Complete intersections in affine monomial curves. A computational approach via Graph Theory

Isabel Bermejo University of La Laguna, Spain

Based on the paper

I. Bermejo, I. García-Marco, J.J. Salazar-González, An algorithm for checking whether the toric ideal of an affine monomial curve is a complete intersection, *J. Symbolic Comput.* 42 (2007), 971–991.

Implementation

I. Bermejo, I. García-Marco, J.J. Salazar-González, cimonom.lib, Singular 3.0.3, 2007.

Main references

I. Bermejo, Ph. Gimenez, E. Reyes, R. H. Villarreal, Complete intersections in affine monomial curves, *Bol. Soc. Mat. Mexicana (3a) Serie* **11 (2)** (2005), 191–204.

M. Clausen, A. Fortenbacher, Efficient Solution of Linear Diophantine Equations, *J. Symbolic Comput.* **8** (1989), 201–216.

Ch. Delorme, Sous-monoïdes d'intersection complète de \mathbb{N} , *Ann. Sci. École Norm. Sup.* **9** (1976), 145–154.

J. Herzog, Generators and relations of abelian semigroups and semigroup rings, *Manuscripta Math.* **3** (1970), 175–193.

Definitions and basic results I

Let $R = K[x_1, \ldots, x_n]$ be the polynomial ring in *n* variables over an arbitrary field *K*.

Denote by x^a the monomial $x_1^{a_1} \cdots x_n^{a_n}$, where $a = (a_1, \dots, a_n) \in \mathbb{N}^n$.

A binomial f in R is a difference of two monomials, i.e., $f = x^a - x^b$ for some $a, b \in \mathbb{N}^n$. An ideal of R generated by binomials is called a binomial ideal.

Let $\{d_1, \ldots, d_n\}$ be a set of all-different positive integers and consider the affine monomial curve:

 $\Gamma = \{(t^{d_1}, \ldots, t^{d_n}) \in \mathbb{A}^n_K \mid t \in K\}.$

The kernel of the homomorphism of *K*-algebras $\phi : \mathbb{R} \longrightarrow \mathbb{K}[t]$ induced by $x_i \longmapsto t^{d_i}$ is called the **toric ideal of** Γ and will be denoted by

 $I(d_1,\ldots,d_n)$

Definitions and basic results II

- $I(d_1, \ldots, d_n)$ is a 1-dimensional binomial ideal.
- $I(d_1, \ldots, d_n)$ is generated by **quasi-homo**geneous binomials, i.e., homogeneous binomials when one gives degree d_i to variable x_i for all $i \in \{1, \ldots, n\}$.
- If either $gcd \{d_1, \ldots, d_n\} = 1$ or $K = \overline{K}$, we get $\Gamma = V(I(d_1, \ldots, d_n))$, i.e., Γ is a toric variety.
- If K is an infinite field, $I(\Gamma) = I(d_1, \ldots, d_n)$.

 $I(d_1, \ldots, d_n)$ is a complete intersection if there exists a system of quasi-homogeneous binomials g_1, \ldots, g_{n-1} such that

$$I(d_1,\ldots,d_n)=(g_1,\ldots,g_{n-1}).$$

The definition coincides with the usual one.

Aim of the work

To obtain an efficient algorithm for checking whether or not $I(d_1, \ldots, d_n)$ is a complete intersection.

For all $i \in \{1, \ldots, n\}$ let us define $c_i := \min \left(\mathbb{Z}^+ d_i \cap \sum_{j \in \{1, \ldots, n\} \setminus \{i\}} \mathbb{N} \, d_j \right).$

Herzog gives the following result when n = 3:

 $I(d_1, d_2, d_3)$ is a complete intersection \Leftrightarrow $\exists r, s : 1 \leq r < s \leq 3$, such that $c_r = c_s$.

This result does not hold for n > 3.

The aim of this work is to design an efficient algorithm for checking whether $I(d_1, \ldots, d_n)$ is a complete intersection which is mainly based on the computation of some c_i .

