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I consider that I understand an equation when I can
predict the properties of its solutions, without actually
solving it.

P.A.M. Dirac

Werner M. Seiler Algebraic Analysis of Physical Field Theories – p.1



⊳⊲

△
•
•
•
•
•
▽

Field Theories

Point mechanics: finite-dimensional systems
consisting of points or rigid bodies;
(gen.) coordinates function of time

 equations of motion ODEs
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Field Theories

Point mechanics: finite-dimensional systems
consisting of points or rigid bodies;
(gen.) coordinates function of time

 equations of motion ODEs

Field theory: observables (“fields”) depend on
time and space

 field equations PDEs
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Field Theories

Maxwell’s equations (in vacuum)

∂E

∂t
= ∇ × B ∇ · E = 0

∂B

∂t
= −∇ × E ∇ · B = 0

E electric field B magnetic field

 8 equations for 6 unknowns
 over-determined system ?
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Field Theories

Incompressible Navier-Stokes equations

ut + (u · ∇)u = ν∆u − ∇p

∇ · u = 0

u velocity field p pressure

 4 equations for 4 unknowns
 well-determined system ???
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Field Theories

Incompressible Navier-Stokes equations

ut + (u · ∇)u = ν∆u − ∇p

∇ · u = 0

u velocity field p pressure

 4 equations for 4 unknowns
 well-determined system ???

cross-derivative yields integrability condition

∆p = −∇ ·
(

(u · ∇)u
)
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Geometric Modelling

X space-time (independent variables)
U field values (often vector space)

“field”  smooth function u : X → U
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Geometric Modelling

X space-time (independent variables)
U field values (often vector space)

“field”  smooth function u : X → U

 q-jet of u in point x̄ ∈ X

[u]
(q)
x̄ Taylor polynomial of degree q for u in x̄
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Geometric Modelling

X space-time (independent variables)
U field values (often vector space)

“field”  smooth function u : X → U

 q-jet of u in point x̄ ∈ X

[u]
(q)
x̄ Taylor polynomial of degree q for u in x̄

Def: jet bundle of order q  

Jq(X ,U) =
{

[u]
(q)
x̄ | u ∈ C∞(X ,U), x̄ ∈ X

}
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Geometric Modelling

manifold of dimension n + m
(

n+q
q

)

coord.: x̄,
(

uα
µ

)1≤α≤m

0≤|µ|≤q
with uα

µ = ∂|µ|uα

∂xµ (x̄)

J0(X ,U) = X × U

rich geometric structure

for r > q natural projections

πr
q : Jr(X ,U) → Jq(X ,U)
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Geometric Modelling

Def: differential equation of order q  

(regular) submanifold Rq ⊆ Jq(X ,U)

zero set of functions F : Jq(X ,U) → R
similar to algebraic geometry

no distinction: scalar ⇔ system
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Geometric Modelling

Def: differential equation of order q  

(regular) submanifold Rq ⊆ Jq(X ,U)

zero set of functions F : Jq(X ,U) → R
similar to algebraic geometry

no distinction: scalar ⇔ system

function u ∈ C∞(X ,U)  prolongation

jqu ∈ C∞
(

X , Jq(X ,U)
)

with jqu(x) = [u](q)x

Def: u solution  im (jqu) ⊆ Rq
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Field Equations

phenomenological models: idealisation and
modelling yield together with “first principles”
field equations

example: Navier-Stokes
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Field Equations

phenomenological models: idealisation and
modelling yield together with “first principles”
field equations

example: Navier-Stokes

variational models: field equations follow
from variational principle
(“nature is lazy and stingy”)

example: Yang-Mills
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Field Equations

variational systems are described by Lagrangian
density L : J1(X ,U) → R

fields u evolve such that action functional

S[u] =

∫

X

L
(

j1u(x)
)

dx

is minimised
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Field Equations

variational systems are described by Lagrangian
density L : J1(X ,U) → R

fields u evolve such that action functional

S[u] =

∫

X

L
(

j1u(x)
)

dx

is minimised

 Euler-Lagange equations

∑

i

d

dxi

(

∂L

∂uα
i

)

