Computing cohomology of groups and spaces

Logroño, February 2008

Graham Ellis NUI Galway, Ireland

(Supported by Marie Curie MTKD-CT-2006-042685)

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

Problem

Compute the (co)homology

$$H^*(G,A) = H^*(BG,A) = \operatorname{Ext}^n_{\mathbb{Z}G}(\mathbb{Z},A)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

of a discrete group G.

Problem

Compute the (co)homology

$$H^*(G,A) = H^*(BG,A) = \operatorname{Ext}^n_{\mathbb{Z}G}(\mathbb{Z},A)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

of a discrete group G.

More generally, G could be a simplicial group.

EXAMPLE 1

(Number Crunching)

Theorem

The Mathieu group M_{23} has trivial integral homology $H_n(M_{23}, \mathbb{Z}) = 0$ in dimensions n = 1, 2, 3.

Proof.

R.J. Milgram, "The cohomology of the Mathieu group M_{23} ", J. Group Theory 3 (2000), no. 1, 7–26.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

The Mathieu group M_{23} has trivial integral homology $H_n(M_{23}, \mathbb{Z}) = 0$ in dimensions n = 1, 2, 3.

Proof.

R.J. Milgram, "The cohomology of the Mathieu group M_{23} ", J. Group Theory 3 (2000), no. 1, 7–26.

Computer Proof.

```
gap> GroupHomology(MathieuGroup(23),1);
[ ]
gap> GroupHomology(MathieuGroup(23),2);
[ ]
gap> GroupHomology(MathieuGroup(23),3);
[ ]
```

$$|M_{23}| = 10200960 = 2^7.3^2.5.7.23$$

- $|M_{23}| = 10200960 = 2^7.3^2.5.7.23$
- Each Sylow p-subgroup P is small so, by brute force, construct low dimensional skeleta of a contractible CW-space X_(p) with free P-action.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $|M_{23}| = 10200960 = 2^7.3^2.5.7.23$
- Each Sylow *p*-subgroup *P* is small so, by brute force, construct low dimensional skeleta of a contractible CW-space X_(p) with free *P*-action.

◆□> ◆□> ◆三> ◆三> ・三 のへで

- $|M_{23}| = 10200960 = 2^7.3^2.5.7.23$
- Each Sylow p-subgroup P is small so, by brute force, construct low dimensional skeleta of a contractible CW-space X_(p) with free P-action.

- $|M_{23}| = 10200960 = 2^7.3^2.5.7.23$
- Each Sylow p-subgroup P is small so, by brute force, construct low dimensional skeleta of a contractible CW-space X_(p) with free P-action.

- $|M_{23}| = 10200960 = 2^7.3^2.5.7.23$
- Each Sylow p-subgroup P is small so, by brute force, construct low dimensional skeleta of a contractible CW-space X_(p) with free P-action.

- $C_*(X_{(p)})$ is a free $\mathbb{Z}P$ -resolution of \mathbb{Z} .
- During the construction of X_(p) record an explicit contracting homotopy h_{*}: C_{*}(X_(p)) → C_{*+1}(X_(p)).

There is a surjection H_n(P, Z) → H_n(G, Z)_(p) whose kernel is described (Cartan-Eilenberg) in terms of induced homomorphisms

$$\iota_{x}\colon H_{n}(P,\mathbb{Z})\to H_{n}(xPx^{-1},\mathbb{Z})$$

where x ranges over double coset representatives.

There is a surjection H_n(P, Z) → H_n(G, Z)_(p) whose kernel is described (Cartan-Eilenberg) in terms of induced homomorphisms

$$\iota_{x} \colon H_{n}(P,\mathbb{Z}) \to H_{n}(xPx^{-1},\mathbb{Z})$$

where x ranges over double coset representatives.

• ι_x constructed using h_* .

EXAMPLE 2

(Twisted Tensor Product)

Theorem

For an odd prime p the group $K_p = \ker(SL_2(\mathbb{Z}_{p^3}) \to SL_2(\mathbb{Z}_p))$ has third integral homology group of exponent p^3 .

Proof.

W. Browder and J. Pakianathan, "Cohomology of uniformly powerful *p*-groups", *Trans. Amer. Math. Soc.* 352 (2000), no. 6, 2659–2688.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Theorem

For an odd prime p the group $K_p = \ker(SL_2(\mathbb{Z}_{p^3}) \to SL_2(\mathbb{Z}_p))$ has third integral homology group of exponent p^3 .