First attempt I

Proposition. Let $I(d_1, \ldots, d_n)$ be a complete intersection. Then the following two conditions hold:

- 1. $\exists r, s: 1 \leq r < s \leq n$ such that $c_r = c_s$;
- 2. whenever $c_r = c_s$ for $r,s: 1 \leq r < s \leq n$, one has
- (a) $I(d_1, ..., \widehat{d_r}, ..., \widehat{d_s}, ..., d_{n+1})$ is a complete intersection, where $d_{n+1} := \gcd \{d_r, d_s\}$;
- (b) if one sets $c_{n+1} := \min \left(\mathbb{Z}^+ d_{n+1} \cap \sum_{j \in \{1,...,n\} \setminus \{r,s\}} \mathbb{N} d_j \right)$ then $c_{n+1} \in \mathbb{N} d_r + \mathbb{N} d_s$; (c) if for all $i \in \{1,...,n\} \setminus \{r,s\}$ one sets $c'_i := \min \left(\mathbb{Z}^+ d_i \cap \sum_{j \in \{1,...,n+1\} \setminus \{i,r,s\}} \mathbb{N} d_j \right)$ then $c'_i = c_i$.

First attempt II

The two necessary conditions for $I(d_1, \ldots, d_n)$ to be a complete intersection in **Proposition** also turn out to be sufficient when n = 4.

Therefore, they provide an algorithm for determining whether or not $I(d_1, d_2, d_3, d_4)$ is a complete intersection that requires the design of procedures to solve the following problems:

- To compute the smallest positive multiple of an integer that belongs to a semigroup.
- To check whether or not a positive integer belongs to a semigroup.

First attempt III

This characterization does not hold for $n\geq 5$

Example. For $d_1 = 45, d_2 = 70, d_3 = 75, d_4 = 98$ and $d_5 = 147$, the toric ideal $I(d_1, d_2, d_3, d_4, d_5)$ is not a complete intersection.

Nevertheless, $c_1=c_3=225$ and setting $d_6:=\gcd\left\{d_1,d_3
ight\}=15$, one has that

- $I(d_2, d_4, d_5, d_6)$ is a complete intersection
- $ullet c_6 = \min(\mathbb{Z}^+ d_6 \cap \langle d_2, d_4, d_5
 angle) = 210 \in \langle d_1, d_3
 angle$
- ullet $c_2^{\,\prime}=c_2=210$, $c_4^{\,\prime}=c_4=c_5^{\,\prime}=c_5=294$

In spite of this, **Proposition** is **essential to describing our algorithm**.

Binary trees labeled by $\{d_1, \ldots, d_n\}$

A **binary tree** is a connected directed rooted tree in which every node has either two children or zero.

Nodes with no children are called **terminal nodes** and the only node with no parent is called the **root** of the tree.

A binary tree with n terminal nodes is said to be **labeled by** $\{d_1, \ldots, d_n\}$ if its terminal nodes are labeled by $\{d_1\}, \ldots, \{d_n\}$.

The following picture is a binary tree labeled by $\{12, 15, 18, 50\}$:

Binary trees labeled by $\{d_1,\ldots,d_n\}$

Let \mathcal{T} be a binary tree labeled by $\{d_1, \ldots, d_n\}$ and v a node of \mathcal{T} . Denote by Δ_v the subset of $\{d_1, \ldots, d_n\}$ such that the subtree of \mathcal{T} whose root node is v is labeled by Δ_v .

Theorem (BGRV). $I(d_1, \ldots, d_n)$ is a complete intersection \iff there is a binary tree \mathcal{T} labeled by $\{d_1, \ldots, d_n\}$ such that, for each non-terminal node v of \mathcal{T} with children v_1 and v_2 , one has that

 $\operatorname{lcm}\left\{ \operatorname{gcd}\left\{ d_{r}\,|\,d_{r}\in\Delta_{v_{1}}
ight\} ,\operatorname{gcd}\left\{ d_{s}\,|\,d_{s}\in\Delta_{v_{2}}
ight\}
ight\}$

$$\in \sum_{d_r \in \Delta_{v_1}} \mathbb{N} \, d_r \cap \sum_{d_s \in \Delta_{v_2}} \mathbb{N} \, d_s$$
 .

Binary trees labeled by $\{d_1, \ldots, d_n\}$

The binary tree labeled by $\{12, 15, 18, 50\}$:

satisfies the arithmetical conditions stated in **Theorem (BGRV)**:

- $ullet \, \mathrm{lcm}\left\{12,18
 ight\} = 36 \in \langle 12
 angle \cap \langle 18
 angle$
- $ullet \, \mathrm{lcm}\left\{\mathrm{gcd}\left\{12,18
 ight\},50
 ight\}=150\in\left\langle12,18
 ight
 angle\cap\left\langle50
 ight
 angle$
- $ullet \operatorname{lcm}\left\{\gcd\{12,18,50\},15
 ight\}=30\in\langle15
 angle\cap\langle12,18,50
 angle$

₩

I(12, 15, 18, 50) is a complete intersection.

