page 1 -

A constructive approach to Zariski Main Theorem

MAP meeting, Logroño, november 2010

H. Lombardi, Besançon. joint work with T. Coquand, Göteborg. and MariEmi Alonso, Madrid Henri.Lombardi@univ-fcomte.fr, http://hlombardi.free.fr

A printable version of these slides:

http://hlombardi.free.fr/publis/MAPLogronoDoc.pdf

page 2-

Abstract

Zariski Main Theorem. We study the constructive formulation and the constructive meaning of ZMT and some consequences.

Outline

- 1. Isolated zeroes, field case
- 2. Isolated zeroes, local case
- 3. Isolated zeroes, general case
- 4. Simple zeroes, field case
- 5. Simple zeroes, local case
- 6. Multidimensional Hensel Lemma

page 3 -

0. Isolated zeroes, preliminaries

Let **A** be a commutative ring, f_1, \ldots, f_s polynomials in $\mathbf{A}[X_1, \ldots, X_n]$. To this polynomial system is associated the **quotient algebra**

$$\mathbf{B} = \mathbf{A}[X_1, \dots, X_n] / \langle f_1, \dots, f_s \rangle = \mathbf{A}[x_1, \dots, x_n].$$

This is a general finitely presented **A**-algebra. We shall speak of a **fp-algebra**. A zero $\underline{a} = (a_1, \ldots, a_n)$ of the polynomial system in an A-algebra C corresponds to a morphism $\varphi_a : \mathbf{B} \to \mathbf{C}$ sending x_i to a_i $(i = 1, \ldots, n)$.

We are interested in "isolated zeros" of polynomial systems.

Isolated zeroes, preliminaries

If $\underline{a} = (a_1, \ldots, a_n)$ is a zero of **B** with coordinates in **A** we consider:

the ideal of \underline{a} : $\mathfrak{m}_{\underline{a}} = \langle x_1 - a_1, \dots, x_n - a_n \rangle \subseteq \mathbf{B}^n$

the local algebra at \underline{a} : $(1 + \mathfrak{m}_{\underline{a}})^{-1}\mathbf{B} = \mathbf{B}_{1+\mathfrak{m}_{\underline{a}}}$

Recall what is a **local ring**:

a commutative ring for which x + y invertible implies

x invertible or y invertible.

In a ring ${\bf C}$ the Jacobson radical is the ideal

$$\operatorname{Rad}(\mathbf{C}) = \left\{ x \in \mathbf{C} \, | \, 1 + x\mathbf{C} \subseteq \mathbf{C}^{\times} \right\} \subseteq \mathbf{C}.$$

The quotient C/RadC is the **residue ring**. When C is a local ring, the residue algebra is a **field**: a local ring whose Jacobson radical is reduced to 0.

page 5-

1. Isolated zeroes, field case

Discrete field: commutative ring \mathbf{k} with:

every element is 0 or invertible.

Zerodimensional reduced ring (Von Neuman regular ring): commutative ring \mathbf{k} with:

for each element x there is an idempotent e_x such that

x = 0 modulo e_x and x is invertible modulo $1 - e_x$.

Zerodimensional ring: commutative ring \mathbf{k} with:

for each element x there is an idempotent e_x such that

x is nilpotent modulo e_x and x is invertible modulo $1 - e_x$.

If **B** is a fp **k**-algebra and $\underline{a} = (a_1, \ldots, a_n)$ is a zero of **B** with coordinates in **k** the local algebra $\mathbf{B}_{1+\mathfrak{m}_{\underline{a}}}$ is a local ring whose residual ring is isomorphic to **k** through the morphism $\varphi_{\underline{a}} : \mathbf{B} \to \mathbf{k}$.

– page 6 –

Isolated zeroes, field case

First we have a **local theorem**, which allows us to give a good definition of an **isolated zero** when the base ring is a discrete field.

Theorem 1. For a discrete field \mathbf{k} , a fp-algebra $\mathbf{B} = \mathbf{k}[x_1, \ldots, x_n]$ and a zero $\underline{a} = (a_1, \ldots, a_n)$ with coordinates in \mathbf{k} , T.F.A.E.

