Pommaret bases and Koszul homology for quasi-stable ideals

Mehdi Sahbi mehdi_sahbi@yahoo.de

29. Februar 2008

Motivation

- Many invariants of homological nature can be read off from a Pommaret basis:
 - Projective dimension
 - Depth
 - Castelnuovo-Mumford regularity
- A Pommaret basis is to a large extent determined by the structure of the ideal.
- Goal: Construct the homology from the Pommaret basis (here in the monomial case)

Pommaret bases

- An example of involutive bases
- Special kind of Gröbner bases (in general not reduced) with additional combinatorial properties
- closely related to the involution analysis of symbols in the formal theory of differential equation (see works of Seiler)

Pommaret bases

- Consider the multiindex $\mu = (0, \dots, 0, \mu_k, \dots, \mu_n)$, $\mu_k
 eq 0$
 - cls $\mu:=k$, the class of μ
 - Multiplicative variables (allowed prolongations) for x^{μ} : x_1,\ldots,x_k
 - Pommaret cone of x^{μ} : $\mathcal{C}_P(x^{\mu}) = x^{\mu} \cdot \{x^l \mid l_i = 0 \text{ for } i > k\}$
- A set of monomials M is a Pommaret basis, if $< M >_P := \bigcup_{m \in M} \mathcal{C}_P(m) = < M >$

But:

Pommaret bases do not always exist!

Monomial ideals having a Pommaret basis are called quasi-stable

 \rightarrow In this work we only consider this class of ideals!

Example

- Consider the ideal generated by $< x^3y, y^3 > \subseteq \mathcal{K}[x,y]$
- $\mathsf{cls}(x^3y) = 1 \rightarrow \mathsf{Prolongations}$ in direction of x_1
- $\operatorname{cls}(y^3) = 2 \rightarrow$ Prolongations in direction of x_1 and x_2
- Pommaret basis of the ideal: $\{x^3y, x^3y^2, y^3\}$
 - \rightarrow Completion algorithm (see works of Seiler)

Koszul homology I

- \mathcal{V} an *n*-dimensional linear space over \mathbb{K} $(char\mathbb{K}=0)$
- $S\mathcal{V}$ the symmetric algebra over \mathcal{V}
- $\Lambda \mathcal{V}$ the exterior algebra

Definition. The Koszul complex $K_r(S\mathcal{V})$ at degree r over \mathcal{V} is given by

$$0 \to S_{r-n}\mathcal{V} \otimes \Lambda^n \mathcal{V} \xrightarrow{\partial} S_{r-n+1}\mathcal{V} \otimes \Lambda^{n-1}\mathcal{V} \xrightarrow{\partial} \dots \xrightarrow{\partial} S_r \mathcal{V} \to 0$$

where

$$\partial(w_1\ldots w_q\otimes v_1\ldots v_p)=\sum_{i=1}^p\,w_1\ldots w_q v_i\otimes v_1\wedge\ldots\wedge \widehat{v_i}\wedge\ldots\wedge v_p.$$

We set $S_j \mathcal{V} = 0$ for j < 0.

Koszul homology II

- Let $\{x_1,\ldots,x_n\}$ be a basis of ${\mathcal V}$
- We identify $S\mathcal{V}\cong\mathbb{K}[x_1,\ldots,x_n]=\mathcal{P}$
- Basis of $S_q \mathcal{V}$: all terms x^{μ} with μ a multiindex of length q.
- Basis of $\Lambda^p \mathcal{V}$:

We consider a sorted repeated index I of length pi.e. $I = (i_1, \ldots, i_p)$ with $1 \leq i_1 < \ldots < i_p \leq n$. We define $x^I := x_{i_1} \land \ldots \land x_{i_p}$. The set of all x^I for alle possible sorted repeated indices I of length p provides a basis of $\Lambda^p \mathcal{V}$.

 \rightarrow ∂ w.r.t. the above bases:

$$\partial(x^{\mu} \otimes x^{I}) = \sum_{j=1}^{p} (-1)^{j+1} x^{\mu+1} \otimes x^{I \setminus \{i_j\}}.$$

6

Koszul homology III

Definition. Let \mathcal{M} be a graded module over the symmetric algebra $\mathcal{P} = S\mathcal{V}$. Its Koszul complex $(K(\mathcal{M}), \partial)$ is the tensor product complex $\mathcal{M} \otimes_{\mathcal{P}} K(S\mathcal{V})$. The Koszul homology of \mathcal{M} is the corresponding bigraded homology; the homology group at $\mathcal{M}_q \otimes \Lambda^p \mathcal{V}$ is denoted by $H_{q,p}(\mathcal{M})$.

Remark: The Koszul homology corresponds to a minimal free resolution

Koszul homology IV

• Proposition.

 $H_q(\mathcal{I}) \cong H_{q+1}(\mathcal{P}/\mathcal{I}),$

where the second isomorphism is induced by the Koszul differential ∂ .

• Strategy: Compute the homology of \mathcal{P}/\mathcal{I} (simpler!).