−
∂L

∂uα
= 0
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Field Equations

Example: massive scalar field

L =
1

2
(u2

t − u2
x) −

1

2
m2u2

Euler-Lagrange  Klein-Gordon equation

utt − uxx + m2u = 0
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Gauge Symmetries

assume Lie group G operates on U
(E = X × U principal fibre bundle)

local gauge transformation: map X → G
(at every space-time point a different group
element may be used)

gauge symmetry  action remains invariant

physical interpretation: solutions related by
gauge transformation describe same physical
state; may be identified
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Gauge Symmetries

Example: U(1)-Yang-Mills in 1 + 1 dimensions

Lagrangian: L = 1
2(ux − vt)

2

Euler-Lagrange (2 equations for 2 unknowns)

uxx − vxt = 0 uxt − vtt = 0

invariant under transformations

u 7→ u + Λt v 7→ v + Λx

for arbitrary function Λ(x, t)

 under-determined system ???
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General Differential Equations

ut = f(t,x, u, ux)
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General Differential Equations

ut = f(t,x,u,ux)

normal (Cauchy-Kovalevskaya) system

same number of equations and unknowns

further structural assumption: existence of
distinguished variable t (“time”)

existence and uniqueness theorem for analytic
solutions and equations  more general
results only for special classes of equations

gauge theories are never in this form
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General Differential Equations

vt = g(t,x,v,w,vx,wx,wt)

0 = h(t,x,v,w,vx,wx)

general system (“PDAE”)

generally not yet in normal form!
(but usually for gauge theories)

generally same order, but different class
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General Differential Equations

Problems:

existence of solutions
formal consistency

analytic theory
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General Differential Equations

Problems:

existence of solutions

uniqueness of solutions

size of formal solution space

“degrees of freedom”, “mobility”

how many and which initial or boundary
conditions?
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General Differential Equations

Problems:

existence of solutions

uniqueness of solutions

classifications
under-, well- or over-determined system?

elliptic or hyperbolic system?
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General Differential Equations

Problems:

existence of solutions

uniqueness of solutions

classifications

detection of singular behaviour

impasse or funnel points

singular integrals

shocks
local normal forms
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General Differential Equations

Problems:

existence of solutions

uniqueness of solutions

classifications

detection of singular behaviour

existence of symmetries

quantisation

numerical integration

. . .
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Formal Integrability

Two natural operations with differential equations

Projection: R
(s)
q−s = πq

q−s(Rq)
(eliminate all equations of order > q − s)

Prolongation: Rq+r = Jr(X ,Rq) ∩ Jq+r(X ,U)
(differentiate every equation in system r times
with respect to all variables)
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Formal Integrability

In general: R
(s)
q = πq+s

q (Rq+s)(Rq

 integrability conditions

computationally two mechanisms:

differentiation of lower-order equations

(gen.) cross-derivatives

for ODEs only first one possible

second one requires algebraic treatment
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Formal Integrability

Def: Rq formally integrable, if

∀r > 0 : R
(1)
q+r = Rq+r

infinite definition!

integrability conditions obstruct order by order
construction of formal power series solutions

truncated series valid approximations only for
formally integrable equations

construction of some integrability conditions
easy; when do we know all?
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Formal Integrability

Ordinary differential equations:

Prop: Rq either inconsistent or R
(s)
q formally

integrable for some 0 ≤ s ≤ dimRq

Proof: simple dimensional argument
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Formal Integrability

Ordinary differential equations:

Prop: Rq either inconsistent or R
(s)
q formally

integrable for some 0 ≤ s ≤ dimRq

Proof: simple dimensional argument

Partial differential equations:

Thm: Rq either inconsistent or R
(s)
q+r formally

integrable for some r, s ∈ N0

Proof: non-trivial Noetherian arguments
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Geometric Symbol

πq
q−1 : Jq(X ,U) → Jq−1(X ,U) affine bundle

modelled on vector bundle Sq(T
∗X ) ⊗ TU

Fundamental identification:

T
(

Jq(X ,U)
)

⊃ V πq
q−1

∼= Sq(T
∗X ) ⊗ TU

Evaluation in local basis (ω1, . . . , ωn) of T ∗X

S(T ∗X ) =
⊕

q≥0

Sq(T
∗X ) ∼= R[x1, . . . , xn]

 natural polynomial structure in jet hierarchy
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Geometric Symbol