Proof.

W. Browder and J. Pakianathan, "Cohomology of uniformly powerful *p*-groups", *Trans. Amer. Math. Soc.* 352 (2000), no. 6, 2659–2688.

Computer Proof.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$|K_5| = 15625 = 5^6$$

▶
$$|K_5| = 15625 = 5^6$$

Given a group extension

$$1 \rightarrow \textit{N} \rightarrow \textit{G} \rightarrow \textit{Q} \rightarrow 1$$

and

• a free
$$\mathbb{Z}N$$
-resolution $R^N_* \to \mathbb{Z}$

▶ a free $\mathbb{Z}Q$ -resolution $R^Q_* \to \mathbb{Z}$

then the differential on the tensor product of chain complexes $R^N \otimes_{\mathbb{Z}} R^Q$ can be perturbed to produce a free $\mathbb{Z}G$ -resolution

$$R^N \widetilde{\otimes} R^Q \to \mathbb{Z}.$$

▶
$$|K_5| = 15625 = 5^6$$

Given a group extension

$$1 \rightarrow \textit{N} \rightarrow \textit{G} \rightarrow \textit{Q} \rightarrow 1$$

and

- ▶ a free $\mathbb{Z}N$ -resolution $R_*^N \to \mathbb{Z}$
- a free $\mathbb{Z}Q$ -resolution $R^Q_* \to \mathbb{Z}$

then the differential on the tensor product of chain complexes $R^N \otimes_{\mathbb{Z}} R^Q$ can be perturbed to produce a free $\mathbb{Z}G$ -resolution

$$R^N \tilde{\otimes} R^Q \to \mathbb{Z}.$$

 There are several explanations of this perturbation. We use a Lemma of CTC Wall . Let A be a ring. (e.g. $A = \mathbb{Z}G$.) Let

$$C_*: \rightarrow C_n \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_0$$

be an A-resolution of some A-module M, where the A-modules C_n are **not** assumed to be free.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Let A be a ring. (e.g. $A = \mathbb{Z}G$.) Let

$$C_*: \rightarrow C_n \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_0$$

be an A-resolution of some A-module M, where the A-modules C_n are **not** assumed to be free.

Suppose that, for each p, we have a **free** A-resolution of C_p

$$D_{p*}: \rightarrow D_{p,q} \rightarrow D_{p,q-1} \rightarrow \cdots \rightarrow D_{p,0} \rightarrow C_p$$

Let A be a ring. (e.g. $A = \mathbb{Z}G$.) Let

$$C_*: \rightarrow C_n \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_0$$

be an A-resolution of some A-module M, where the A-modules C_n are **not** assumed to be free.

Suppose that, for each p, we have a **free** A-resolution of C_p

$$D_{p*}: \rightarrow D_{p,q} \rightarrow D_{p,q-1} \rightarrow \cdots \rightarrow D_{p,0} \rightarrow C_p$$

Lemma (C.T.C. Wall)

There exists a free A-resolution $R_* \rightarrow M$ with

$$R_n = \bigoplus_{p+q=n} D_{p,q}.$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\partial = d^0 + d^1$

 $\partial = d^0 + d^1$

but for $d^1d^1 \neq 0$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $\partial = d^0 + d^1 + d^2$

 $\partial = d^0 + d^1 + d^2$

but for $d^2d^2 \neq 0$ etc

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ● ○○○

Lemma (C.T.C. Wall)

There is a free A-resolution $R_* \rightarrow M$ with

$$R_n = \bigoplus_{p+q=n} D_{p,q}$$

and boundary homomorphism

$$\partial = d^0 + d^1 + d^2 + d^3 + \cdots$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

On any summand $D_{p,q}$ all but finitely many d^i are zero.

Lemma (C.T.C. Wall)

There is a free A-resolution $R_* \to M$ with

$$R_n = \bigoplus_{p+q=n} D_{p,q}$$

and boundary homomorphism

$$\partial = d^0 + d^1 + d^2 + d^3 + \cdots$$

On any summand $D_{p,q}$ all but finitely many d^i are zero.