Binary trees labeled by $\{d_1, \ldots, d_n\}$

By **[BGRV, Remark 4.5]**, the binary tree encodes the following additional information:

- $\{x_1^3 x_3^2, x_1^5 x_3^5 x_4^3, x_1 x_3 x_2^2\}$ is a system of quasi-homogeneous generators for I(12, 15, 18, 50).
- The Frobenius number g(S) of the semigroup $S := \langle 12, 15, 18, 50 \rangle$, i.e., the largest integer not in S, is 121.

$$\begin{array}{rcl} x_1^3 - x_3^2 & \Leftarrow & 36 = \underline{3} \cdot 12 = \underline{2} \cdot 18 \\ x_1^5 x_3^5 - x_4^3 & \Leftarrow & 150 = \underline{5} \cdot 12 + \underline{5} \cdot 18 = \underline{3} \cdot 50 \\ x_1 x_3 - x_2^2 & \Leftarrow & 30 = \underline{1} \cdot 12 + \underline{1} \cdot 18 = \underline{2} \cdot 15 \\ g(\mathcal{S}) = 121 & \Leftarrow & 121 = 36 + 150 + 30 - 12 \\ & -15 - 18 - 50 \end{array}$$

Binary trees labeled by $\{d_1,\ldots,d_n\}$

Theorem (BGRV) does not provide an efficient algorithm for checking whether or not $I(d_1, \ldots, d_n)$ is a complete intersection.

This is because one would need to verify the arithmetical conditions stated in the theorem in every binary tree labeled by $\{d_1, \ldots, d_n\}$.

Nevertheless, it is extremely useful for obtaining our algorithm.

Main result I

Let \mathcal{T} be a binary tree labeled by $\{d_1, \ldots, d_n\}$ and v a node of \mathcal{T} different from the root node.

Define

 $c_v := \min \left(\mathbb{Z}^+ ext{gcd} \left\{ d_r \, | \, d_r \in \Delta_v
ight\} \cap$

 $(\mathbb{N} \operatorname{gcd} \left\{ d_s \, | \, d_s \in \Delta_w
ight\} + \sum_{d_i
otin \Delta_v \cup \Delta_w} \mathbb{N} \, d_i) ig),$

where *v* and *w* are children of the same parent.

Theorem. $I(d_1, \ldots, d_n)$ is a complete intersection \iff there exists a binary tree \mathcal{T} labeled by $\{d_1, \ldots, d_n\}$ such that, for each nonterminal node v of \mathcal{T} different from the root node with children v_1 and v_2 , one has $c_{v_1} = c_{v_2}$ and $c_v \in \sum_{d_r \in \Delta_v} \mathbb{N} d_r$.

Main result II

 \Rightarrow) This is a non-trivial consequence of **Proposition**. The result is proved by induction on *n*.

For n = 3, if $I(d_1, d_2, d_3)$ is a complete intersection, then there exist $r, s : 1 \le r < s \le 3$ such that $c_r = c_s$. Suppose that $c_2 = c_3$.

Setting $d_4 := \gcd \left\{ d_2, d_3 \right\}$ and

 $c_4:=\min\ (\mathbb{Z}^+d_4\cap\mathbb{N}\,d_1)=\mathrm{lcm}\,\{d_1,d_4\},$

one has that $c_4 \in \langle d_2, d_3
angle.$

Thus, the binary tree labeled by $\{d_1, d_2, d_3\}$:

satisfies the arithmetical conditions stated in Theorem.

Main result III

(\Leftarrow) A binary tree labeled by $\{d_1, \ldots, d_n\}$ that satisfies the arithmetical conditions stated in **Theorem** also satisfies the arithmetical conditions stated in **Theorem (BGRV)**.