The *P*-graph

- Vertices: The Pommaret generators of the ideal
- Edges: Let h be a Pommaret generator and x_i a non-multiplicative variable for h. Then there exists a unique generator \bar{h} such that $x_i \cdot h$ is contained in the Pommaret cone of \bar{h} . In this case we have an edge from h to \bar{h} .
- x_i is a K-variable for h, if $x_i \cdot h \neq \bar{h}$
- x_i is an *R*-variable for *h*, if $x_i \cdot h = \bar{h}$

Example

•
$$\mathcal{I} = \langle x^2 y, y^2 z, y^3, z^2 \rangle$$

• $\mathcal{H} = \{ x^2 y, x^2 y z, x^2 y^2, y^3, y^2 z, z^2 \}$

• The P-graph

10

Cycles from the P-graph I

- *A*-cycles:
 - $-x^{\mu} \in \mathcal{H}$
 - $\ {\rm cls} \ x^\mu = k$
 - $K = \{x_i \mid x_i \text{ non-multiplicative and } x_i \text{ is a } K\text{-variable for } x^{\mu}\}$ For all $L \subseteq K$ it holds:

 $[x^{\mu-1_k} \otimes x_k \wedge L] \in H_{|L|+1}(\mathcal{P}/\mathcal{I})$

Example

 $egin{aligned} [xy^2\otimes x]\in H_1(\mathcal{P}/\mathcal{I})\ [xy^2\otimes x\wedge y]\in H_2(\mathcal{P}/\mathcal{I})\ [xy^2\otimes x\wedge z]\in H_2(\mathcal{P}/\mathcal{I})\ [xy^2\otimes x\wedge y\wedge z]\in H_3(\mathcal{P}/\mathcal{I}) \end{aligned}$

Cycles from the *P*-graph II

• *B*-cycles:

The cycle is:

$$\omega_B = x^{\mu-1_k} \otimes x_k \wedge x_{t_1} \wedge x_{t_2} \wedge x_{m_1} \wedge x_{m_2} + x^{\mu+1_{m_1}-1_{m'}-1_k} \otimes x_k \wedge x_{t_1} \wedge x_{t_2} \wedge x_{m_2} \wedge x_{m'} - x^{\mu+1_{m_2}-1_{m''}-1_k} \otimes x_k \wedge x_{t_1} \wedge x_{t_2} \wedge x_{m_1} \wedge x_{m''}.$$

 $\rightarrow [\omega_B] \in H_5(\mathcal{P}/\mathcal{I})$

There is a rule for the signs!

Example

 $[y\otimes x\wedge z-z\otimes x\wedge y]\in H_2(\mathcal{P}/\mathcal{I})$

Relations

- The obtained set of cycles still contains
 - Boundaries
 - Equivalent cycles
- Proposition: The relations to consider are of the form

 $\partial (x^{\mu - 1_k} \otimes x_k \wedge x^I),$

where $k = \operatorname{cls} \mu$, $x^{\mu} \in \mathcal{H}$ and there exists $i \in I$, such that x_i is an R-variable for x^{μ} .

Computation of the homology

- Given the set of cycles and all relations we are now able to compute the basis
- We have designed a (canonical) term rewriting system to do this job
- Result: A (apriori) subbasis of the homology
- Claim: The algorithm computes a basis of the Koszul homology of \mathcal{P}/\mathcal{I} .

Proof (strategy)

- Consider the Syzygy resolution
- Simplification delivers the Betti numbers
- The Koszul homology corresponds to a minimal resolution.
- Equality of the dimensions (obtained from the algorihm) and the Betti numbers proves the statement
 - Since the linear spaces are finite!

Pommaret-Schreyer Theorem

- Given a Pommaret basis of the module \mathcal{M} , we have a **Pommaret basis** of the first syzygy module (w.r.t. some term order).
- Iteration constructs a syzygy resolution

Syzygy resolution

Let \mathcal{H} be a Pommaret basis of the polynomial module $\mathcal{M} \subseteq P^m$. If we denote by $b_0^{(k)}$ the number of generators $h \in \mathcal{H}$ such that cls $|e_{\prec}h = k$ and set $d = \min\{k \mid b_0^{(k)} > 0\}$, then \mathcal{M} possesses a finite free resolution

$$0 \to P^{r_n - d} \to \ldots \to P^{r_1} \to P^{r_0} \to \mathcal{M} \to 0$$

of length n-d where the ranks of the free modules are given by

$$r_i = \sum_{k=1}^{n-i} \binom{n-k}{i} b_0^{(k)}.$$

 \rightarrow Stronger version of Hilbert´s Syzygy Theorem

Extended Schreyer theorem

Corollary: Let $\mathcal{I} \subseteq \mathcal{P}$ be a quasi-stable ideal. Then we have explicit bases for the whole Koszul homology.

Final remarks

- Our algorithm deals only with the direction basis \rightarrow homology
- Seiler has investigated the other direction
- The generalisation of this work to the polynomial case is still an open question
- The homological nature of Pommaret bases should be better understood
- Pommaret bases encode also some geometric aspects such as
 - Noether normalisation
 - primary decomposition (in the monomial case)
- A further investigation direction