The d^i can be constructed using the contracting homotopy on D_{p*} .

Lemma (C.T.C. Wall)

There is a free A-resolution $R_* \rightarrow M$ with

$$R_n = \bigoplus_{p+q=n} D_{p,q}$$

and boundary homomorphism

$$\partial = d^0 + d^1 + d^2 + d^3 + \cdots$$

On any summand $D_{p,q}$ all but finitely many d^i are zero.

The d^i can be constructed using the contracting homotopy on D_{p*} . A contracting homotopy on R_* can be constructed using homotopies on D_{p*} and C_*

EXAMPLE 3

(Linear Algebra & Gröbner Bases)

Theorem

The mod 2 cohomology $H^n(M_{11}, \mathbb{Z}_2)$ of the Mathieu group M_{11} is a vector space of dimension equal to the coefficients of x^n in the Poincaré series

$$(x^4 - x^3 + x^2 - x + 1)/(x^6 - x^5 + x^4 - 2x^3 + x^2 - x + 1)$$

for all n.

Proof.

P.J. Webb, "A local method in group cohomology" *Comment. Math. Helv.* 62 (1987), no. 1, 135–167.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Theorem

The mod 2 cohomology $H^n(M_{11}, \mathbb{Z}_2)$ of the Mathieu group M_{11} is a vector space of dimension equal to the coefficients of x^n in the Poincaré series

$$(x^4 - x^3 + x^2 - x + 1)/(x^6 - x^5 + x^4 - 2x^3 + x^2 - x + 1)$$

for all n.

Proof.

P.J. Webb, "A local method in group cohomology" *Comment. Math. Helv.* 62 (1987), no. 1, 135–167.

Computer proof for $n \leq 20$.

gap> PoincareSeriesPrimePart(MathieuGroup(11),2,20); (x⁴-x³+x²-x+1)/(x⁶-x⁵+x⁴-2*x³+x²-x+1)
For the field 𝔅 of p elements any free 𝔅G-module (𝔅G)ⁿ can be treated as a vector space of dimension n × |G|. Linear algebra can be used to determine minimal generators for kernels of 𝔅G-homomorphisms.

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

- For the field 𝔅 of p elements any free 𝔅G-module (𝔅G)ⁿ can be treated as a vector space of dimension n × |G|. Linear algebra can be used to determine minimal generators for kernels of 𝔅G-homomorphisms.
- For P = Syl_p(G) the minimal FP-resolution R^P_{*} → F can be constructed and used (with the Cartan-Eilenberg double coset formula if necessary) to find a Poincaré series which is correct at least in low degrees.

- For the field 𝔅 of p elements any free 𝔅G-module (𝔅G)ⁿ can be treated as a vector space of dimension n × |G|. Linear algebra can be used to determine minimal generators for kernels of 𝔅G-homomorphisms.
- For P = Syl_p(G) the minimal FP-resolution R^P_{*} → F can be constructed and used (with the Cartan-Eilenberg double coset formula if necessary) to find a Poincaré series which is correct at least in low degrees.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Warning: for $P = Syl_2(M_{12})$ the binary matrix $d_{25}: R_{25}^P \rightarrow R_{24}^P$ needs at lest 50mB.

- For the field 𝔅 of p elements any free 𝔅G-module (𝔅G)ⁿ can be treated as a vector space of dimension n × |G|. Linear algebra can be used to determine minimal generators for kernels of 𝔅G-homomorphisms.
- For P = Syl_p(G) the minimal 𝔽P-resolution R^P_{*} → 𝔅 can be constructed and used (with the Cartan-Eilenberg double coset formula if necessary) to find a Poincaré series which is correct at least in low degrees.

• Warning: for
$$P = Syl_2(M_{12})$$
 the binary matrix $d_{25}: R_{25}^P \rightarrow R_{24}^P$ needs at lest 50mB.

But how do we compute a Poincaré series which is known to be correct in all degrees?

Theorem (Well-Known)

The quaternion group G of order 8 has cohomology ring

$$H^*(G, \mathbb{F}) = \mathbb{F}[x, y, e] / < x^2 + xy + y^2, \ y^3 >$$

where \mathbb{F} is the field of two elements, x, y have degree 1 and e has degree 2.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Theorem (Well-Known)

The quaternion group G of order 8 has cohomology ring

$$H^*(G, \mathbb{F}) = \mathbb{F}[x, y, e] / < x^2 + xy + y^2, \ y^3 >$$

where \mathbb{F} is the field of two elements, x, y have degree 1 and e has degree 2.