- 1. The local algebra $\mathbf{B}_{1+\mathfrak{m}_a}$ is zero-dimensional.
- 2. There is an idempotent $e \in 1 + \mathfrak{m}_{\underline{a}}$ such that $\mathbf{B}_{1+\mathfrak{m}_{a}} = \mathbf{B}[1/e]$.
- 3. There is an element s of **B** such that $\mathbf{B}_{1+\mathfrak{m}_a} = \mathbf{B}[1/s]$.

If \mathbf{k} is contained in an algebraically closed field \mathbf{K} :

4. There is an element $s(\underline{x})$ of **B** such that \underline{a} is the unique zero of **B** with coordinates in **K** and $s(\underline{a})$ invertible.

There is a corresponding **global theorem**.

Theorem 2. For a discrete field **k** and a fp-algebra $\mathbf{B} = \mathbf{k}[x_1, \ldots, x_n]$, T.F.A.E.

- 1. The algebra \mathbf{B} is a zero-dimensional ring.
- 2. The algebra \mathbf{B} is a finite dimensional \mathbf{k} -vector space.
- 3. The elements x_i of **B** are integral over **k**.

If ${\bf k}$ is contained in an algebraically closed field ${\bf K}:$

- 4. All zeroes of \mathbf{B} with coordinates in \mathbf{K} are isolated.
- 5. There are finitely many zeroes of **B** with coordinates in **K**.

- page 8 -

2. Isolated zeroes, local case

Here we consider a polynomial system on a residually discrete local ring $(\mathbf{A}, \mathfrak{M})$ (the residue field $\mathbf{k} = \mathbf{A}/\mathfrak{M}$ is a discrete field).

If $\mathbf{B} = \mathbf{A}[x_1, \dots, x_n]$ is the corresponding quotient algebra, we have residually $\mathbf{L} = \mathbf{B}/\mathfrak{M}\mathbf{B}$ corresponding to "the same" polynomial system read on \mathbf{k} rather than on \mathbf{A} . A natural problem is: assume \mathbf{L} is finite over \mathbf{k} ,

- 1. can we lift the zeroes in \mathbf{A} ?
- 2. is **B** finite over **A**? (i.e., is it a finitely generated **A**-module? or equivalently, are the x_i 's integral over **A**?)

An answer will be given by the Zariski Main Theorem (Grothendieck formulation).

page 9

Isolated zeroes, local case

We cannot be too optimistic.

Consider e.g., a variety in \mathbf{k}^2 which is the union of points on the *y*-axis with equations x = 0, u(y) = 0 and of two curves of equations f(x, y) = 0 (with *f* monic in *y*) and g(x, y) = 1 + xy = 0. This corresponds to the following quotient ring (where F = fg)

$$\mathbf{C} = \mathbf{k}[x, y] = \mathbf{k}[X, Y] / \langle XF(X, Y), u(Y)F(X, Y) \rangle .$$

We want to examine this variety above the x-axis in the neibourhood of $\{0\}$. So we consider the local ring $\mathbf{A} = \mathbf{k}[x]_{1+x\mathbf{k}[x]}$ (with maximal ideal $\mathfrak{M} = x\mathbf{A}$ and residue field \mathbf{k}) and the \mathbf{A} -algebra $\mathbf{B} = \mathbf{C}_{1+xk[x]}$.

Residually we get taking x = 0 the ring $\mathbf{B}/\mathfrak{MB} = \mathbf{k}[Y]/\langle u(Y)f(0,Y)\rangle$. It is a finite **k**-vector space. But y viewed in **B** is not integral over **A**. We have to remove the component g(x, y) = 0 in order that y becomes integral over **A**. What we get is we find an element $s \in 1 + \mathfrak{MB}$ (namely s = g) which changes nothing residually (you invert 1!) but we have $\mathbf{B}[1/s]$ is finite over **A**.

