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Problem

Compute the (co)homology

H∗(G ,A) = H∗(BG ,A) = Extn
ZG (Z,A)

of a discrete group G .
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Compute the (co)homology

H∗(G ,A) = H∗(BG ,A) = Extn
ZG (Z,A)

of a discrete group G .

More generally, G could be a simplicial group.
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(Number Crunching)



Theorem
The Mathieu group M23 has trivial integral homology

Hn(M23, Z) = 0 in dimensions n = 1, 2, 3.

Proof.
R.J. Milgram, “The cohomology of the Mathieu group M23”,J.
Group Theory 3 (2000), no. 1, 7–26.



Theorem
The Mathieu group M23 has trivial integral homology

Hn(M23, Z) = 0 in dimensions n = 1, 2, 3.

Proof.
R.J. Milgram, “The cohomology of the Mathieu group M23”,J.
Group Theory 3 (2000), no. 1, 7–26.

Computer Proof.

gap> GroupHomology(MathieuGroup(23),1);

[ ]

gap> GroupHomology(MathieuGroup(23),2);

[ ]

gap> GroupHomology(MathieuGroup(23),3);

[ ]
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Analysis of computer proof

◮ |M23| = 10200960 = 27.32.5.7.23

◮ Each Sylow p-subgroup P is small so, by brute force,
construct low dimensional skeleta of a contractible CW-space
X(p) with free P-action.

◮ X 1
(3) = X 1

(2) =

◮ C∗(X(p)) is a free ZP-resolution of Z.

◮ During the construction of X(p) record an explicit contracting
homotopy h∗ : C∗(X(p)) → C∗+1(X(p)).



◮ There is a surjection Hn(P , Z) → Hn(G , Z)(p) whose kernel is
described (Cartan-Eilenberg) in terms of induced
homomorphisms

ιx : Hn(P , Z) → Hn(xPx−1, Z)

where x ranges over double coset representatives.



◮ There is a surjection Hn(P , Z) → Hn(G , Z)(p) whose kernel is
described (Cartan-Eilenberg) in terms of induced
homomorphisms

ιx : Hn(P , Z) → Hn(xPx−1, Z)

where x ranges over double coset representatives.

◮ ιx constructed using h∗.
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(Twisted Tensor Product)



Theorem
For an odd prime p the group Kp = ker(SL2(Zp3) → SL2(Zp)) has

third integral homology group of exponent p3.

Proof.
W. Browder and J. Pakianathan, “Cohomology of uniformly
powerful p-groups”, Trans. Amer. Math. Soc. 352 (2000), no. 6,
2659–2688.



Theorem
For an odd prime p the group Kp = ker(SL2(Zp3) → SL2(Zp)) has

third integral homology group of exponent p3.

Proof.
W. Browder and J. Pakianathan, “Cohomology of uniformly
powerful p-groups”, Trans. Amer. Math. Soc. 352 (2000), no. 6,
2659–2688.

Computer Proof.

gap> K5:=MaximalSubgroups(SylowSubgroup(

SL(2,Integers mod 5^3),5))[2];;

gap> GroupHomology(K5,3);

[ 5, 5, 5, 5, 5, 5, 125 ]
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◮ a free ZN-resolution RN

∗
→ Z

◮ a free ZQ-resolution RQ
∗
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then the differential on the tensor product of chain complexes
RN ⊗Z RQ can be perturbed to produce a free ZG -resolution

RN⊗̃RQ → Z.



Analysis of computer proof

◮ |K5| = 15625 = 56

◮ Given a group extension

1 → N → G → Q → 1

and
◮ a free ZN-resolution RN

∗
→ Z

◮ a free ZQ-resolution RQ
∗

→ Z

then the differential on the tensor product of chain complexes
RN ⊗Z RQ can be perturbed to produce a free ZG -resolution

RN⊗̃RQ → Z.

