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Abstract

Zariski Main Theorem. We study the constructive formulation and the constructive mean-
ing of ZMT and some consequences.

Outline

1. Isolated zeroes, field case

2. Isolated zeroes, local case

3. Isolated zeroes, general case

4. Simple zeroes, field case

5. Simple zeroes, local case

6. Multidimensional Hensel Lemma
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0. Isolated zeroes, preliminaries

Let A be a commutative ring, f1, . . . , fs polynomials in A[X1, . . . , Xn].
To this polynomial system is associated the quotient algebra

B = A[X1, . . . , Xn]/〈f1, . . . , fs〉 = A[x1, . . . , xn].

This is a general finitely presented A-algebra. We shall speak of a fp-algebra.
A zero a = (a1, . . . , an) of the polynomial system in an A-algebra C corresponds to a
morphism ϕa : B→ C sending xi to ai (i = 1, . . . , n).
We are interested in “isolated zeros” of polynomial systems.
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Isolated zeroes, preliminaries

If a = (a1, . . . , an) is a zero of B with coordinates in A we consider:
the ideal of a: ma = 〈x1 − a1, . . . , xn − an〉 ⊆ Bn

the local algebra at a: (1 + ma)
−1B = B1+ma

Recall what is a local ring:
a commutative ring for which x+ y invertible implies

x invertible or y invertible.
In a ring C the Jacobson radical is the ideal

Rad(C) =
{
x ∈ C | 1 + xC ⊆ C×

}
⊆ C.

The quotient C/RadC is the residue ring. When C is a local ring, the residue algebra
is a field: a local ring whose Jacobson radical is reduced to 0.
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1. Isolated zeroes, field case

Discrete field: commutative ring k with:
every element is 0 or invertible.

Zerodimensional reduced ring (Von Neuman regular ring): commutative ring k
with:

for each element x there is an idempotent ex such that
x = 0 modulo ex and x is invertible modulo 1− ex.

Zerodimensional ring: commutative ring k with:
for each element x there is an idempotent ex such that

x is nilpotent modulo ex and x is invertible modulo 1− ex.
If B is a fp k-algebra and a = (a1, . . . , an) is a zero of B with coordinates in k the local
algebra B1+ma is a local ring whose residual ring is isomorphic to k through the morphism
ϕa : B→ k.
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Isolated zeroes, field case

First we have a local theorem, which allows us to give a good definition of an isolated
zero when the base ring is a discrete field.

Theorem 1. For a discrete field k, a fp-algebra B = k[x1, . . . , xn] and a zero a =
(a1, . . . , an) with coordinates in k, T.F.A.E.

1. The local algebra B1+ma is zero-dimensional.

2. There is an idempotent e ∈ 1 + ma such that B1+ma = B[1/e].

3. There is an element s of B such that B1+ma = B[1/s].

If k is contained in an algebraically closed field K:

4. There is an element s(x) of B such that a is the unique zero of B with coordinates
in K and s(a) invertible.
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Isolated zeroes, field case

There is a corresponding global theorem.

Theorem 2. For a discrete field k and a fp-algebra B = k[x1, . . . , xn], T.F.A.E.

1. The algebra B is a zero-dimensional ring.

2. The algebra B is a finite dimensional k-vector space.

3. The elements xi of B are integral over k.

If k is contained in an algebraically closed field K:

4. All zeroes of B with coordinates in K are isolated.

5. There are finitely many zeroes of B with coordinates in K.
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2. Isolated zeroes, local case

Here we consider a polynomial system on a residually discrete local ring (A,M) (the
residue field k = A/M is a discrete field).
If B = A[x1, . . . , xn] is the corresponding quotient algebra, we have residually L = B/MB
corresponding to “the same” polynomial system read on k rather than on A.
A natural problem is: assume L is finite over k,

1. can we lift the zeroes in A?

2. is B finite over A? (i.e., is it a finitely generated A-module? or equivalently, are
the xi’s integral over A?)

An answer will be given by the Zariski Main Theorem (Grothendieck formulation).
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Isolated zeroes, local case

We cannot be too optimistic.
Consider e.g., a variety in k2 which is the union of points on the y-axis with equations
x = 0, u(y) = 0 and of two curves of equations f(x, y) = 0 (with f monic in y) and
g(x, y) = 1 + xy = 0. This corresponds to the following quotient ring (where F = fg)

C = k[x, y] = k[X, Y ]/〈XF (X, Y ), u(Y )F (X, Y )〉 .

