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Motivation

• Many invariants of homological nature can be read off from a Pommaret basis:
– Projective dimension
– Depth
– Castelnuovo-Mumford regularity

• A Pommaret basis is to a large extent determined by the structure of the ideal.

• Goal: Construct the homology from the Pommaret basis (here in the monomial case)
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Pommaret bases

• An example of involutive bases

• Special kind of Gröbner bases (in general not reduced) with additional combinatorial properties

• closely related to the involution analysis of symbols in the formal theory of differential
equation (see works of Seiler)
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Pommaret bases

• Consider the multiindex µ = (0, . . . , 0, µk, . . . , µn), µk 6= 0

– cls µ := k, the class of µ

– Multiplicative variables (allowed prolongations) for xµ: x1, . . . , xk

– Pommaret cone of xµ: CP (xµ) = xµ·{xl | li = 0 for i > k}
• A set of monomials M is a Pommaret basis, if < M >P :=

⋃
m∈M CP (m) =< M >

But:
Pommaret bases do not always exist!
Monomial ideals having a Pommaret basis are called quasi-stable
→ In this work we only consider this class of ideals!
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Example

• Consider the ideal generated by < x3y, y3 >⊆ K[x, y]

• cls(x3y) = 1→ Prolongations in direction of x1

• cls(y3) = 2→ Prolongations in direction of x1 and x2

• Pommaret basis of the ideal: {x3y, x3y2, y3}
→ Completion algorithm (see works of Seiler)
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Koszul homology I

• V an n-dimensional linear space over K (charK = 0)
• SV the symmetric algebra over V
• ΛV the exterior algebra

Definition. The Koszul complex Kr(SV) at degree r over V is given by

0 → Sr−nV ⊗ Λ
nV ∂→ Sr−n+1V ⊗ Λ

n−1V ∂→ . . .
∂→ SrV → 0

where

∂(w1 . . . wq ⊗ v1 . . . vp) =

p∑
i=1

w1 . . . wqvi ⊗ v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vp.

We set SjV = 0 for j < 0.
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Koszul homology II

• Let {x1, . . . , xn} be a basis of V
• We identify SV ∼= K[x1, . . . , xn] = P
• Basis of SqV : all terms xµ with µ a multiindex of length q.
• Basis of ΛpV :

We consider a sorted repeated index I of length p

i.e. I = (i1, . . . , ip) with 1 ≤ i1 < . . . < ip ≤ n.
We define xI := xi1

∧ . . . ∧ xip.
The set of all xI for alle possible sorted repeated indices I of length p provides a basis of
ΛpV .

→ ∂ w.r.t. the above bases:

∂(x
µ ⊗ x

I
) =

p∑
j=1

(−1)
j+1

x
µ+1ij ⊗ x

I\{ij}.
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Koszul homology III

Definition. Let M be a graded module over the symmetric algebra P = SV . Its Koszul
complex (K(M), ∂) is the tensor product complex M⊗P K(SV). The Koszul homology
of M is the corresponding bigraded homology; the homology group at Mq ⊗ ΛpV is denoted
by Hq,p(M).

Remark: The Koszul homology corresponds to a minimal free resolution
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Koszul homology IV

• Proposition.

Hq(I) ∼= Hq+1(P/I),

where the second isomorphism is induced by the Koszul differential ∂.

• Strategy: Compute the homology of P/I (simpler!).
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The P -graph

• Vertices: The Pommaret generators of the ideal

• Edges: Let h be a Pommaret generator and xi a non-multiplicative variable for h. Then
there exists a unique generator h̄ such that xi · h is contained in the Pommaret cone of h̄.
In this case we have an edge from h to h̄.

• xi is a K-variable for h, if xi · h 6= h̄

• xi is an R-variable for h, if xi · h = h̄
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Example

• I = 〈x2y, y2z, y3, z2〉
• H = {x2y, x2yz, x2y2, y3, y2z, z2}
• The P -graph
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Cycles from the P -graph I

• A-cycles:

– xµ ∈ H
– cls xµ = k

– K = {xi | xi non-multiplicative and xi is a K-variable for xµ}
For all L ⊆ K it holds:

[x
µ−1k ⊗ xk ∧ L] ∈ H|L|+1(P/I)
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Example
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[xy2 ⊗ x] ∈ H1(P/I)

[xy2 ⊗ x ∧ y] ∈ H2(P/I)

[xy2 ⊗ x ∧ z] ∈ H2(P/I)

[xy2 ⊗ x ∧ y ∧ z] ∈ H3(P/I)
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Cycles from the P -graph II

• B-cycles:
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The cycle is:

ωB =xµ−1k ⊗ xk ∧ xt1
∧ xt2

∧ xm1
∧ xm2

+xµ+1m1−1m′−1k ⊗ xk ∧ xt1
∧ xt2

∧ xm2
∧ xm′

−xµ+1m2−1m′′−1k ⊗ xk ∧ xt1
∧ xt2

∧ xm1
∧ xm′′.

→ [ωB] ∈ H5(P/I)

�

There is a rule for the signs!
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Example
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[y ⊗ x ∧ z − z ⊗ x ∧ y] ∈ H2(P/I)
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Relations

• The obtained set of cycles still contains
– Boundaries
– Equivalent cycles

• Proposition: The relations to consider are of the form

∂(x
µ−1k ⊗ xk ∧ x

I
),

where k = cls µ, xµ ∈ H and there exists i ∈ I , such that xi is an R-variable for xµ.
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Computation of the homology

• Given the set of cycles and all relations we are now able to compute the basis

• We have designed a (canonical) term rewriting system to do this job

• Result: A (apriori) subbasis of the homology

• Claim: The algorithm computes a basis of the Koszul homology of P/I.
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Proof (strategy)

• Consider the Syzygy resolution

• Simplification delivers the Betti numbers

• The Koszul homology corresponds to a minimal resolution.

• Equality of the dimensions (obtained from the algorihm) and the Betti numbers proves the
statement
– Since the linear spaces are finite!
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Pommaret-Schreyer Theorem

• Given a Pommaret basis of the module M, we have a Pommaret basis of the first syzygy
module (w.r.t. some term order).

• Iteration constructs a syzygy resolution
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Syzygy resolution

Let H be a Pommaret basis of the polynomial module M ⊆ P m. If we denote by b
(k)
0

the number of generators h ∈ H such that cls le≺h = k and set d = min{k | b
(k)
0 > 0},

then M possesses a finite free resolution

0 → P
rn−d → . . . → P

r1 → P
r0 →M→ 0

of length n− d where the ranks of the free modules are given by

ri =

n−i∑
k=1

(n− k

i

)
b
(k)
0 .

→ Stronger version of Hilbert´s Syzygy Theorem
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Extended Schreyer theorem

Corollary: Let I ⊆ P be a quasi-stable ideal. Then we have explicit bases for the whole
Koszul homology.
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Final remarks

• Our algorithm deals only with the direction basis→homology

• Seiler has investigated the other direction

• The generalisation of this work to the polynomial case is still an open question

• The homological nature of Pommaret bases should be better understood

• Pommaret bases encode also some geometric aspects such as
– Noether normalisation
– primary decomposition (in the monomial case)

• A further investigation direction
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