Computer Proof. (Paul Smith)

▶ The central extension $1 \rightarrow C_2 \rightarrow G \rightarrow C_2 \times C_2 \rightarrow 1$ yields the LHS spectral sequence

$$E_2^* = H^*(C_2 \times C_2, \mathbb{F}) \otimes H^*(C_2, \mathbb{F}) = \mathbb{F}[x, y, z] \Longrightarrow H^*(G, \mathbb{F})$$

Theorem (Well-Known)

The quaternion group G of order 8 has cohomology ring

$$H^*(G,\mathbb{F}) = \mathbb{F}[x,y,e]/ < x^2 + xy + y^2, y^3 >$$

where \mathbb{F} is the field of two elements, x, y have degree 1 and e has degree 2.

Computer Proof. (Paul Smith)

▶ The central extension $1 \rightarrow C_2 \rightarrow G \rightarrow C_2 \times C_2 \rightarrow 1$ yields the LHS spectral sequence

$$E_2^* = H^*(C_2 \times C_2, \mathbb{F}) \otimes H^*(C_2, \mathbb{F}) = \mathbb{F}[x, y, z] \Longrightarrow H^*(G, \mathbb{F})$$

Our CTC Wall resolution defines the derivation d₂: E₂^{*} → E₂^{*} by d₂(x) = d₂(y) = 0, d₂(z) = x² + xy + y². Note that the ring E₂^{*} is a finitely generated module over the subring S of squares in E₂^{*}

Note that the ring E₂^{*} is a finitely generated module over the subring S of squares in E₂^{*} and d₂: E₂^{*} → E₂^{*} is a homomorphism of S-modules.

Note that the ring E₂^{*} is a finitely generated module over the subring S of squares in E₂^{*} and d₂: E₂^{*} → E₂^{*} is a homomorphism of S-modules. (For s = r² ∈ S, r, e ∈ E₂^{*}: d₂(se) = d₂(s)e + sd₂(e) = 2d₂(r)e + sd₂(e) = sd₂(e))

- Note that the ring E₂^{*} is a finitely generated module over the subring S of squares in E₂^{*} and d₂: E₂^{*} → E₂^{*} is a homomorphism of S-modules. (For s = r² ∈ S, r, e ∈ E₂^{*}: d₂(se) = d₂(s)e + sd₂(e) = 2d₂(r)e + sd₂(e) = sd₂(e))
- Use SINGULAR's Gröbner basis routines to compute

$$\mathsf{E}_3^* = \mathsf{ker}(\mathsf{d}_2)/\mathsf{image}(\mathsf{d}_2) = \mathbb{F}[x,y,z^2]/ < x^2 + yy + y^2 >$$

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

- Note that the ring E₂^{*} is a finitely generated module over the subring S of squares in E₂^{*} and d₂: E₂^{*} → E₂^{*} is a homomorphism of S-modules. (For s = r² ∈ S, r, e ∈ E₂^{*}: d₂(se) = d₂(s)e + sd₂(e) = 2d₂(r)e + sd₂(e) = sd₂(e))
- Use SINGULAR's Gröbner basis routines to compute

$$\mathsf{E}_3^* = \mathsf{ker}(\mathsf{d}_2)/\mathsf{image}(\mathsf{d}_2) = \mathbb{F}[x,y,z^2]/ < x^2 + yy + y^2 >$$

 Using the CTC Wall resolution to obtain the differential on E₃^{*}, repeat to find

$$E_4^* = E_\infty^* = \mathbb{F}[x, y, z^2] / < x^2 + xy + y^2, \ y^3 >$$

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

EXAMPLES 5

(Convex Hulls & Perturbations)

 $H_3(M_{24},\mathbb{Z})\cong\mathbb{Z}_{12}$

 $H_3(M_{24},\mathbb{Z})\cong\mathbb{Z}_{12}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Computer proof

▶ $|M_{24}| = 244823040 = 2^{10}.3^3.5.7.11.23$ but the Sylow subgroup approach doesn't work on my laptop.