We want to examine this variety above the x-axis in the neibourhood of {0}. So we
consider the local ring A = k[x]1+xk[x] (with maximal ideal M = xA and residue field k)
and the A-algebra B = C1+xk[x].
Residually we get taking x = 0 the ring B/MB = k[Y ]/〈u(Y )f(0, Y )〉 . It is a finite k-
vector space. But y viewed in B is not integral over A. We have to remove the component
g(x, y) = 0 in order that y becomes integral over A. What we get is we find an element
s ∈ 1 +MB (namely s = g) which changes nothing residually (you invert 1!) but we have
B[1/s] is finite over A.
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Isolated zeroes, local case

Theorem 3. (as in Raynaud)
Let A be a ring, M a maximal ideal of A and k = A/M. Let B a finitely generated
A-algebra and P a prime ideal of B lying over M. Let A1 be the integral closure of A in
B. Let C = BP. If C/MC is a finite k-algebra then there exists s ∈ A1 \ P such that
A1[1/s] = B[1/s].

A constructive form of this theorem is the following.

Theorem 4.
Let A be a ring, M a detachable maximal ideal of A and k = A/M. Let B = A[x1, . . . , xn]
such that B/MB is a finite k-algebra. Then there exists s ∈ 1 + MB such that
s, sx1, . . . , sxn are integral over A.
So A′ = A[s, sx1, . . . , sxn] is finite over A, B[1/s] = A′[1/s] and residually A′/MA′ =
B/MB.
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Isolated zeroes, local case

An abstract proof of Theorem 3 was given by Peskine. The proof uses in an essential way
localizations at minimal primes. Deciphering constructively the proof is a rather hard
task. This gives a slightly more general theorem.

Theorem 5.
Let A be a ring, I an ideal of A and k = A/I. Let B = A[x1, . . . , xn] such that B/IB
is a finite k-algebra. Then there exists s ∈ 1 + IB such that s, sx1, . . . , sxn are integral
over A.
So A′ = A[s, sx1, . . . , sxn] is finite over A, B[1/s] = A′[1/s] and residually A′/IA′ =
B/IB.
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3. Isolated zeroes, general case

Quasi-finite algebras

In classical mathematics an A-algebra B is said to be quasi-finite if it is of finite type
and if prime ideals of B lying over any prime ideal of A are incomparable. If P is a prime
ideal of B lying over the prime ideal p of A this means that the extension Frac(B/P) of
Frac(A/p) is finite.
Another way to express this fact is to say that the morphism A → B is zero-
dimensional. A constructive characterization of zero-dimensional morphisms uses the
zero-dimensional reduced ring A• generated by A. The ring A• can be obtained as a
direct limit of rings

A[a•1, a
•
2, . . . , a

•
n] ' (A[T1, T2, . . . , Tn]/a)red

with a = 〈(aiT 2
i − Ti)ni=1, (Tia

2
i − ai)ni=1〉
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Isolated zeroes, general case

In classical mathematics we obtain the following equivalence.

Proposition 6. Let ϕ : A→ B a morphism of commutative rings.

1. Prime ideals of B lying over any prime ideal of A are incomparable.

2. The ring A• ⊗A B is a zero-dimensional ring.

The second item is taken to be the correct definition of zero-dimensional morphisms in
constructive mathematics.
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Isolated zeroes, general case

As a consequence we have the following characterization of quasi-finite morphisms.

Proposition 7. Let B be an A-algebra of finite type. The following are equivalent.

1. The structure map A→ B is a zero dimensional morphism.

2. There exist a1, . . . , ap ∈ A such that for each I ⊆ {a1, . . . , ap}, if we let I ′ =

{a1, . . . , ap} \ I, aa,I = 〈ai, i ∈ I〉, αa,I′ =
∏

i∈I′ ai and A(a,I) = (A/aa,I)
[

1
αa,I′

]
then

the ring B(a,I) is integral over A(a,I).

This gives a good definition of quasi-finite morphisms in constructive mathematics. Let
us insist here on the fact that the equivalence in Proposition 7 has a constructive proof.
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Isolated zeroes, general case

Open immersions

The global version of ZMT given in classical mathematics uses also the notion of an “open
immersion” from Spec B to Spec A.
A constructive approach for an open immersion is the following.

Definition 8. A morphism ϕ : A→ B is an open immersion if there exist s1, . . . , sn
in A comaximal in B such that for each i the natural morphism A[1/si]→ B[1/ϕ(si)] is
an isomorphism.

Open immersions and finite morphisms are particular case of quasi-finite morphisms.

Theorem 9. (global ZMT, classical formulation)
Let B be quasi-finite over A. Let C be the integral closure of A in B. Then the morphism
C→ B is an open immersion. Moreover there exists a finite subalgebra C′ of C such that
the morphism C′ → B is an open immersion.
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Isolated zeroes, general case

A more precise formulation is the following.