Isolated zeroes, local case

Theorem 3. (as in Raynaud)

Let \mathbf{A} be a ring, \mathfrak{M} a maximal ideal of \mathbf{A} and $\mathbf{k} = \mathbf{A}/\mathfrak{M}$. Let \mathbf{B} a finitely generated \mathbf{A} -algebra and \mathfrak{P} a prime ideal of \mathbf{B} lying over \mathfrak{M} . Let \mathbf{A}_1 be the integral closure of \mathbf{A} in \mathbf{B} . Let $\mathbf{C} = \mathbf{B}_{\mathfrak{P}}$. If $\mathbf{C}/\mathfrak{M}\mathbf{C}$ is a finite \mathbf{k} -algebra then there exists $s \in \mathbf{A}_1 \setminus \mathfrak{P}$ such that $\mathbf{A}_1[1/s] = \mathbf{B}[1/s]$.

A constructive form of this theorem is the following.

Theorem 4.

Let \mathbf{A} be a ring, \mathfrak{M} a detachable maximal ideal of \mathbf{A} and $\mathbf{k} = \mathbf{A}/\mathfrak{M}$. Let $\mathbf{B} = \mathbf{A}[x_1, \ldots, x_n]$ such that $\mathbf{B}/\mathfrak{M}\mathbf{B}$ is a finite \mathbf{k} -algebra. Then there exists $s \in 1 + \mathfrak{M}\mathbf{B}$ such that s, sx_1, \ldots, sx_n are integral over \mathbf{A} . So $\mathbf{A}' = \mathbf{A}[s, sx_1, \ldots, sx_n]$ is finite over \mathbf{A} , $\mathbf{B}[1/s] = \mathbf{A}'[1/s]$ and residually $\mathbf{A}'/\mathfrak{M}\mathbf{A}' = \mathbf{B}/\mathfrak{M}\mathbf{B}$.

- page 11 -

Isolated zeroes, local case

An abstract proof of Theorem 3 was given by Peskine. The proof uses in an essential way localizations at minimal primes. Deciphering constructively the proof is a rather hard task. This gives a slightly more general theorem.

Theorem 5.

Let **A** be a ring, \Im an ideal of **A** and $\mathbf{k} = \mathbf{A}/\Im$. Let $\mathbf{B} = \mathbf{A}[x_1, \ldots, x_n]$ such that $\mathbf{B}/\Im\mathbf{B}$ is a finite **k**-algebra. Then there exists $s \in 1 + \Im B$ such that s, sx_1, \ldots, sx_n are integral over **A**.

So $\mathbf{A}' = \mathbf{A}[s, sx_1, \dots, sx_n]$ is finite over \mathbf{A} , $\mathbf{B}[1/s] = \mathbf{A}'[1/s]$ and residually $\mathbf{A}'/\Im\mathbf{A}' = \mathbf{B}/\Im\mathbf{B}$.

- page 12 -

3. Isolated zeroes, general case

Quasi-finite algebras

In classical mathematics an **A**-algebra **B** is said to be **quasi-finite** if it is of finite type and if prime ideals of **B** lying over any prime ideal of **A** are incomparable. If \mathfrak{P} is a prime ideal of **B** lying over the prime ideal \mathfrak{p} of **A** this means that the extension $\operatorname{Frac}(\mathbf{B}/\mathfrak{P})$ of $\operatorname{Frac}(\mathbf{A}/\mathfrak{p})$ is finite.

Another way to express this fact is to say that the morphism $\mathbf{A} \to \mathbf{B}$ is **zero-dimensional**. A constructive characterization of zero-dimensional morphisms uses the zero-dimensional reduced ring \mathbf{A}^{\bullet} generated by \mathbf{A} . The ring \mathbf{A}^{\bullet} can be obtained as a direct limit of rings

$$\mathbf{A}[a_1^{\bullet}, a_2^{\bullet}, \dots, a_n^{\bullet}] \simeq (\mathbf{A}[T_1, T_2, \dots, T_n]/\mathfrak{a})_{\mathrm{red}}$$

with $\mathbf{a} = \langle (a_i T_i^2 - T_i)_{i=1}^n, (T_i a_i^2 - a_i)_{i=1}^n \rangle$

Isolated zeroes, general case

In classical mathematics we obtain the following equivalence.

Proposition 6. Let $\varphi : \mathbf{A} \to \mathbf{B}$ a morphism of commutative rings.

- 1. Prime ideals of \mathbf{B} lying over any prime ideal of \mathbf{A} are incomparable.
- 2. The ring $\mathbf{A}^{\bullet} \otimes_{\mathbf{A}} \mathbf{B}$ is a zero-dimensional ring.

