{p} = (x_0, \ldots, x_i)$.

3. •
$$\forall i \in \{0, \dots, n-d\}, \exists k_i \geq 1 \text{ such that } x_i^{k_i} \in I \&$$

• $I : (x_n)^{\infty} \subseteq I : (x_{n-1})^{\infty} \subseteq \dots \subseteq I : (x_{n-d+1})^{\infty}.$

4. $\forall i \in \{0, ..., n\}, I : (x_i)^{\infty} = I : (x_0, ..., x_i)^{\infty}.$

EXAMPLE. Any Borel fixed ideal is of nested type (K arbitrary).

Let $I \subset R$ be a **monomial ideal of nested type** and let p be the least integer such that no min. gen. of I involves x_{p+1}, \ldots, x_n .

PROPOSITION. pd(R/I) = p, and hence depth(R/I) = n - p.

THEOREM ([BG06]). Set $d := \dim R/I$.

• reg (I) = max{ sat
$$(I \cap K[x_0, ..., x_p])$$
,
sat $(I|_{x_p=1} \cap K[x_0, ..., x_{p-1}])$,
sat $(I|_{x_{p-1}=1} \cap K[x_0, ..., x_{p-2}])$,
:

sat
$$(I|_{x_{n-d+1}=1} \cap K[x_0, \dots, x_{n-d}])$$
 }

where the **satiety** sat(J) of a homogeneous ideal $J \subset R$ is the least integer m such that, for all $s \ge m$, $J_s = (J^{\text{sat}})_s$. Moreover, sat(J) = $\max_{1 \le i \le r} \{ \deg(h_i); h_i \notin J \} + 1$ where h_1, \ldots, h_r are homogeneous and $J : (x_0, \ldots, x_n) = (h_1, \ldots, h_r)$.

• reg $(I) = \max\{ \operatorname{reg}(\mathfrak{q}_i); 1 \le i \le r \}$ where $I = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_r$ is the (unique) irredundant irreducible decomposition of I.

Computation of reg(I) when in(I) is of nested type

If K is arbitrary and $I \subset R = K[x_0, ..., x_n]$ is a homogeneous ideal such that in (I) is of nested type, depth (R/I) and reg (I) are obtained using the results in [BS87] and the previous formulae from [BG06]. This occurs for example when

- $\dim R/I = 0$, or
- R/I Cohen-Macaulay & $K[x_{n-d+1}, \ldots, x_n]$ is a N.N. of R/I, or
- dim R/I = 1 & $K[x_n]$ is a Noether Normalization of R/I, or
- dim R/I = 2, $K[x_{n-1}, x_n]$ is a N.N. of R/I & I prime (e.g., if I is the defining ideal of a projective toric curve).

Recall that if $J \subset R$ is an ideal with dim R/J = d, one has that $K[x_{n-d+1}, \ldots, x_n]$ is a **Noether Normalization** of R/J if $K[x_{n-d+1}, \ldots, x_n] \hookrightarrow R/J$ is an integral ring extension.

EXAMPLE. Let $I \subset \mathbb{C}[x_0, \ldots, x_4]$ be the defining ideal of the projective monomial curve parametrically defined by

$$x_0 = s^5 t^{15}, x_1 = s^9 t^{11}, x_2 = s^{11} t^9, x_3 = s^{20}, x_4 = t^{20}.$$

One knows before hand that in(I) is of NT. One has that

$$in(I) = (x_0^4, x_1^3, x_2^5, x_1x_2, x_0x_2^3, x_0^3x_1^2, x_0^3x_1x_3)$$

$$= (x_0, x_1^3, x_2^3)$$

$$\cap (x_0^4, x_1^3, x_2)$$

$$\cap (x_0^2, x_1, x_2^5)$$

$$\cap (x_0, x_1^2, x_2^5, x_3)$$

and hence

reg (I) = max{0+2+2, 3+2+0, 1+0+4, 0+1+4+0} + 1 = 6. **REMARK.** If dim $R/I = 2 \& K[x_{n-1}, x_n]$ is a N.N. of R/I, in (I) may not be of nested type and one can have reg (I) \neq reg (in (I)).

[BG00] I. Bermejo and P.G.
 On Castelnuovo-Mumford regularity of projective curves.
 Proc. Amer. Math. Soc. 128: 1293–1299, 2000.