Theorem 10. (global ZMT, constructive formulation)
Let A ⊆ B = A[x1, . . . , xn] be rings such that the inclusion morphism A → B is zero
dimensional (in other words, B is quasi-finite over A). Let C be the integral closure of A
in B. Then there exist elements s1, . . . , sm in C, comaximal in B, such that all sixj ∈ C.
In particular for each i, C[1/si] = B[1/si]. Moreover letting C′ = A[(si), (sixj)], which
is finite over A, we get also C′[1/si] = B[1/si] for each i.

The concrete hypothesis is item 2 in proposition 7. The proof is by induction on p.
We assume we have the conclusion for p− 1 and let a = ap. The induction hypothesis is
applied to the morphisms A/aA→ B/aB and A[1/a]→ B[1/a], and so on . . .
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4. Simple zeroes,
unramified and étale algebras

We use the terminology of Grothendieck in EGA4. Let us recall that an ideal is called a
nilideal if some power of it is zero.

Definition 11. Let A be an arbitrary commutative ring and C an A-algebra.

1. The A-algebra C is said to be formally unramified (resp. formally smooth)
if for each algebra B and each nilideal I of B the canonical map HomA(C,B) →
HomA(C,B/I), ϕ 7→ π ◦ ϕ, is injective (resp. surjective).

2. A morphism which is formally smooth and formally unramified is called formally
étale.

3. An A-algebra is said to be étale (resp. smooth, resp. unramified) if it is formally
étale (resp. formally smooth, resp. formally unramified) and moreover is a finitely
presented A-algebra.
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Simple zeroes, unramified morphisms

The following classical result is constructive.

Proposition 12. An A-algebra C is formally unramified iff the module of differentials
of C over A, usually denoted as ΩC|A is null.

We shall use the following notation for finitely presented algebras:
A[f1,...,fp] = A[X1, . . . , Xn]/ 〈f1, . . . , fp〉 .

So an A-algebra C is unramified iff C ' A[f1,...,fp] with the transpose of the Jacobian
matrix Jacf1,...,fp [x] surjective:

Jacf1,...,fp(X) = (∂fj/∂Xi)1≤i≤n,1≤j≤p

This means that the n-minors of the Jacobian matrix generate the ideal 〈1〉 of C.
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Simple zeroes, field case

A basic theorem of algebraic geometry describes unramified algebras over discrete fields.

Theorem 13. Let k be a discrete field and A an unramified k-algebra.

1. A is a finite dimensional k-vector space.

2. A is a zero-dimensional reduced ring and can be described as a finite product of
monogenic separable algebras, i.e., algebras isomorphic to k[hj ] with hj a separable
polynomial.

3. Moreover:

– If k is a separably factorial field (see [MRR] for this constructive notion), one can
take the hj’s irreducible (so the algebra is a finite product of discrete fields k[hj ]).

– If k is infinite, the algebra is isomorphic to k[h] for some separable polynomial h.
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5. Simple zeroes, local case

Proposition 14. An unramified algebra is quasi-finite.

Proof. Let B = A[f1,...,fs] = A[x1, . . . , xn] be an unramified A-algebra. We have to show
that the ring A• ⊗A B is zero-dimensional. So we have to prove that when A1 is a zero-
dimensional reduced ring any unramified A1-algebra is finite. The result is classical when
A1 is a discrete field (see Theorem 13). So we can apply the constructive elementary
local-global machinery of zero-dimensional reduced rings.

As a consequence of Zariski Main Theorem (global version, Theorem 10) we obtain struc-
ture theorems for unramified algebras.
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Simple zeroes, local case

Theorem 15. (unramified morphisms, local structure theorem)
Let (A,M) be a residually discrete local ring. Let B be an unramified A-algebra with
MB ∩ A = M and C be the integral closure of A in B. There exist u1, . . . , ur ∈ C

comaximal in B/MB such that for each j the algebra B
[

1
uj

]
is isomorphic to a quotient

of a standard étale algebra A[hj ]

[
1
gj

]
where the surjective morphism A[hj ]

[
1
gj

]
→ B

[
1
uj

]
gives modulo M an isomorphism.
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Simple zeroes, local case

Corollary 16. (usual classical version of Theorem 15: cf. Raynaud, Chapter V, Th. 5,
p. 51)
Let (A,M) be a residually discrete local ring, B an A-algebra, p a prime ideal of B
lying over M. Assume that B is “unramified in the neibourhood of p”, i.e. there exists

p /∈ p such that B
[

1
p

]
is unramified over A. Then there exists u /∈ p such that B

[
1
u

]
is

isomorphic to a quotient of a standard étale algebra A[h]

[
1
g

]
where the surjective morphism

A[h]

[
1
g

]
→ B

[
1
u

]
gives residually an isomorphism.