The second item is taken to be the **correct definition** of zero-dimensional morphisms in constructive mathematics.

- page 14 –

Isolated zeroes, general case

As a consequence we have the following characterization of quasi-finite morphisms.

Proposition 7. Let **B** be an **A**-algebra of finite type. The following are equivalent.

- 1. The structure map $\mathbf{A} \rightarrow \mathbf{B}$ is a zero dimensional morphism.
- 2. There exist $a_1, \ldots, a_p \in A$ such that for each $I \subseteq \{a_1, \ldots, a_p\}$, if we let $I' = \{a_1, \ldots, a_p\} \setminus I$, $\mathfrak{a}_{\underline{a},I} = \langle a_i, i \in I \rangle$, $\alpha_{\underline{a},I'} = \prod_{i \in I'} a_i$ and $\mathbf{A}_{(\underline{a},I)} = (A/\mathfrak{a}_{\underline{a},I}) \begin{bmatrix} \frac{1}{\alpha_{\underline{a},I'}} \end{bmatrix}$ then the ring $\mathbf{B}_{(\underline{a},I)}$ is integral over $\mathbf{A}_{(\underline{a},I)}$.

This gives a good definition of quasi-finite morphisms in constructive mathematics. Let us insist here on the fact that the equivalence in Proposition 7 has a constructive proof. ______ page 15 ______

Isolated zeroes, general case

Open immersions

The global version of ZMT given in classical mathematics uses also the notion of an "open immersion" from Spec B to Spec A.

A constructive approach for an open immersion is the following.

Definition 8. A morphism $\varphi : \mathbf{A} \to \mathbf{B}$ is an **open immersion** if there exist s_1, \ldots, s_n in \mathbf{A} comaximal in \mathbf{B} such that for each i the natural morphism $\mathbf{A}[1/s_i] \to \mathbf{B}[1/\varphi(s_i)]$ is an isomorphism.

Open immersions and finite morphisms are particular case of quasi-finite morphisms.

Theorem 9. (global ZMT, classical formulation) Let **B** be quasi-finite over **A**. Let **C** be the integral closure of **A** in **B**. Then the morphism $\mathbf{C} \to \mathbf{B}$ is an open immersion. Moreover there exists a finite subalgebra **C**' of **C** such that the morphism $\mathbf{C}' \to \mathbf{B}$ is an open immersion.

Isolated zeroes, general case

A more precise formulation is the following.

Theorem 10. (global ZMT, constructive formulation)

Let $\mathbf{A} \subseteq \mathbf{B} = \mathbf{A}[x_1, \ldots, x_n]$ be rings such that the inclusion morphism $\mathbf{A} \to \mathbf{B}$ is zero dimensional (in other words, \mathbf{B} is quasi-finite over \mathbf{A}). Let \mathbf{C} be the integral closure of \mathbf{A} in \mathbf{B} . Then there exist elements s_1, \ldots, s_m in \mathbf{C} , comaximal in \mathbf{B} , such that all $s_i x_j \in \mathbf{C}$. In particular for each i, $\mathbf{C}[1/s_i] = \mathbf{B}[1/s_i]$. Moreover letting $\mathbf{C}' = \mathbf{A}[(s_i), (s_i x_j)]$, which is finite over \mathbf{A} , we get also $\mathbf{C}'[1/s_i] = \mathbf{B}[1/s_i]$ for each i.

The concrete hypothesis is item 2 in proposition 7. The proof is by induction on p. We assume we have the conclusion for p-1 and let $a = a_p$. The induction hypothesis is applied to the morphisms $\mathbf{A}/a\mathbf{A} \to \mathbf{B}/a\mathbf{B}$ and $\mathbf{A}[1/a] \to \mathbf{B}[1/a]$, and so on ...

—— page 17 –

4. Simple zeroes, unramified and étale algebras

We use the terminology of Grothendieck in EGA4. Let us recall that an ideal is called a nilideal if some power of it is zero.

Definition 11. Let A be an arbitrary commutative ring and C an A-algebra.