EXAMPLE ([BG00, Rmk 2.10]). $I \subset R = \mathbb{Q}[x_0, ..., x_3]$

$$I = (x_0^2 - 3x_0x_1 + 5x_0x_3, x_0x_1 - 3x_1^2 + 5x_1x_3, x_0x_2 - 3x_1x_2, 2x_0x_3 - x_1x_3, x_1^2 - x_1x_2 - 2x_1x_3).$$

Then in $(I) = (x_0^2, x_0x_1, x_0x_2, x_1^2, x_1x_2x_3)$ and

•
$$reg(I) = 2 < reg(in(I)) = 3$$

• depth (R/I) = 1 > depth (R/in (I)) = 0.

Computation of reg (I) when $K[x_{n-d+1}, ..., x_n]$ is a N.N.

Set $N := \frac{d(d-1)}{2}$. For $\gamma = (\gamma_1, \dots, \gamma_N) \in \mathbb{A}_K^N$, consider the homogeneous linear transformation $\Psi(\gamma) : R \to R$ defined by:

THEOREM ([BG06]). There is a dense Zariski open subset \mathcal{U} of \mathbb{A}_{K}^{N} such that in $(\Psi(\gamma)(I))$ is constant and of nested type for $\gamma \in \mathcal{U}$. We call it the **monomial ideal of nested type** associated to I and denote it by N(I).

EXAMPLE ([BG00, Rmk 2.10]). In the previous example, in $(I) = (x_0^2, x_0x_1, x_0x_2, x_0x_3, x_1^2, x_1x_2x_3)$ is not of NT. Applying a change of coordinate of the form $\Psi : R \to R$, $x_3 \mapsto x_3 + \gamma x_2$, one gets that $N(I) := in(\Psi(I)) = (x_0^2, x_0x_1, x_0x_2, x_1^2, x_1x_2) = (x_0, x_1) \cap (x_0, x_1^2, x_2) \cap (x_0^2, x_1, x_2)$, and hence reg (I) = 2.

How do we know that we have a N.N. in this example?

[BG01] I. Bermejo and P.G. Computing the Castelnuovo-Mumford regularity of some subschemes of \mathbb{P}^n_K using quotients of monomial ideals. J. Pure Appl. Algebra **164**: 23–33, 2001.

LEMMA (Noether normalization test, [BG01]). If

- in (1) contains powers of the variables x_0, \ldots, x_{n-d} and
- any monomial in (I) involves at least one of these variables,

then $d = \dim R/I$ and $K[x_{n-d+1}, \ldots, x_n]$ is a N.N. of R/I.

EXAMPLE. In the previous example, $I \subset R = \mathbb{Q}[x_0, \dots, x_3]$ and

in (I) =
$$(x_0^2, x_0x_1, x_0x_2, x_0x_3, x_1^2, x_1x_2x_3)$$

and hence $\mathbb{Q}[x_2, x_3]$ is a N.N. of R/I.

In next example, we know before hand that we have a N.N.:

BIG EXAMPLE. Let $I \subset R = \mathbb{C}[x_0, \ldots, x_{10}]$ be the defining ideal of the 3-dimensional projective toric variety $\mathcal{V} \subset \mathbb{P}^{10}_{\mathbb{C}}$ defined by

$$\begin{aligned} x_0 &= st^6 u^4 v^4, \, x_1 = st^4 u^3 v^7, \, x_2 = u^{11} v^4, \, x_3 = s^6 t^3 u^4 v^2, \\ x_4 &= st^7 u v^6, \, x_5 = tu^{10} v^4, \, x_6 = s^3 t^3 u^3 v^6, \\ x_7 &= s^{15}, \, x_8 = t^{15}, \, x_9 = u^{15}, \, x_{10} = v^{15}. \end{aligned}$$

The ideal I is generated by 389 binomials of degree ≤ 17 .

In next example, we know before hand that we have a N.N.:

BIG EXAMPLE. Let $I \subset R = \mathbb{C}[x_0, \ldots, x_{10}]$ be the defining ideal of the 3-dimensional projective toric variety $\mathcal{V} \subset \mathbb{P}^{10}_{\mathbb{C}}$ defined by

$$x_{0} = st^{6}u^{4}v^{4}, x_{1} = st^{4}u^{3}v^{7}, x_{2} = u^{11}v^{4}, x_{3} = s^{6}t^{3}u^{4}v^{2},$$
$$x_{4} = st^{7}uv^{6}, x_{5} = tu^{10}v^{4}, x_{6} = s^{3}t^{3}u^{3}v^{6},$$
$$x_{7} = s^{15}, x_{8} = t^{15}, x_{9} = u^{15}, x_{10} = v^{15}.$$

The ideal *I* is generated by 389 binomials of degree ≤ 17 . Using the implementation of our results in the Singular library mregular.lib we get that depth (R/I) = 1 and reg (I) = 29.