Remark. In order to have a constructive proof of this corollary, the prime ideal p is
assumed to be given through its complement S, which has to be a “prime filter”: st ∈ S
iff s and t are in S, and if s + t ∈ S then s or t is in S, with an explicit “or”. Thus the
localization AS is a local ring in the constructive meaning.
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6. Simple zeroes,
Multidimensional Hensel Lemma

A is a local ring with detachable maximal ideal M and k = A/M is the residual field.
We shall look at a polynomial system

f1(X1, . . . , Xn) = · · · = fn(X1, . . . , Xn) = 0 (∗)

which has a simple zero at (0, . . . , 0) residually: fi(0, . . . , 0) ∈ M and also the Jacobian
of this system J(0, . . . , 0) is in A×. In this case we will say that we have a Hensel system.
To this polynomial system we associate

the quotient ring B = A[X1, . . . , Xn]/ 〈f1, . . . , fn〉 = A[x1, . . . , xn]

a maximal ideal of B MB = M + 〈x1, . . . , xn〉B (MB ⊇MB)

and the local ring B1+MB
(usually denoted as BMB

).

The ideal MB is maximal because it is the kernel of the morphism B → k sending g(x)
to g(0). This shows also that B/MB = A/M.
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Multidimensional Hensel Lemma

This implies that the natural morphism A → B is injective, so we can identify A with
its image in B and we have B = A⊕ 〈x1, . . . , xn〉B. Nevertheless it is not at all evident
that the morphism from A to B1+MB is injective.
It can be easily seen that the natural morphism ϕ : A → B1+MB

shares the following
universal property: it is a local morphism (i.e., ϕ(x) ∈ (B1+MB

)× implies x ∈ A×) and
if ψ : A → C is a local morphism such that (y1, . . . , yn) is a solution of (∗) with the
yi’s in the maximal ideal of the local ring C then there exists a unique local morphism
θ : B→ C such that θ ◦ ϕ = ψ.
Since B1+MB

satisfies this universal property w.r.t. the system (∗) we introduce the
notation

B1+MB
= AJf1,...,fnK.

————————————————– page 25 —————————————————–

Multidimensional Hensel Lemma

The Multidimensionnal Hensel Lemma (MHL fort short) is a kind of “primitive element
theorem”.

Theorem 17. (Multidimensional Hensel Lemma)
With the preceeding hypotheses and notations, the local ring AJf1,...,fnK = B1+MB

can
also be described with only one polynomial equation f(X) such that f(0) ∈ M and f ′(0)
invertible.
More precisely there exist an y ∈MB and a monic polynomial f(X) ∈ A[X] with f(y) = 0
and f ′(0) ∈ 1 + M (thus f ′(y) ∈ 1 + MB),
such that each xi belongs to A[y, 1

1+y
] (in other words B ⊆ A[y, 1

1+y
]), and the natural

morphism AJfK → B1+MB
sending x to y is an isomorphism (x is X viewed in AJfK).

In short AJf1,...,fnK = AJfK.
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Multidimensional Hensel Lemma

Here is an example where A is the local ring Q[a, b]S, S being the monoid of elements
p(a, b) ∈ Q[a, b] such that p(0, 0) 6= 0. We take next B = A[x, y] where x, y are defined
by the equations

−a+ x+ bxy + 2bx2 = 0, − b+ y + ax2 + axy + by2 = 0

We shall compute s ∈ B integral over A such that sx, sy integral over B and s = 1 mod.
MB.
Following the proof we take t = 1 + ax + by. We have that t = 1 mod. MB and t, ty
integral over A[x]. We have even ty = y + axy + by2 = b− ax2 in A[x]. The equation for
t is

t2 − (1 + ax)t− b+ ax2

We have then
tx = x+ ax2 + bxy = a+ (a− 2b)x2

and so
(t− (a− 2b)x)x = a

If we take u = t− (a− 2b)x = 1 + 2bx+ by we have u = 1 mod. MB and ux in A and u
is integral over A. Indeed u is integral over A[1/u] since x is in A[1/u] and u is integral
over A[x].
If we take s = tu2 we have s, sx, sy integral over A.
Indeed, ux is in A and since t2−(1+ax)t−b+ax2 = 0 we have tu and hence s integral over
A. Since ty = b− ax2 we have sy = vu2 − a(ux)2 integral over A. Finally sx = (tu)(ux)
is integral over A.
It can be checked that s is a root of a monic polynomial f of degree 4 of the form T 3(T−1)
residually.
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