The converse is not true. The binary tree labeled by $\{d_1, d_2, d_3, d_4\}$, where $d_1 = 12, d_2 = 15, d_3 = 18$ and $d_4 = 50$:

does not satisfy the arithmetical conditions in **Theorem**. Indeed, $c_1 = c_3 = 36$. Setting $d_5 := \gcd \{d_1, d_3\} = 6$ and

 $c_5:= \min\left(\mathbb{Z}^+ d_5 \cap \langle d_2, d_4
ight) = 30\,,$

one finds that $c_5 \in \langle d_1, d_3 \rangle \longleftrightarrow c_5 = d_1 + d_3$ But $c_4 = \min(\mathbb{Z}^+ d_4 \cap \langle d_2, d_5 \rangle) = 150$ is different from c_5 .

Main result IV

The binary tree labeled by $\{d_1, d_2, d_3, d_4\}$, with $d_1=12\,, d_2=15\,, d_3=18$ and $d_4=50$:

satisfies the arithmetical conditions stated in **Theorem**.

Indeed, $c_2 = \min (\mathbb{Z}^+ d_2 \cap \langle d_4, d_5 \rangle) = 30$ is equal to c_5 and setting $d_6 := \gcd \{d_2, d_5\} = 3$ and $c_6 := \operatorname{lcm} \{d_4, d_6\} = 150$ one finds that $c_6 \in \langle d_1, d_2, d_3 \rangle \quad \longleftrightarrow \quad c_6 = 5d_1 + 5d_3$

Algorithm CI

Require: $\{d_1, \ldots, d_n\}$ Ensure: TRUE or FALSE $G_1 := \{d_1, \ldots, d_n\}$ for i = 1 to n do $V_i := \{d_i\}, \ c_i := \min\left(\mathbb{Z}^+ d_i \cap \sum_{j \in \{1,...,n\} \setminus \{i\}} \mathbb{N} \, d_j
ight)$ end for for i = 1 to n - 2 do if $c_j \neq c_k$ for all $j, \, k: j \neq k$ and $d_j, \, d_k \in G_i$ then return **FALSE** end if Let $j, k : j \neq k$ such that $d_j, d_k \in G_i$ and $c_j = c_k$ $d_{n+i} := \gcd\{d_i, d_k\}, V_{n+i} := V_i \cup V_k$ $G_{i+1}:=G_iackslash\{d_i,\,d_k\}\cup\,\{d_{n+i}\}$ $c_{n+i} := \min\left(\mathbb{Z}^+ d_{n+i} \cap \sum_{d_s \in |G_{i+1} \setminus \{d_{n+i}\}} \mathbb{N} \, d_s
ight)$ if $c_{n+i}
ot\in \sum_{d_i \in V_{n+i}} \mathbb{N} \, d_j$ then return **FALSE** end if end for return **TRUE**

Algorithm CI

Given $\{d_1, \ldots, d_n\}$ such that $I(d_1, \ldots, d_n)$ is a complete intersection, **Algorithm CI** returns, with no additional effort, a system of n - 1 quasi-homogeneous generators for the toric ideal $I(d_1, \ldots, d_n)$.

Moreover, when $gcd \{d_1, \ldots, d_n\} = 1$, **Algorithm CI** also returns the Frobenius num**ber** g(S) of the semigroup $S := \sum_{i=1}^{n} \mathbb{N} d_i$ using the formula:

$$\mathrm{g}(\mathcal{S}) = \sum_{i \in \{1, \, ..., \, 2n-2\}} c_i/2 - \sum_{i \in \{1, \, ..., \, n\}} d_i \, .$$

This is because a binary tree that satisfies the arithmetical conditions stated in **Theorem** also satisfies the arithmetical conditions stated in **Theorem (BGRV)**. Therefore, the first statement and the formula for g(S) are consequences of **[BGRV, Remark 4.5]**.

Computational aspects I

A direct implementation of **Algorithm CI** requires an **efficient procedure** to compute the values c_i .

Given $\{d_1, \ldots, d_n\}$, the optimization problem of computing

$$c_1 = \min ig(\mathbb{Z}^+ d_1 \cap \sum_{j \in \{2,...,n\}} \mathbb{N} \, d_jig)$$

can be formulated by the following Integer Linear Programming (ILP) model:

$$egin{aligned} x_1^* &:= \min & x_1 & (1) \ & d_1 + d_1 x_1 &= d_2 x_2 + \cdots + d_n x_n & (2) \ & x_1, x_2, \ldots, x_n &\geq 0 & (3) \ & x_1, x_2, \ldots, x_n \in \mathbb{Z} & (4) \end{aligned}$$

Then $c_1 = d_1 + d_1 x_1^*$.