I. Bermejo, P.G. and G.-M. Greuel. mregular.lib, a **Singular** library for computing the regularity of a homogeneous ideal. Available at **http://www.singular.uni-kl.de**, 2007.

D. Grayson and M. Stillman. **Macaulay2** a software system for research in Algebraic Geometry. Available at http://www.math.uiuc.edu/Macaulay2, 2008.

Computation of reg(I) in general.

Set $N := dn - \frac{d(d-1)}{2}$. For $\gamma = (\gamma_1, \dots, \gamma_N) \in \mathbb{A}_K^N$, consider the homogeneous linear transformation $\Psi(\gamma) : R \to R$ defined by:

THEOREM ([BG06]). There is a dense Zariski open subset \mathcal{U} of \mathbb{A}_{K}^{N} such that in $(\Psi(\gamma)(I))$ is constant and of nested type for $\gamma \in \mathcal{U}$. We call it the **monomial ideal of nested type** associated to I and denote it by N(I).

EXAMPLE. Let $I \subset R = \mathbb{Q}[x_0, \ldots, x_8]$ be the monomial ideal generated by all the squarefree monomials of degree 2. Then $d = \dim R/I = 1$ and applying a change of coordinate of the form $\Psi : R \to R$, $x_8 \mapsto x_8 + \gamma_1 x_7 + \ldots + \gamma_8 x_0$, one gets that $N(I) := \ln(\Psi(I)) = (x_0, \ldots, x_7)^2$ and hence reg(I) = 2.

Consequence: a new algorithm for Noether normalization.

If $d = \dim R/I$, one has that

in (I) is
of N.T.
$$\Leftrightarrow \begin{cases} x_0^{k_0}, \dots, x_{n-d}^{k_{n-d}} \in \text{in}(I) \text{ for } k_0, \dots, k_{n-d} \ge 1 \\ \text{and} \\ \text{in}(I) : (x_n)^{\infty} \subseteq \dots \subseteq \text{in}(I) : (x_{n-d+1})^{\infty} \\ \end{cases}$$

$$\begin{array}{c|c} K[x_{n-d+1},\ldots,x_n] \\ \text{is a N.N. of } R/I \end{array} \Leftrightarrow x_0^{k_0},\ldots,x_{n-d}^{k_{n-d}} \in \text{in } (I) \text{ for } k_0,\ldots,k_{n-d} \ge 1 \end{array}$$

Thus the previous linear transformation put variables in **Noether position**. This improves the usual triangular changes of coordinates (see previous example).

REMARK. If works also in the nonhomogeneous context.

Part III:

A theoretical application

- monomial varieties of codimension 2
- a closed formula for the regularity
- upper bounds (Eisenbud-Goto conjecture)
- classification of the extremal case

[BGM06]

I. Bermejo, P.G. and M. Morales. Castelnuovo-Mumford regularity of projective monomial varieties of codimension two. *J. Symbolic Comput.* **41**: 1105–1124, 2006.

Monomial varieties of codimension two.

DEFINITION. Let K be an algebraically closed field. A **projective monomial variety** V of codimension 2 is defined parametrically

$$x_1 = u_1^a, \dots, x_n = u_n^a,$$

 $z = u_1^{b_1} \cdots u_n^{b_n}, \quad y = u_1^{c_1} \cdots u_n^{c_n},$

where a > 0 is an integer and $\mathbf{b} = (b_1, \dots, b_n), \mathbf{c} = (c_1, \dots, c_n)$ are two vectors in \mathbb{N}^n such that $\mathbf{b} \neq \mathbf{c}$, $\sum_{j=1}^n b_j = \sum_{j=1}^n c_j = a$, and $(b_j, c_j) \neq (0, 0)$ with $b_j, c_j < a$ for all $j \in \{1, \dots, n\}$.

Let $I(\mathcal{V}) \subset R := K[z, y, x_1, \dots, x_n]$ be the defining ideal of \mathcal{V} and \mathcal{G} its reduced Gröbner basis w.r.t. the reverse lexicographic order.

PROPOSITION([M95]). 1. \mathcal{G} is a min. syst. of gen. of $I(\mathcal{V})$.

- 2. $n-1 \leq \operatorname{depth}(R/I(\mathcal{V})) \leq n$.
- 3. depth $(R/I(\mathcal{V})) = n$ if and only if $\#\mathcal{G} \leq 3$.