◮ There are several explanations of this perturbation. We use a
Lemma of CTC Wall .
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Let A be a ring. (e.g. A = ZG .) Let

C∗ : → Cn → Cn−1 → · · · → C0

be an A-resolution of some A-module M, where the A-modules Cn

are not assumed to be free.

Suppose that, for each p, we have a free A-resolution of Cp

Dp∗ : → Dp,q → Dp,q−1 → · · · → Dp,0 → Cp

Lemma (C.T.C. Wall)

There exists a free A-resolution R∗ → M with

Rn =
⊕

p+q=n

Dp,q.
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Lemma (C.T.C. Wall)

There is a free A-resolution R∗ → M with

Rn =
⊕

p+q=n

Dp,q

and boundary homomorphism

∂ = d0 + d1 + d2 + d3 + · · ·

On any summand Dp,q all but finitely many d i are zero.

The d i can be constructed using the contracting homotopy on Dp∗.

A contracting homotopy on R∗ can be constructed using
homotopies on Dp∗ and C∗



E X A M P L E - 3

(Linear Algebra & Gröbner Bases)



Theorem
The mod 2 cohomology Hn(M11, Z2) of the Mathieu group M11 is

a vector space of dimension equal to the coefficients of xn in the

Poincaré series

(x4 − x3 + x2 − x + 1)/(x6 − x5 + x4 − 2x3 + x2 − x + 1)

for all n.

Proof.
P.J. Webb, “A local method in group cohomology” Comment.

Math. Helv. 62 (1987), no. 1, 135–167.



Theorem
The mod 2 cohomology Hn(M11, Z2) of the Mathieu group M11 is

a vector space of dimension equal to the coefficients of xn in the

Poincaré series

(x4 − x3 + x2 − x + 1)/(x6 − x5 + x4 − 2x3 + x2 − x + 1)

for all n.

Proof.
P.J. Webb, “A local method in group cohomology” Comment.

Math. Helv. 62 (1987), no. 1, 135–167.

Computer proof for n ≤ 20.

gap> PoincareSeriesPrimePart(MathieuGroup(11),2,20);

(x^4-x^3+x^2-x+1)/(x^6-x^5+x^4-2*x^3+x^2-x+1)
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be treated as a vector space of dimension n × |G |. Linear
algebra can be used to determine minimal generators for
kernels of FG -homomorphisms.
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24 needs at lest 50mB.



Analysis of computer proof

◮ For the field F of p elements any free FG -module (FG )n can
be treated as a vector space of dimension n × |G |. Linear
algebra can be used to determine minimal generators for
kernels of FG -homomorphisms.

◮ For P = Sylp(G ) the minimal FP-resolution RP
∗ → F can be

constructed and used (with the Cartan-Eilenberg double coset
formula if necessary) to find a Poincaré series which is correct
at least in low degrees.

◮ Warning: for P = Syl2(M12) the binary matrix
d25 : RP

25 → RP
24 needs at lest 50mB.

But how do we compute a Poincaré series which is known to be
correct in all degrees?
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The quaternion group G of order 8 has cohomology ring
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where F is the field of two elements, x , y have degree 1 and e has

degree 2.
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Theorem (Well-Known)

The quaternion group G of order 8 has cohomology ring

H∗(G , F) = F[x , y , e]/ < x2 + xy + y2, y3 >

where F is the field of two elements, x , y have degree 1 and e has

degree 2.

Computer Proof. (Paul Smith)

◮ The central extension 1 → C2 → G → C2 × C2 → 1 yields the
LHS spectral sequence

E ∗
2 = H∗(C2 × C2, F) ⊗ H∗(C2, F) = F[x , y , z ] =⇒ H∗(G , F)

◮ Our CTC Wall resolution defines the derivation d2 : E ∗
2 → E ∗

2

by d2(x) = d2(y) = 0, d2(z) = x2 + xy + y2.
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◮ Note that the ring E ∗
2 is a finitely generated module over the

subring S of squares in E ∗
2 and d2 : E ∗

2 → E ∗
2 is a

homomorphism of S-modules. (For s = r2 ∈ S , r , e ∈ E ∗
2 :

d2(se) = d2(s)e + sd2(e) = 2d2(r)e + sd2(e) = sd2(e))