 $H_3(M_{24},\mathbb{Z})\cong\mathbb{Z}_{12}$

Computer proof

- ▶ $|M_{24}| = 244823040 = 2^{10}.3^3.5.7.11.23$ but the Sylow subgroup approach doesn't work on my laptop.
- $M_{24} < S_{24}$ acts on \mathbb{R}^{24} by permuting the standard basis.

 $H_3(M_{24},\mathbb{Z})\cong\mathbb{Z}_{12}$

Computer proof

- ▶ $|M_{24}| = 244823040 = 2^{10}.3^3.5.7.11.23$ but the Sylow subgroup approach doesn't work on my laptop.
- ▶ $M_{24} < S_{24}$ acts on \mathbb{R}^{24} by permuting the standard basis. Let $v = (1, 2, 3, 4, 5, 0, \dots, 0) \in \mathbb{R}^{24}$ and compute the polytope

$$P(M_{24}) = \text{ConvexHull}(v^{M_{24}}).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

• The computation of $P = P(M_{24})$ is helped by using the 5-transitivity of M_{24} to first prove that P is simple.

▲日▼▲□▼▲□▼▲□▼ □ のので

▲日▼▲□▼▲□▼▲□▼ □ のので

- ► The computation of P = P(M₂₄) is helped by using the 5-transitivity of M₂₄ to first prove that P is simple.
- $C_*(P)$ is a $\mathbb{Z}M_{24}$ -resolution of \mathbb{Z} but is not free.

- The computation of $P = P(M_{24})$ is helped by using the 5-transitivity of M_{24} to first prove that P is simple.
- $C_*(P)$ is a $\mathbb{Z}M_{24}$ -resolution of \mathbb{Z} but is not free.
- ► We use CTC Wall's lemma to enlarge C_{*}(P) to a free resolution.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Computer proof. (Marc Roeder)

• By definition M is a flat manifold with point group $(C_2)^6$.

• There is an extension $1 \to \mathbb{Z}^7 \to \pi_1(M) \to (C_2)^6 \to 1$.

Computer proof. (Marc Roeder)

- By definition *M* is a flat manifold with point group $(C_2)^6$.
- ▶ There is an extension $1 \to \mathbb{Z}^7 \to \pi_1(M) \to (C_2)^6 \to 1$. But we shouldn't use CTC Wall's lemma!

Computer proof. (Marc Roeder)

- By definition M is a flat manifold with point group $(C_2)^6$.
- ▶ There is an extension $1 \to \mathbb{Z}^7 \to \pi_1(M) \to (C_2)^6 \to 1$. But we shouldn't use CTC Wall's lemma!
- ▶ Let $G = \pi_1 M$. Choose $v \in \mathbb{R}^n$ and use POLYMAKE to determine a fundamental domain

$$D(G,v) = \{x \in \mathbb{R}^n : ||x-v|| < ||x-g(v)|| \text{ for all } g \in G\}.$$

Computer proof. (Marc Roeder)

- By definition M is a flat manifold with point group $(C_2)^6$.
- ▶ There is an extension $1 \to \mathbb{Z}^7 \to \pi_1(M) \to (C_2)^6 \to 1$. But we shouldn't use CTC Wall's lemma!
- ▶ Let $G = \pi_1 M$. Choose $v \in \mathbb{R}^n$ and use POLYMAKE to determine a fundamental domain

 $D(G,v) = \{x \in \mathbb{R}^n : ||x-v|| < ||x-g(v)|| \text{ for all } g \in G\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The resulting $C_*(\mathbb{R}^n)$ is a free $\mathbb{Z}G$ -resolution.

Low dimensional illustrations.

G=SpaceGroup(3,9) has fundamental domain

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

The combinatorial structure of D(G, v) will generally depend on the choice of v. For G=SpaceGroup(3,165) there are ten possible fundamental domains.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The combinatorial structure of D(G, v) will generally depend on the choice of v. For G=SpaceGroup(3,165) there are ten possible fundamental domains.

The domains depend only on the x and y coordinates of v.

EXAMPLES 6

(Polytopal Combinatorics)

Theorem

The Artin group $G = \langle x, y, z : xyx = yxy, xz = zx, yzyzy = zyzyz > has$

$$H^n(G,\mathbb{Z}) = \mathbb{Z}(0 \le n \le 3), H^n(G,\mathbb{Z}) = 0 \ (n \ge 4).$$

Proof.