The computation of c_1 is a \mathcal{NP} -hard problem.

Computational aspects II

To compute x_1^* , we use a **Graph Theory** representation of the problem.

The approach is similar in spirit to that of **Clausen & Fortenbacher** to solve linear diophantine equations.

The idea is to represent each solution

 (x_1, x_2, \ldots, x_n)

of (2)–(4) as a **walk** connecting two nodes in a **graph**, where the **weight** of the walk is x_1 .

Then the combinatorial problem modeled in (1)–(4) is equivalent to **finding a shortest path** connecting these two nodes **in the graph**.

Computational aspects III

Consider the following directed weighted graph $\mathcal{G} = (V, A)$, where the **node set** is

$$V:=ig\{0,1,\ldots,d_1ig\},$$

the arc set is

$$A:=igcup_{i=2}^nig\{(v,(v-d_i)mod d_1)\,|\,v\in Vig\},$$

and for all $v \in V$ and $i \in \{2, \ldots, n\}$, the **weight of the arc** $(v, (v - d_i) \mod d_1)$ is defined equal to

$$w_{(v,i)}:= \left| \left\lfloor rac{v-d_i}{d_1}
ight
ight|.$$

Lemma. There is an onto map of the set of walks in \mathcal{G} from d_1 to 0 with weight x_1 into the set of solutions (x_1, x_2, \ldots, x_n) of (2)–(4).

Proof. $(v - d_i) \mod d_1 = v - d_i + w_{(v,i)}d_1$

Computational aspects IV

The graph \mathcal{G} for the instance $d_1 = 5, d_2 = 6, d_3 = 8$ is the following:

where arcs represented by **single lines** have a **weight** equal to **one**, and arcs represented by **double lines** have a **weight** equal to **two**.

The path $(5) \rightarrow (2) \rightarrow (1) \rightarrow (0)$ corresponds to the solution (3, 2, 1) of (2)-(4): $\begin{pmatrix} d_1 - d_3 + 1 \cdot d_1 = 2 \\ 2 - d_2 - 1 \cdot d_1 = 1 \\ 1 - d_2 - 1 \cdot d_1 = 0 \end{pmatrix} \Rightarrow d_1 + 3d_1 = 2d_2 + d_3$ Computational aspects V

To compute x_1^* one can apply **Dijkstra's algorithm** to find a shortest path from d_1 to 0 in \mathcal{G} .

The **complexity** of the Dijkstra algorithm depends on the number of nodes and arcs in the graph. Since the number of nodes in \mathcal{G} is d_1+1 and the number of arcs is $(n-1)(d_1+1)$, the optimization problem (1)-(4) can be solved in $\mathcal{O}(n \cdot d_1 + d_1 \cdot \log(d_1))$.

Corollary. Each c_i in **Algorithm CI** can be computed in **pseudo-polynomial time**.

Computational aspects VI

Our computational experiments show that Algorithm CI is able to solve large-size instances.

For instance, our implementation takes less that one second on a personal computer with Intel Pentium IV 3Ghz. to prove that the toric ideal $I(d_1, \ldots, d_{13})$ is a complete intersection, where

 $d_1 = 304920$ $d_2 = 381150$ $d_3 = 457380$ $d_4 = 571725$ $d_5 = 97911$ $d_6 = 223146$ $d_7 = 239085$ $d_8 = 159390$ $d_9 = 334719$ $d_{10} = 224112$ $d_{11} = 238119$ $d_{12} = 252126$ $d_{13} = 334949$

Computational aspects VII

Additionally, the implementation also gives a **minimal set of quasi-homogeneous gener-ators of the toric ideal**:

 $egin{array}{rll} x_3^2-x_1^3 & x_8^3-x_7^2 \ x_9^2-x_6^3 & x_{12}^8-x_{10}^9 \ x_1\,x_3-x_2^2 & x_6\,x_9-x_7\,x_8^2 \ x_{10}\,x_{12}-x_{11}^2 & x_2^3-x_4^2 \ x_{10}\,x_{11}-x_6\,x_7 & x_6\,x_{10}\,x_{11}-x_5^7 \ x_7^3\,x_8-x_1\,x_4 & x_5^2\,x_8^2\,x_{11}\,x_{12}-x_{13}^3 \end{array}$

and shows that the **Frobenius number** of the semigroup $\sum_{i=1}^{13} \mathbb{N} d_i$ is 6229597.