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Definitions and basic results I

Let R = K[x1, . . . , xn] be the polynomial ring

in n variables over an arbitrary field K.

Denote by xa the monomial x
a1
1 · · · xan

n , where

a = (a1, . . . , an) ∈ Nn.

A binomial f in R is a difference of two mono-

mials, i.e., f = xa
− xb for some a, b ∈ Nn. An

ideal of R generated by binomials is called a

binomial ideal.

Let {d1, . . . , dn} be a set of all-different posi-

tive integers and consider the affine monomial

curve:

Γ = {(td1, . . . , tdn) ∈ An
K | t ∈ K}.

The kernel of the homomorphism of K-algebras

φ : R −→ K[t] induced by xi 7−→ tdi is called

the toric ideal of Γ and will be denoted by

I(d1, . . . , dn)



Definitions and basic results II

• I(d1, . . . , dn) is a 1-dimensional binomial

ideal.

• I(d1, . . . , dn) is generated by quasi-homo-

geneous binomials, i.e., homogeneous bi-

nomials when one gives degree di to vari-

able xi for all i ∈ {1, . . . , n}.

• If either gcd {d1, . . . , dn} = 1 or K = K ,

we get Γ = V (I(d1, . . . , dn)), i.e., Γ is a

toric variety.

• If K is an infinite field, I(Γ) = I(d1, . . . , dn).

I(d1, . . . , dn) is a complete intersection if

there exists a system of quasi-homogeneous

binomials g1, . . . , gn−1 such that

I(d1, . . . , dn) = (g1, . . . , gn−1).

The definition coincides with the usual one.



Aim of the work

To obtain an efficient algorithm for check-

ing whether or not I(d1, . . . , dn) is a com-

plete intersection.

For all i ∈ {1, . . . , n} let us define

ci := min
(
Z+di ∩

∑
j∈{1,...,n}\{i} N dj

)
.

Herzog gives the following result when n = 3:

I(d1, d2, d3) is a complete intersection ⇔

∃ r , s : 1 ≤ r < s ≤ 3 , such that cr = cs.

This result does not hold for n > 3.

The aim of this work is to design an efficient

algorithm for checking whether I(d1, . . . , dn) is

a complete intersection which is mainly based

on the computation of some ci.



First attempt I

Proposition. Let I(d1, . . . , dn) be a com-
plete intersection. Then the following two
conditions hold:

1. ∃ r, s : 1 ≤ r < s ≤ n such that cr = cs;

2. whenever cr = cs for r, s : 1 ≤ r < s ≤ n ,
one has

(a) I(d1, ..., d̂r, ..., d̂s, ..., dn+1) is a complete
intersection, where dn+1 := gcd {dr, ds};

(b) if one sets

cn+1 := min
(
Z

+dn+1 ∩
∑

j∈{1,...,n}\{r,s}

N dj
)

then cn+1 ∈ N dr + N ds;

(c) if for all i ∈ {1, . . . , n} \ {r, s} one sets

c ′i := min
(
Z

+di ∩
∑

j∈{1,...,n+1}\{i,r,s}

N dj
)

then c ′i = ci.



First attempt II

The two necessary conditions for I(d1, . . . , dn)

to be a complete intersection in Proposi-
tion also turn out to be sufficient when n = 4.

Therefore, they provide an algorithm for de-

termining whether or not I(d1, d2, d3, d4) is a

complete intersection that requires the design

of procedures to solve the following problems:

• To compute the smallest positive mul-

tiple of an integer that belongs to a

semigroup.

• To check whether or not a positive in-

teger belongs to a semigroup.



First attempt III

This characterization does not hold for n ≥ 5

Example. For d1 = 45 , d2 = 70 , d3 =

75 , d4 = 98 and d5 = 147, the toric ideal

I(d1, d2, d3, d4, d5) is not a complete inter-

section.