C. Landi, "Cohomology rings of Artin groups", Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11 no. 1 (2000), 41-65.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

The Artin group $G = \langle x, y, z : xyx = yxy, xz = zx, yzyzy = zyzyz > has$

$$H^n(G,\mathbb{Z}) = \mathbb{Z}(0 \le n \le 3), H^n(G,\mathbb{Z}) = 0 \ (n \ge 4).$$

Proof.

C. Landi, "Cohomology rings of Artin groups", Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11 no. 1 (2000), 41-65.

▲日▼▲□▼▲□▼▲□▼ □ のので

Computer proof

```
gap> D:=[[1,[2,3]],[2,[3,5]]];;
gap> GroupCohomology(D,1);
[ 0 ]
gap> GroupCohomology(D,2);
[ 0 ]
gap> GroupCohomology(D,3);
[ 0 ]
```

Let X be the "canonical" quotient of the 3-dimensional polytope

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Let X be the "canonical" quotient of the 3-dimensional polytope

This polytope is $P(W_G)$ where $W_G = G/\langle x^2 = y^2 = z^2 = 1 \rangle$.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Let X be the "canonical" quotient of the 3-dimensional polytope

This polytope is $P(W_G)$ where $W_G = G/\langle x^2 = y^2 = z^2 = 1 \rangle$.

It was shown independently by C. Squier and M. Salvetti that such a space X is aspherical. Hence $H^*(G, \mathbb{Z}) = H^*(X, \mathbb{Z})$.

Conjecture

The Artin group $G' = \langle w, x, y, z : wxw = xwx, wy = yw, wzw = zwz, xyx = yxy, xz = zx, yzyzy = zyzyz > has$

$$H^1(G',\mathbb{Z}) = H^2(G',\mathbb{Z}) = \mathbb{Z},$$

 $H^3(G',\mathbb{Z}) = (\mathbb{Z}_2)^2 \oplus \mathbb{Z}^2, \ H^n(G',\mathbb{Z}) = 0 \ (n \ge 4)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで
Conjecture

The Artin group $G' = \langle w, x, y, z : wxw = xwx, wy = yw, wzw = zwz, xyx = yxy, xz = zx, yzyzy = zyzyz > has$

$$H^1(G',\mathbb{Z})=H^2(G',\mathbb{Z})=\mathbb{Z},$$

$$H^{3}(G',\mathbb{Z}) = (\mathbb{Z}_{2})^{2} \oplus \mathbb{Z}^{2}, \ H^{n}(G',\mathbb{Z}) = 0 \ (n \geq 4).$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Computer evidence

```
gap> D:=[[1,[2,3],[4,3]],[2,[3,3]],[3,[4,5]]];;
gap> GroupCohomology(D,1);
[ 0 ]
gap> GroupCohomology(D,2);
[ 0 ]
gap> GroupCohomology(D,3);
[ 2, 2, 0, 0 ]
```

Analysis of computer evidence

Let X' be the "canonical" path-connected quotient of the four-polytopes:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Analysis of computer evidence

Let X' be the "canonical" path-connected quotient of the four polytopes:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

It is not known if X' is aspherical.

Analysis of computer evidence

Let X' be the "canonical" path-connected quotient of the four polytopes:

It is not known if X' is aspherical. Remark: $W_{G'}$ is infinite whereas W_G was finite.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

HOMOTOPY 2-TYPES

(Ideas, No Examples Yet!)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$B: (\text{groups}) \xrightarrow{\simeq} (\text{homotopy } 1 - \text{types})$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

$$B: (\text{groups}) \xrightarrow{\simeq} (\text{homotopy } 1 - \text{types})$$

Whitehead, Loday et al .:

$$B: (\operatorname{cat}^1 - \operatorname{groups}) \xrightarrow{\simeq} (\operatorname{homotopy} 2 - \operatorname{types})$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

$$B: (\text{groups}) \xrightarrow{\simeq} (\text{homotopy } 1 - \text{types})$$

Whitehead, Loday et al.:

$$B: (\operatorname{cat}^1 - \operatorname{groups}) \xrightarrow{\simeq} (\operatorname{homotopy} 2 - \operatorname{types})$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