- 1. The A-algebra C is said to be formally unramified (resp. formally smooth) if for each algebra B and each nilideal \mathfrak{I} of B the canonical map $\operatorname{Hom}_{\mathbf{A}}(\mathbf{C}, \mathbf{B}) \to \operatorname{Hom}_{\mathbf{A}}(\mathbf{C}, \mathbf{B}/\mathfrak{I}), \varphi \mapsto \pi \circ \varphi$, is injective (resp. surjective).
- 2. A morphism which is formally smooth and formally unramified is called **formally étale**.
- 3. An **A**-algebra is said to be **étale** (resp. **smooth**, resp. **unramified**) if it is formally étale (resp. formally smooth, resp. formally unramified) and moreover is a finitely presented **A**-algebra.

– page 18 –

Simple zeroes, unramified morphisms

The following classical result is constructive.

Proposition 12. An A-algebra C is formally unramified iff the module of differentials of C over A, usually denoted as $\Omega_{C|A}$ is null.

We shall use the following notation for finitely presented algebras:

$$\mathbf{A}_{[f_1,\ldots,f_p]} = A[X_1,\ldots,X_n]/\langle f_1,\ldots,f_p\rangle.$$

So an A-algebra C is unramified iff $\mathbf{C} \simeq \mathbf{A}_{[f_1,\ldots,f_p]}$ with the transpose of the Jacobian matrix $\operatorname{Jac}_{f_1,\ldots,f_p}[\underline{x}]$ surjective:

$$\operatorname{Jac}_{f_1,\ldots,f_p}(\underline{X}) = (\partial f_j / \partial X_i)_{1 \le i \le n, 1 \le j \le p}$$

This means that the *n*-minors of the Jacobian matrix generate the ideal $\langle 1 \rangle$ of C.

Simple zeroes, field case

A basic theorem of algebraic geometry describes unramified algebras over discrete fields.

Theorem 13. Let \mathbf{k} be a discrete field and \mathbf{A} an unramified \mathbf{k} -algebra.

- 1. A is a finite dimensional \mathbf{k} -vector space.
- 2. A is a zero-dimensional reduced ring and can be described as a finite product of monogenic separable algebras, i.e., algebras isomorphic to $\mathbf{k}_{[h_j]}$ with h_j a separable polynomial.
- 3. Moreover:

- If **k** is a separably factorial field (see [MRR] for this constructive notion), one can take the h_j 's irreducible (so the algebra is a finite product of discrete fields $\mathbf{k}_{[h_j]}$).

- If **k** is infinite, the algebra is isomorphic to $\mathbf{k}_{[h]}$ for some separable polynomial h.

- page 20 -

5. Simple zeroes, local case

Proposition 14. An unramified algebra is quasi-finite.

Proof. Let $\mathbf{B} = \mathbf{A}_{[f_1,\ldots,f_s]} = \mathbf{A}[x_1,\ldots,x_n]$ be an unramified **A**-algebra. We have to show that the ring $\mathbf{A}^{\bullet} \otimes_{\mathbf{A}} \mathbf{B}$ is zero-dimensional. So we have to prove that when \mathbf{A}_1 is a zero-dimensional reduced ring any unramified \mathbf{A}_1 -algebra is finite. The result is classical when \mathbf{A}_1 is a discrete field (see Theorem 13). So we can apply the constructive elementary local-global machinery of zero-dimensional reduced rings. \Box

As a consequence of Zariski Main Theorem (global version, Theorem 10) we obtain structure theorems for unramified algebras.

- page 21

Simple zeroes, local case

Theorem 15. (unramified morphisms, local structure theorem) Let $(\mathbf{A}, \mathfrak{M})$ be a residually discrete local ring. Let \mathbf{B} be an unramified \mathbf{A} -algebra with $\mathfrak{MB} \cap \mathbf{A} = \mathfrak{M}$ and C be the integral closure of \mathbf{A} in \mathbf{B} . There exist $u_1, \ldots, u_r \in C$ comaximal in \mathbf{B}/\mathfrak{MB} such that for each j the algebra $\mathbf{B}\left[\frac{1}{u_j}\right]$ is isomorphic to a quotient of a standard étale algebra $\mathbf{A}_{[h_j]}\left[\frac{1}{g_j}\right]$ where the surjective morphism $\mathbf{A}_{[h_j]}\left[\frac{1}{g_j}\right] \to \mathbf{B}\left[\frac{1}{u_j}\right]$ gives modulo \mathfrak{M} an isomorphism.