A closed formula for reg(V) := reg(I(V)), the regularity of V.

THEOREM([BGM06]). 1. If \mathcal{V} is a **complete intersection** then reg $(\mathcal{V}) = \deg h_0 + \deg h_1 - 1$ where $\mathcal{G} = \{h_0, h_1\}$.

2. If \mathcal{V} is arithmetically Cohen-Macaulay and is not a complete intersection, denote by h_0, h_1, h_2 the elements of \mathcal{G} where the leading terms of h_0 and h_1 are pure powers of z and y resp. Then, reg (\mathcal{V}) = max{deg h_0 + deg_y h_2 , deg h_1 + deg_z h_2 } - 1.

3. If \mathcal{V} is **not arithmetically Cohen-Macaulay**, consider the partition $\mathcal{G} = \mathcal{G}_1 \cup \mathcal{G}_2$ where \mathcal{G}_2 is formed by the elements of \mathcal{G} whose leading term involves the variable y. If $\mathcal{G}_1 = \{g_0, \ldots, g_r\}$ and $\mathcal{G}_2 = \{f_0, \ldots, f_s\}$ where the elements in both sets have been ordered by decreasing degree in the variable z of their leading term, denote by $\ell(i)$ the least integer $j \leq s$ such that $\deg_z(f_j) \leq \deg_z(g_i)$ for all $i \in \{0, \ldots, r\}$. Then,

 $\operatorname{reg}(\mathcal{V}) = \max_{1 \le i \le r} \{ \deg g_i + \max\{ \deg f_{\ell(i)}, \deg f_{\ell(i-1)} \} \} - 2.$

Sketch of the Proof.

 $\bullet \ \mathcal{G}$ is explicitly described in

[M95] M. Morales.
 Équations des variétés monomiales en codimension deux.
 J. Algebra 175:1082–1095, 1995.

• When \mathcal{V} is a.C.-M., in $(I(\mathcal{V}))$ is of nested type.

• When \mathcal{V} is not a.C.-M., in $(I(\mathcal{V}))$ is not of nested type, but one can describe $N(I(\mathcal{V}) + x_n)$, the monomial ideal of nested type associated to $I(\mathcal{V}) + x_n$.

• It turned out to be a monomial ideal involving only the 3 variables z, y, x_1 and the result follows from the explicit description of its irredundant irreducible decomposition.

Bounds for the regularity.

The m.g.f.r. of codimension 2 lattice ideals is described in:

[PS98] I. Peeva and B. Sturmfels.
 Syzygies of codimension 2 lattice ideals.
 Math. Z. 229:163–194, 1998.

Some results are deduced for the regularity of this class of ideals that include our $I(\mathcal{V})$. In particular:

- reg $(\mathcal{V}) \leq 2 \max \deg I(\mathcal{V}) 2$ whenever \mathcal{V} is not a complete intersection.
- reg $(\mathcal{V}) \leq \deg \mathcal{V} 1$ (Eisenbud-Goto bound).

These results are recovered from our formula.

Classification of varieties where equality holds.

THEOREM([BGM06]). The projective monomial varieties $\mathcal{V} \subset \mathbb{P}^{n+1}_{K}$ of codimension two satisfying that reg (\mathcal{V}) = deg $\mathcal{V} - 1$ are:

• For all $d \ge 3$, the smooth monomial curve in \mathbb{P}^3_K of degree d, i.e., the monomial curves in \mathbb{P}^3_K defined by

$$z = u_1 u_2^{d-1}, y = u_1^{d-1} u_2, x_1 = u_1^d, x_2 = u_2^d.$$

- The C.I. monomial curve in \mathbb{P}^3_K of degree 4 defined by $z = u_1^2 u_2^2, y = u_1^3 u_2, x_1 = u_1^4, x_2 = u_2^4.$
- The C.I. monomial surface in \mathbb{P}^4_K of degree 4 defined by

$$z = u_2^2 u_3^2, y = u_1^2 u_2 u_3, x_1 = u_1^4, x_2 = u_2^4, x_3 = u_3^4.$$

• The C.I. monomial surface in \mathbb{P}^4_K of degree 4 defined by

$$z = u_2 u_3, y = u_1 u_2, x_1 = u_1^2, x_2 = u_2^2, x_3 = u_3^2$$

• The C.I. monomial variety in \mathbb{P}^5_K of degree 4 defined by $z = u_3 u_4, y = u_1 u_2, x_1 = u_1^2, x_2 = u_2^2, x_3 = u_3^2, x_4 = u_4^2.$