Nevertheless, c1 = c3 = 225 and setting d6 :=

gcd {d1, d3} = 15, one has that

• I(d2, d4, d5, d6) is a complete intersection

• c6 = min(Z+d6∩ 〈d2, d4, d5〉) = 210 ∈ 〈d1, d3〉

• c ′2 = c2 = 210 , c ′4 = c4 = c ′5 = c5 = 294

In spite of this, Proposition is essential to

describing our algorithm.



Binary trees labeled by {d1, . . . , dn}

A binary tree is a connected directed rooted

tree in which every node has either two children

or zero.

Nodes with no children are called terminal

nodes and the only node with no parent is

called the root of the tree.

A binary tree with n terminal nodes is said

to be labeled by {d1, . . . , dn} if its terminal

nodes are labeled by {d1} , . . . , {dn} .

The following picture is a binary tree labeled

by {12, 15, 18, 50}:
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Binary trees labeled by {d1, . . . , dn}

Let T be a binary tree labeled by {d1, . . . , dn}

and v a node of T . Denote by ∆v the subset of

{d1, . . . , dn} such that the subtree of T whose

root node is v is labeled by ∆v.

Theorem (BGRV). I(d1, . . . , dn) is a com-

plete intersection ⇐⇒ there is a binary tree

T labeled by {d1, . . . , dn} such that, for each

non-terminal node v of T with children v1 and

v2, one has that

lcm
{
gcd {dr | dr ∈ ∆v1} , gcd {ds | ds ∈ ∆v2}

}

∈
∑

dr∈∆v1
N dr ∩

∑
ds∈∆v2

N ds .



Binary trees labeled by {d1, . . . , dn}

The binary tree labeled by {12, 15, 18, 50}:
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satisfies the arithmetical conditions stated in

Theorem (BGRV):

• lcm
{
12, 18

}
= 36 ∈ 〈12〉 ∩ 〈18〉

• lcm
{
gcd {12, 18}, 50

}
= 150 ∈ 〈12, 18〉∩ 〈50〉

• lcm
{
gcd{12, 18, 50}, 15

}
= 30 ∈ 〈15〉∩〈12, 18, 50〉

⇓

I(12, 15, 18, 50) is a complete intersection.



Binary trees labeled by {d1, . . . , dn}

By [BGRV, Remark 4.5], the binary tree en-

codes the following additional information:

• {x3
1 − x2

3 , x5
1x

5
3 − x3

4 , x1x3 − x2
2} is a sys-

tem of quasi-homogeneous generators for

I(12, 15, 18, 50).

• The Frobenius number g(S) of the semi-

group S := 〈12, 15, 18, 50〉 , i.e. , the largest

integer not in S, is 121.

x3
1 − x2

3 ⇐= 36 = 3 · 12 = 2 · 18

x5
1x

5
3 − x3

4 ⇐= 150 = 5 · 12 + 5 · 18 = 3 · 50

x1x3 − x2
2 ⇐= 30 = 1 · 12 + 1 · 18 = 2 · 15

g(S) = 121 ⇐= 121 = 36 + 150 + 30− 12
−15− 18− 50



Binary trees labeled by {d1, . . . , dn}

Theorem (BGRV) does not provide an

efficient algorithm for checking whether or

not I(d1, . . . , dn) is a complete intersection.

This is because one would need to verify the

arithmetical conditions stated in the theorem

in every binary tree labeled by {d1, . . . , dn}.

Nevertheless, it is extremely useful for ob-

taining our algorithm.



Main result I

Let T be a binary tree labeled by {d1, . . . , dn}

and v a node of T different from the root

node.

Define

cv := min
(
Z+gcd {dr | dr ∈ ∆v}∩

(N gcd {ds | ds ∈ ∆w}+
∑

di /∈∆v∪∆w
N di)

)
,

where v and w are children of the same

parent.

Theorem. I(d1, . . . , dn) is a complete in-

tersection⇐⇒ there exists a binary tree T la-

beled by {d1, . . . , dn} such that, for each non-

terminal node v of T different from the root

node with children v1 and v2, one has cv1 = cv2

and cv ∈
∑

dr∈∆v
N dr.



Main result II

⇒) This is a non-trivial consequence of Pro-
position. The result is proved by induction

on n.