page 22

Simple zeroes, local case

Corollary 16. (usual classical version of Theorem 15: cf. Raynaud, Chapter V, Th. 5, p. 51)

Let $(\mathbf{A}, \mathfrak{M})$ be a residually discrete local ring, \mathbf{B} an \mathbf{A} -algebra, \mathfrak{p} a prime ideal of \mathbf{B} lying over \mathfrak{M} . Assume that \mathbf{B} is "unramified in the neibourhood of \mathfrak{p} ", i.e. there exists $p \notin \mathfrak{p}$ such that $\mathbf{B}\left[\frac{1}{p}\right]$ is unramified over \mathbf{A} . Then there exists $u \notin \mathfrak{p}$ such that $\mathbf{B}\left[\frac{1}{u}\right]$ is isomorphic to a quotient of a standard étale algebra $\mathbf{A}_{[h]}\left[\frac{1}{g}\right]$ where the surjective morphism $\mathbf{A}_{[h]}\left[\frac{1}{g}\right] \to \mathbf{B}\left[\frac{1}{u}\right]$ gives residually an isomorphism.

Remark. In order to have a constructive proof of this corollary, the prime ideal \mathfrak{p} is assumed to be given through its complement S, which has to be a "prime filter": $st \in S$ iff s and t are in S, and if $s + t \in S$ then s or t is in S, with an explicit "or". Thus the localization \mathbf{A}_S is a local ring in the constructive meaning.

6. Simple zeroes, Multidimensional Hensel Lemma

A is a local ring with detachable maximal ideal \mathfrak{M} and $\mathbf{k} = \mathbf{A}/\mathfrak{M}$ is the residual field. We shall look at a polynomial system

$$f_1(X_1, \dots, X_n) = \dots = f_n(X_1, \dots, X_n) = 0$$
 (*)

which has a simple zero at $(0, \ldots, 0)$ residually: $f_i(0, \ldots, 0) \in \mathfrak{M}$ and also the Jacobian of this system $J(0, \ldots, 0)$ is in \mathbf{A}^{\times} . In this case we will say that we have a Hensel system. To this polynomial system we associate

the quotient ring	$\mathbf{B} = \mathbf{A}[X_1, \dots, X_n] / \langle f_1, \dots, f_n \rangle = A[x_1, \dots, x_n]$
a maximal ideal of ${\bf B}$	$\mathfrak{M}_{\mathbf{B}} = \mathfrak{M} + \langle x_1, \dots, x_n \rangle \mathbf{B} (\mathfrak{M}_{\mathbf{B}} \supseteq \mathfrak{M} \mathbf{B})$
and the local ring	$\mathbf{B}_{1+\mathfrak{M}_{\mathbf{B}}}$ (usually denoted as $\mathbf{B}_{\mathfrak{M}_{\mathbf{B}}}$).

The ideal $\mathfrak{M}_{\mathbf{B}}$ is maximal because it is the kernel of the morphism $\mathbf{B} \to \mathbf{k}$ sending $g(\underline{x})$ to $\overline{g}(\underline{0})$. This shows also that $\mathbf{B}/\mathfrak{M}_{\mathbf{B}} = \mathbf{A}/\mathfrak{M}$.

– page 24 –

Multidimensional Hensel Lemma

This implies that the natural morphism $\mathbf{A} \to \mathbf{B}$ is injective, so we can identify \mathbf{A} with its image in \mathbf{B} and we have $\mathbf{B} = \mathbf{A} \oplus \langle x_1, \ldots, x_n \rangle \mathbf{B}$. Nevertheless it is not at all evident that the morphism from \mathbf{A} to $\mathbf{B}_{1+\mathfrak{MB}}$ is injective.