A *cat*¹-*group* is a group *G* with endomorphisms $s, t: G \rightarrow G$ satisfying ss = s, ts = s, tt = t, st = t and [ker(s), ker(t)] = 1.

$$B: (\text{groups}) \xrightarrow{\simeq} (\text{homotopy } 1 - \text{types})$$

Whitehead, Loday et al.:

$$B: (\operatorname{cat}^1 - \operatorname{groups}) \xrightarrow{\simeq} (\operatorname{homotopy} 2 - \operatorname{types})$$

A *cat*¹-*group* is a group *G* with endomorphisms $s, t: G \rightarrow G$ satisfying ss = s, ts = s, tt = t, st = t and [ker(s), ker(t)] = 1.

Problem. (with Ana Romero) Compute $H^*(G, A) = H^*(BG, A)$.

$$B: (\operatorname{cat}^{1} - \operatorname{groups}) \xrightarrow{\mathcal{N}} (\operatorname{simplicial groups}) \\ \downarrow_{\mathcal{N}} \\ (\operatorname{bisimplicial sets}) \xrightarrow{\Delta} (\operatorname{simplicial sets})$$

$$\begin{array}{c} B: (\operatorname{cat}^{1} - \operatorname{groups}) \xrightarrow{\mathcal{N}} (\operatorname{simplicial groups}) \\ & \swarrow \\ & (\operatorname{bisimplicial sets}) \xrightarrow{\Delta} (\operatorname{simplicial sets}) \end{array}$$
$$F: (\operatorname{sets}) \longrightarrow (\operatorname{free abelian groups}) \end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

 $\begin{array}{c} B: (\operatorname{cat}^{1} - \operatorname{groups}) \xrightarrow{\mathcal{N}} (\operatorname{simplicial groups}) \\ & \swarrow \\ & (\operatorname{bisimplicial sets}) \xrightarrow{\Delta} (\operatorname{simplicial sets}) \end{array}$ $F: (\operatorname{sets}) \longrightarrow (\operatorname{free abelian groups})$

 $H_*(G,\mathbb{Z})$ is the homology of the total complex of the bicomplex:

▲日▼▲□▼▲□▼▲□▼ □ ののの

・ロト < 団ト < 三ト < 三ト < 回 < つへの

We could replace each column by

$$R^{\mathcal{N}_{j}(G)}_{*}\otimes_{\mathbb{Z}\mathcal{N}_{j}(G)}\mathbb{Z}$$

where $R_*^{\mathcal{N}_j(G)}$ is an arbitrary free $\mathbb{Z}\mathcal{N}_j(G)$ -resolution of \mathbb{Z} .

We could replace each column by

$$\mathsf{R}^{\mathcal{N}_{j}(G)}_{*}\otimes_{\mathbb{Z}\mathcal{N}_{j}(G)}\mathbb{Z}$$

where $R_*^{\mathcal{N}_j(G)}$ is an arbitrary free $\mathbb{Z}\mathcal{N}_j(G)$ -resolution of \mathbb{Z} . But the horizontally induced maps won't square to zero if the resolutions aren't functorial.

We could replace each column by

$$R^{\mathcal{N}_{j}(G)}_{*}\otimes_{\mathbb{Z}\mathcal{N}_{j}(G)}\mathbb{Z}$$

where $R_*^{\mathcal{N}_j(G)}$ is an arbitrary free $\mathbb{Z}\mathcal{N}_j(G)$ -resolution of \mathbb{Z} . But the horizontally induced maps won't square to zero if the resolutions aren't functorial.

Idea for future work: Use CTC Wall's lemma to obtain a suitable total complex.

We could replace each column by

$$R^{\mathcal{N}_{j}(G)}_{*}\otimes_{\mathbb{Z}\mathcal{N}_{j}(G)}\mathbb{Z}$$

where $R_*^{\mathcal{N}_j(G)}$ is an arbitrary free $\mathbb{Z}\mathcal{N}_j(G)$ -resolution of \mathbb{Z} . But the horizontally induced maps won't square to zero if the resolutions aren't functorial.

Idea for future work: Use CTC Wall's lemma to obtain a suitable total complex. And/OR use the ${\rm KENZO}$ approach.

THE END THANK YOU!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?