For n = 3, if I(d1, d2, d3) is a complete inter-

section, then there exist r, s : 1 ≤ r < s ≤ 3

such that cr = cs. Suppose that c2 = c3.

Setting d4 := gcd {d2, d3} and

c4 := min (Z+d4 ∩ N d1) = lcm {d1, d4},

one has that c4 ∈ 〈d2, d3〉.

Thus, the binary tree labeled by {d1, d2, d3}:

u��������������

���

HHHHHHHHHHHHHH

HHHHj

⊙uHHHHj
�

�
��

�
�	

u

{d2}
u

{d3}
u

{d1}

satisfies the arithmetical conditions stated

in Theorem.



Main result III

⇐) A binary tree labeled by {d1, . . . , dn} that

satisfies the arithmetical conditions stated in

Theorem also satisfies the arithmetical con-

ditions stated in Theorem (BGRV).

The converse is not true. The binary tree la-

beled by {d1, d2, d3, d4}, where d1 = 12 , d2 =
15 , d3 = 18 and d4 = 50 :
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does not satisfy the arithmetical conditions in

Theorem. Indeed, c1 = c3 = 36. Setting

d5 := gcd {d1, d3} = 6 and

c5 := min (Z+d5 ∩ 〈d2, d4〉) = 30 ,

one finds that c5 ∈ 〈d1, d3〉 ←→ c5 = d1 + d3

But c4 = min (Z+d4 ∩ 〈d2, d5〉) = 150 is dif-

ferent from c5.



Main result IV

The binary tree labeled by {d1, d2, d3, d4}, with

d1 = 12 , d2 = 15 , d3 = 18 and d4 = 50 :

v������������������

����������

����
����������������

⊙vHHHHHHHHHHHH

HHHHHHj

v

{d2}

vHHHHHH

HHHj

v

{d3}
v

{d1}

HHHHHHHHHHHHHHHHHH

HHHHHHHHHj

v

{d4}

satisfies the arithmetical conditions stated in

Theorem.

Indeed, c2 = min (Z+d2 ∩ 〈d4, d5〉) = 30 is

equal to c5 and setting d6 := gcd {d2, d5} = 3

and c6 := lcm {d4, d6} = 150 one finds that

c6 ∈ 〈d1, d2, d3〉 ←→ c6 = 5d1 + 5d3



Algorithm CI

Require: {d1, . . . , dn}

Ensure: TRUE or FALSE

G1 := {d1, . . . , dn}

for i = 1 to n do

Vi := {di}, ci := min (Z+di ∩
∑

j∈{1,...,n}\{i} N dj)

end for

for i = 1 to n− 2 do

if cj 6= ck for all j, k : j 6= k and dj, dk ∈ Gi then

return FALSE

end if

Let j, k : j 6= k such that dj, dk ∈ Gi and cj = ck

dn+i := gcd{dj, dk}, Vn+i := Vj ∪ Vk

Gi+1 := Gi\{dj, dk} ∪ {dn+i}

cn+i := min (Z+dn+i ∩
∑

ds∈ Gi+1\{dn+i}
N ds)

if cn+i 6∈
∑

dj∈Vn+i
N dj then

return FALSE

end if

end for

return TRUE



Algorithm CI

Given {d1, . . . , dn} such that I(d1, . . . , dn) is

a complete intersection, Algorithm CI re-

turns, with no additional effort, a system of

n − 1 quasi-homogeneous generators for

the toric ideal I(d1, . . . , dn).

Moreover, when gcd {d1, . . . , dn} = 1, Algo-
rithm CI also returns the Frobenius num-

ber g(S) of the semigroup S :=
∑n

i=1 N di

using the formula:

g(S) =
∑

i∈{1, ..., 2n−2}

ci/2−
∑

i∈{1, ..., n}

di .

This is because a binary tree that satisfies the

arithmetical conditions stated in Theorem
also satisfies the arithmetical conditions stated

in Theorem (BGRV). Therefore, the first

statement and the formula for g(S) are conse-

quences of [BGRV, Remark 4.5].