◮ Use singular’s Gröbner basis routines to compute

E ∗
3 = ker(d2)/image(d2) = F[x , y , z2]/ < x2 + yy + y2 >

◮ Using the CTC Wall resolution to obtain the differential on
E ∗

3 , repeat to find

E ∗
4 = E ∗

∞ = F[x , y , z2]/ < x2 + xy + y2, y3 >
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(Convex Hulls & Perturbations)
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Theorem (Dutour & E)

H3(M24, Z) ∼= Z12

Computer proof

◮ |M24| = 244823040 = 210.33.5.7.11.23 but the Sylow
subgroup approach doesn’t work on my laptop.

◮ M24 < S24 acts on R
24 by permuting the standard basis. Let

v = (1, 2, 3, 4, 5, 0, . . . , 0) ∈ R
24 and compute the polytope

P(M24) = ConvexHull(vM24).
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P(A4) with V = (1, 2, 3, 4)
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◮ Low dimensional illustrations using Polymake: P(S4) and
P(A4) with V = (1, 2, 3, 4)

◮ The computation of P = P(M24) is helped by using the
5-transitivity of M24 to first prove that P is simple.

◮ C∗(P) is a ZM24-resolution of Z but is not free.

◮ We use CTC Wall’s lemma to enlarge C∗(P) to a free
resolution.
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7-dimensional Hantzsche-Wendt manifolds M.
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n : ||x − v || < ||x − g(v)|| for all g ∈ G}.



Theorem
H∗(M, Z) has now been computed for each of the 62

7-dimensional Hantzsche-Wendt manifolds M.

Computer proof. (Marc Roeder)

◮ By definition M is a flat manifold with point group (C2)
6.

◮ There is an extension 1 → Z
7 → π1(M) → (C2)

6 → 1. But
we shouldn’t use CTC Wall’s lemma!

◮ Let G = π1M. Choose v ∈ R
n and use Polymake to

determine a fundamental domain

D(G , v) = {x ∈ R
n : ||x − v || < ||x − g(v)|| for all g ∈ G}.

◮ The resulting C∗(R
n) is a free ZG -resolution.



Low dimensional illustrations.

G=SpaceGroup(3,9) has fundamental domain

D(G , v) =



The combinatorial structure of D(G , v) will generally depend on
the choice of v . For G=SpaceGroup(3,165) there are ten possible
fundamental domains.



The combinatorial structure of D(G , v) will generally depend on
the choice of v . For G=SpaceGroup(3,165) there are ten possible
fundamental domains.

The domains depend only on the x and y coordinates of v .



E X A M P L E S - 6

(Polytopal Combinatorics)



Theorem
The Artin group G =< x , y , z : xyx = yxy , xz = zx ,
yzyzy = zyzyz > has

Hn(G , Z) = Z(0 ≤ n ≤ 3),Hn(G , Z) = 0 (n ≥ 4).

Proof.
C. Landi, ”Cohomology rings of Artin groups”, Atti Accad. Naz.
Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11
no. 1 (2000), 41-65.



Theorem
The Artin group G =< x , y , z : xyx = yxy , xz = zx ,
yzyzy = zyzyz > has

Hn(G , Z) = Z(0 ≤ n ≤ 3),Hn(G , Z) = 0 (n ≥ 4).

Proof.
C. Landi, ”Cohomology rings of Artin groups”, Atti Accad. Naz.
Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11
no. 1 (2000), 41-65.

Computer proof

gap> D:=[[1,[2,3]],[2,[3,5]]];;

gap> GroupCohomology(D,1);

[ 0 ]

gap> GroupCohomology(D,2);

[ 0 ]

gap> GroupCohomology(D,3);

[ 0 ]



Analysis of computer proof
Let X be the ”canonical” quotient of the 3-dimensional polytope
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This polytope is P(WG ) where WG = G/ < x2 = y2 = z2 = 1 >.