It can be easily seen that the natural morphism $\varphi : \mathbf{A} \to \mathbf{B}_{1+\mathfrak{M}_{\mathbf{B}}}$ shares the following universal property: it is a local morphism (i.e., $\varphi(x) \in (\mathbf{B}_{1+\mathfrak{M}_{\mathbf{B}}})^{\times}$ implies $x \in \mathbf{A}^{\times}$) and if $\psi : \mathbf{A} \to \mathbf{C}$ is a local morphism such that (y_1, \ldots, y_n) is a solution of (*) with the y_i 's in the maximal ideal of the local ring \mathbf{C} then there exists a unique local morphism $\theta : \mathbf{B} \to \mathbf{C}$ such that $\theta \circ \varphi = \psi$.

Since $B_{1+\mathfrak{M}_B}$ satisfies this universal property w.r.t. the system (*) we introduce the notation

Multidimensional Hensel Lemma

The Multidimensionnal Hensel Lemma (MHL fort short) is a kind of "primitive element theorem".

Theorem 17. (Multidimensional Hensel Lemma)

With the preceding hypotheses and notations, the local ring $\mathbf{A}_{\llbracket f_1,\ldots,f_n \rrbracket} = \mathbf{B}_{1+\mathfrak{M}_{\mathbf{B}}}$ can also be described with only one polynomial equation f(X) such that $f(0) \in \mathfrak{M}$ and f'(0) invertible.

More precisely there exist an $y \in \mathfrak{M}_{\mathbf{B}}$ and a monic polynomial $f(X) \in \mathbf{A}[X]$ with f(y) = 0and $f'(0) \in 1 + \mathfrak{M}$ (thus $f'(y) \in 1 + \mathfrak{M}_{\mathbf{B}}$),

such that each x_i belongs to $\mathbf{A}[y, \frac{1}{1+y}]$ (in other words $\mathbf{B} \subseteq \mathbf{A}[y, \frac{1}{1+y}]$), and the natural morphism $\mathbf{A}_{\llbracket f \rrbracket} \to \mathbf{B}_{1+\mathfrak{M}_{\mathbf{B}}}$ sending x to y is an isomorphism (x is X viewed in $\mathbf{A}_{\llbracket f \rrbracket}$). In short $\mathbf{A}_{\llbracket f_1,...,f_n \rrbracket} = \mathbf{A}_{\llbracket f \rrbracket}$.

Multidimensional Hensel Lemma

Here is an example where **A** is the local ring $\mathbb{Q}[a,b]_S$, S being the monoid of elements $p(a,b) \in \mathbb{Q}[a,b]$ such that $p(0,0) \neq 0$. We take next $\mathbf{B} = \mathbf{A}[x,y]$ where x, y are defined by the equations

$$-a + x + bxy + 2bx^{2} = 0, \qquad -b + y + ax^{2} + axy + by^{2} = 0$$

We shall compute $s \in \mathbf{B}$ integral over \mathbf{A} such that sx, sy integral over B and $s = 1 \mod \mathbb{MB}$.

Following the proof we take t = 1 + ax + by. We have that $t = 1 \mod$. \mathfrak{MB} and t, ty integral over $\mathbf{A}[x]$. We have even $ty = y + axy + by^2 = b - ax^2$ in $\mathbf{A}[x]$. The equation for t is

$$t^2 - (1 + ax)t - b + ax^2$$

We have then

$$tx = x + ax^2 + bxy = a + (a - 2b)x^2$$

and so

$$(t - (a - 2b)x)x = a$$

If we take u = t - (a - 2b)x = 1 + 2bx + by we have $u = 1 \mod \mathfrak{MB}$ and ux in \mathbf{A} and u is integral over \mathbf{A} . Indeed u is integral over $\mathbf{A}[1/u]$ since x is in $\mathbf{A}[1/u]$ and u is integral over $\mathbf{A}[x]$.

If we take $s = tu^2$ we have s, sx, sy integral over **A**.

Indeed, ux is in **A** and since $t^2 - (1+ax)t - b + ax^2 = 0$ we have tu and hence s integral over **A**. Since $ty = b - ax^2$ we have $sy = vu^2 - a(ux)^2$ integral over **A**. Finally sx = (tu)(ux) is integral over **A**.

It can be checked that s is a root of a monic polynomial f of degree 4 of the form $T^3(T-1)$ residually.

– page 27 –

Thank you

Thanks to the organizers