Computational aspects I

A direct implementation of Algorithm CI
requires an efficient procedure to compute

the values ci.

Given {d1, . . . , dn}, the optimization problem

of computing

c1 = min
(
Z

+d1 ∩
∑

j∈{2,...,n}

N dj
)

can be formulated by the following Integer Lin-

ear Programming (ILP) model:

x∗1 := min x1 (1)

d1 + d1x1 = d2x2 + · · ·+ dnxn (2)

x1, x2, . . . , xn ≥ 0 (3)

x1, x2, . . . , xn ∈ Z (4)

Then c1 = d1 + d1x
∗
1.

The computation of c1 is a NP-hard problem.



Computational aspects II

To compute x∗1, we use a Graph Theory rep-

resentation of the problem.

The approach is similar in spirit to that of

Clausen & Fortenbacher to solve linear dio-

phantine equations.

The idea is to represent each solution

(x1, x2, . . . , xn)

of (2)–(4) as a walk connecting two nodes in

a graph, where the weight of the walk is x1.

Then the combinatorial problem modeled in

(1)–(4) is equivalent to finding a shortest

path connecting these two nodes in the graph.



Computational aspects III

Consider the following directed weighted graph

G = (V, A), where the node set is

V :=
{
0, 1, . . . , d1

}
,

the arc set is

A :=
n⋃

i=2

{
(v, (v − di) mod d1) | v ∈ V

}
,

and for all v ∈ V and i ∈ {2, . . . , n}, the

weight of the arc (v, (v − di) mod d1) is de-

fined equal to

w(v,i) :=

∣∣∣∣
⌊
v − di

d1

⌋∣∣∣∣.

Lemma. There is an onto map of the set of

walks in G from d1 to 0 with weight x1 into the

set of solutions (x1, x2, . . . , xn) of (2)–(4).

Proof. (v − di) mod d1 = v − di + w(v,i)d1



Computational aspects IV

The graph G for the instance d1 = 5 , d2 =

6 , d3 = 8 is the following:

0

1

2 3

4

5

where arcs represented by single lines have a

weight equal to one, and arcs represented by

double lines have a weight equal to two.

The path 0125

corresponds to the solution (3, 2, 1) of (2)–(4):

d1 − d3 + 1 · d1 = 2
2− d2 − 1 · d1 = 1 ⇒ d1 + 3d1 = 2d2 + d3
1− d2 − 1 · d1 = 0



Computational aspects V

To compute x∗1 one can apply Dijkstra’s al-

gorithm to find a shortest path from d1 to 0

in G.

The complexity of the Dijkstra algorithm de-

pends on the number of nodes and arcs in the

graph. Since the number of nodes in G is d1+1

and the number of arcs is (n− 1)(d1 + 1), the

optimization problem (1)–(4) can be solved in

O(n · d1 + d1 · log(d1)).

Corollary. Each ci in Algorithm CI can

be computed in pseudo-polynomial time.



Computational aspects VI

Our computational experiments show that Al-
gorithm CI is able to solve large-size in-

stances.

For instance, our implementation takes less

that one second on a personal computer with

Intel Pentium IV 3Ghz. to prove that the toric

ideal I(d1, . . . , d13) is a complete intersec-

tion, where

d1 = 304920 d2 = 381150 d3 = 457380

d4 = 571725 d5 = 97911 d6 = 223146

d7 = 239085 d8 = 159390 d9 = 334719

d10 = 224112 d11 = 238119 d12 = 252126

d13 = 334949



Computational aspects VII

Additionally, the implementation also gives a

minimal set of quasi-homogeneous gener-

ators of the toric ideal:

x2
3 − x3

1 x3
8 − x2

7

x2
9 − x3

6 x8
12 − x9

10

x1 x3 − x2
2 x6 x9 − x7 x2

8

x10 x12 − x2
11 x3

2 − x2
4

x10 x11 − x6 x7 x6 x10 x11 − x7
5

x3
7 x8 − x1 x4 x2

5 x2
8 x11 x12 − x3

13

and shows that the Frobenius number of the

semigroup
∑13

i=1 N di is 6229597.