It was shown independently by C. Squier and M. Salvetti that such
a space X is aspherical. Hence H∗(G , Z) = H∗(X , Z).



Conjecture
The Artin group G ′ =< w , x , y , z : wxw = xwx ,wy = yw ,wzw =
zwz , xyx = yxy , xz = zx , yzyzy = zyzyz > has

H1(G ′, Z) = H2(G ′, Z) = Z,

H3(G ′, Z) = (Z2)
2 ⊕ Z

2, Hn(G ′, Z) = 0 (n ≥ 4).



Conjecture
The Artin group G ′ =< w , x , y , z : wxw = xwx ,wy = yw ,wzw =
zwz , xyx = yxy , xz = zx , yzyzy = zyzyz > has

H1(G ′, Z) = H2(G ′, Z) = Z,

H3(G ′, Z) = (Z2)
2 ⊕ Z

2, Hn(G ′, Z) = 0 (n ≥ 4).

Computer evidence

gap> D:=[[1,[2,3],[4,3]],[2,[3,3]],[3,[4,5]]];;

gap> GroupCohomology(D,1);

[ 0 ]

gap> GroupCohomology(D,2);

[ 0 ]

gap> GroupCohomology(D,3);

[ 2, 2, 0, 0 ]



Analysis of computer evidence
Let X ′ be the ”canonical” path-connected quotient of the four
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It is not known if X ′ is aspherical.



Analysis of computer evidence
Let X ′ be the ”canonical” path-connected quotient of the four
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It is not known if X ′ is aspherical. Remark: WG ′ is infinite whereas
WG was finite.



H O M O T O P Y - 2 - T Y P E S

(Ideas, No Examples Yet!)



A homotopy n-type is represented by a connected CW-space X

with πiX = 0 for i ≥ n + 1.

B : (groups)
≃

−→ (homotopy 1 − types)
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satisfying ss = s, ts = s, tt = t, st = t and [ker(s), ker(t)] = 1.



A homotopy n-type is represented by a connected CW-space X

with πiX = 0 for i ≥ n + 1.

B : (groups)
≃

−→ (homotopy 1 − types)

Whitehead, Loday et al.:

B : (cat1 − groups)
≃

−→ (homotopy 2 − types)

A cat1-group is a group G with endomorphisms s, t : G → G

satisfying ss = s, ts = s, tt = t, st = t and [ker(s), ker(t)] = 1.

Problem. (with Ana Romero)

Compute H∗(G ,A) = H∗(BG ,A).
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B : (cat1 − groups)
N

// (simplicial groups)

N

��

(bisimplicial sets)
∆

// (simplicial sets)

F : (sets) // (free abelian groups)

H∗(G , Z) is the homology of the total complex of the bicomplex:

�� �� ��
// FN2N2(G ) //

��

FN2N1(G )

��

//// FN2N0(G )

��
// FN1N2(G ) //

��

FN1N1(G )

��

//// FN1N0(G )

��
// FN0N2(G ) // FN0N1(G ) // // FN0N0(G )



The jth column FN∗(Nj(G )) is the bar complex for the group
Nj(G ).
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R
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∗ ⊗ZNj (G) Z

where R
Nj(G)
∗ is an arbitrary free ZNj(G )-resolution of Z.
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Idea for future work: Use CTC Wall’s lemma to obtain a suitable
total complex.



The jth column FN∗(Nj(G )) is the bar complex for the group
Nj(G ).

We could replace each column by

R
Nj(G)
∗ ⊗ZNj (G) Z

where R
Nj(G)
∗ is an arbitrary free ZNj(G )-resolution of Z. But the

horizontally induced maps won’t square to zero if the resolutions
aren’t functorial.

Idea for future work: Use CTC Wall’s lemma to obtain a suitable
total complex. And/OR use the kenzo approach.



T H E O E N D

T H A N K Y Y O U !