Def: (geometric) symbol of Rq  

Nq = TRq ∩ V πq
q−1

vertical part of tangent space TRq

solution space of linearised principal part
considered as LSE with matrix

(

∂F τ

∂uα
µ

)τ=1,...,p

α=1,...,m; |µ|=q

in variables u̇α
µ with α = 1, . . . ,m, |µ| = q
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Geometric Symbol

same construction for prolonged equation
Rq+1 ⊆ Jq+1(X ,U) described by DxF = 0  

prolonged symbol

Nq+1 = TRq+1 ∩ V πq+1
q

iteration to arbitrary order  

symbolic system: Nq, Nq+1, Nq+2, . . .

(modern point of view: graded comodule N
over symmetric coalgebra S(T ∗X ))
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Principal Symbol

replace variable u̇α
µ by product χ

µu̇α with

vector χ = (χ1, . . . , χn) (one-form χ ∈ T ∗X )

yields (p × m) matrix

Tq[χ] =





∑

|µ|=q

∂F τ

∂uα
µ

χ
µ





τ=1,...,p

α=1,...,m

of homogeneous polynomials of degree q in χ
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Principal Symbol

rows of Tq[χ] generate graded submodule of
free module R[χ]m  symbol module M
(annulator of symbol comodule N )

component Mq+r generated by principal
symbol Tq+r[χ] of Rq+r

syzygies of M induce (gen.) cross-derivatives
for construction of integrability conditions
 finite criterion for formal integrability
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Principal Symbol

U(1)-Yang-Mills equations

R2 :

{

vtt − utx = 0
vtx − uxx = 0

symbol matrix:

(

0 1 −1 0 0 0
0 0 0 1 −1 0

)

principal symbol: T2[χ] =

(

−χtχx χ2
t

−χ2
x χtχx

)
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Principal Symbol

Def: differential equation Rq

under-determined  ∄ χ : Tq[χ] injective

well-determined  ∃χ : Tq[χ] bijective

over-determined  else

Caution: classification makes sense only for
formally integrable equations!
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Degrees of Freedom

Idea: determine (asymptotic) size of formal
solution space of formally integrable differential
equation Rq
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Degrees of Freedom

Idea: determine (asymptotic) size of formal
solution space of formally integrable differential
equation Rq

Observation: Taylor coefficients of order q + r
satisfy inhomogeneous LSE with homogeneous
solution space Nq+r =⇒ number of parametric
coefficients of order q + r given by
dimRNq+r = dimR (R[χ]m/M)q+r
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Degrees of Freedom

Def: Hilbert function H of Rq  

Hilbert function of M̄ = R[χ]m/M
(d.h. H(r) = dimR M̄r for r ∈ N)

Prop: Hilbert function H(r) becomes Hilbert
polynomial h(r) ∈ Q[r] for r ≫ 0

dimension: dimM̄ = deg h

multiplicity: multM̄ = (deg h)! · lc h (∈ N)
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Degrees of Freedom

Def: Hilbert function H of Rq  

Hilbert function of M̄ = R[χ]m/M
(d.h. H(r) = dimR M̄r for r ∈ N)

Prop: Hilbert function H(r) becomes Hilbert
polynomial h(r) ∈ Q[r] for r ≫ 0

dimension: dimM̄ = deg h

multiplicity: multM̄ = (deg h)! · lc h (∈ N)

Cartan genus: d = dimM̄ + 1

index of generality: e = multM̄
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Degrees of Freedom

Interpretation: formal solution space of Rq

parametrised by e functions of d variables plus
functions of fewer variables

Field theories:

d = n − 1 =⇒ e degrees of freedom
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Degrees of Freedom

Interpretation: formal solution space of Rq

parametrised by e functions of d variables plus
functions of fewer variables

Proposition:

Rq under-determined ⇐⇒ d = n

Rq well-determined ⇐⇒

d = n − 1 ∧ e = mq

Rq over-determined ⇐⇒

d < n − 1 ∨ e < mq
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Degrees of Freedom

Interpretation: formal solution space of Rq

parametrised by e functions of d variables plus
functions of fewer variables

Examples:

Maxwell: d = 3 e = 4

Navier-Stokes: d = 3 e = 3

Yang-Mills: d = 2 e = 1
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Gauge Symmetries Revisited

Observation: gauge symmetries lead always to
under-determined field equations

Goal: find “gauge correction” for d and e by
formally subtracting effect of gauge symmetries

Idea: model gauge symmetries mathematically
as Lie pseudogroup (Lie groupoid), i.e. as solutions
of differential equation
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Gauge Symmetries Revisited

Set E = X × U and introduce Ir(E) ⊂ Jr(E , E)
the space of r-jets of invertible maps γ : E → E

Def: (local) Lie pseudogroup  

(solution space of) differential equation Gr ⊆ Ir(E)
such that (wherever defined)

1. idE solution

2. γ1, γ2 solutions =⇒ γ1 ◦ γ2 solution

3. γ solution =⇒ γ−1 solution
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Gauge Symmetries Revisited

Set E = X × U and introduce Ir(E) ⊂ Jr(E , E)
the space of r-jets of invertible maps γ : E → E

γ gauge transformation, if fibration pr1 : E → X
preserved, i.e. local coordinate form

x̄ = f(x) ū = g(x, u)
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Gauge Symmetries Revisited

Def: Gr gauge symmetry group of Rq  

γ · u again solution of Rq for every solution γ of Gr

and u of Rq

G, H Hilbert functions of Gr and Rq, resp.  

gauge corrected Hilbert function: H̄ = H − G

gauge corrected Cartan genus: d̄ = deg h̄ + 1

gauge corrected index of generality: ē = (deg h̄)! · lc h̄
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Gauge Symmetries Revisited

U(1)-Yang-Mills equations in 1 + 1 dimensions

gauge transformations:

ū = u + Λt v̄ = v + Λx

with arbitrary function Λ(x, t)

representation as Lie pseudogroup:

∂ū

∂u
= 1

∂ū

∂v
= 0

∂ū

∂x
=

∂v̄

∂t

∂v̄

∂u
= 0

∂v̄

∂v
= 1
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Gauge Symmetries Revisited

U(1)-Yang-Mills equations in 1 + 1 dimensions
Hilbert polynomials:

h(s) = s + 2 g(s) = s + 2

h̄(s) = 0

Cartan genus and index of generality

d̄ = 0 ē = 0

under-determinacy solely due to gauge symmetry
 modulo gauge one-dimensional solution space
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Gauge Symmetries Revisited

U(1)-Yang-Mills equations in 1 + 3 dimensions

Hilbert polynomials:

h(s) =
1

6
s3 +

7

2
s2 +

25

3
s + 4 =⇒ d = 4

g(s) =
1

6
s3 +

3

2
s2 +

13

3
s + 4 =⇒ h̄(s) = 2s2 + 4s

Cartan genus and index of generality

d̄ = 3 ē = 4

modulo gauge symmetry solution space of same
size as Maxwell’s equations
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Involution

Let Rq be formally integrable; from certain order
q̄ ≥ q on symbol module M “particularly nice”

Syz (Tq̄[χ]) generated in degree 1

Hilbert function polynomial

Hilbert polynomial directly readable off Tq̄[χ]

Koszul homology Hr,p(M̄) vanishes for r ≥ q̄

. . .

(q̄ = reg M̄  Castelnuovo-Mumford regularity)
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Involution

Let Rq be formally integrable; from certain order
q̄ ≥ q on symbol module M “particularly nice”

Def: Rq̄ involutive

classical concept; goes back to Cartan

known effective tests expensive or coordinate
dependent (Cartan test)

important for existence and uniqueness results
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Involution

Theorem: (Cartan-Kähler)

analytic involutive differential equation Rq =⇒
“appropriate” initial value problem possesses
unique analytic solution

proof by reduction to sequence of normal
systems  Cauchy-Kovalevskaya

additional structural assumptions allow for
statements in more general functionen spaces
(e.g. uniqueness of continuous solutions of
linear equations  Holmgren Theorem)

involution essential for proof
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Message of the Day

Mathematics is being lazy. Mathematics is letting the
principles do the work for you so that you do not have
to do the work for yourself.

G. Pólya

Involution is the central principle

for general systems of partial dif-

ferential equations!
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