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Problem
Compute the (co)homology

H*(G,A) = H*(BG, A) = Ext}}(Z, A)

of a discrete group G.



Problem
Compute the (co)homology

H*(G,A) = H*(BG, A) = Ext}}(Z, A)

of a discrete group G.

More generally, G could be a simplicial group.



EXAMPLE 1

(Number Crunching)



Theorem
The Mathieu group M3 has trivial integral homology
H,(Ma3,Z) = 0 in dimensions n = 1,2, 3.

Proof.

R.J. Milgram, “The cohomology of the Mathieu group M»3",J.
Group Theory 3 (2000), no. 1, 7-26.



Theorem
The Mathieu group M3 has trivial integral homology
H,(Ma3,Z) = 0 in dimensions n = 1,2, 3.

Proof.
R.J. Milgram, “The cohomology of the Mathieu group M»3",J.
Group Theory 3 (2000), no. 1, 7-26.

Computer Proof.

gap> GroupHomology (MathieuGroup(23),1);
L]
gap> GroupHomology (MathieuGroup(23),2);
L]
gap> GroupHomology (MathieuGroup(23),3);
L]
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> |Mpys| = 10200960 = 27.32.5.7.23
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Analysis of computer proof

> |Mpys| = 10200960 = 27.32.5.7.23

» Each Sylow p-subgroup P is small so, by brute force,
construct low dimensional skeleta of a contractible CW-space
X(p) with free P-action.

1 _
> Xz =

> Ci(X(p)) is a free ZP-resolution of Z.

» During the construction of X, record an explicit contracting
homotopy h,: C*(X(p)) — C*_|_1(X(p)).



> There is a surjection H,(P,Z) — H,(G,Z),) whose kernel is
described (Cartan-Eilenberg) in terms of induced
homomorphisms

ix: Ho(P,Z) — Hp(xPx™1,7)

where x ranges over double coset representatives.



> There is a surjection H,(P,Z) — H,(G,Z),) whose kernel is
described (Cartan-Eilenberg) in terms of induced
homomorphisms

ix: Ho(P,Z) — Hp(xPx™1,7)

where x ranges over double coset representatives.

> ., constructed using h,.



EXAMPLE 2

(Twisted Tensor Product)



Theorem
For an odd prime p the group K, = ker(SL2(Z,3) — SL2(Zp)) has
third integral homology group of exponent p3.

Proof.

W. Browder and J. Pakianathan, “"Cohomology of uniformly
powerful p-groups”, Trans. Amer. Math. Soc. 352 (2000), no. 6,
2659-2688. O



Theorem
For an odd prime p the group K, = ker(SL2(Z,3) — SL2(Zp)) has
third integral homology group of exponent p3.

Proof.

W. Browder and J. Pakianathan, “"Cohomology of uniformly
powerful p-groups”, Trans. Amer. Math. Soc. 352 (2000), no. 6,
2659-2688. O

Computer Proof.

gap> K5:=MaximalSubgroups (SylowSubgroup (

SL(2,Integers mod 5°3),5))[2];;
gap> GroupHomology (K5,3) ;
[ 5,5, 5, 5, 5, 5, 125 ]



Analysis of computer proof

> |Ks| = 15625 = 5°



Analysis of computer proof
> |Ks| = 15625 = 5°

» Given a group extension
1-N—-G—-Q—1

and

» a free ZN-resolution RN — Z
» a free ZQ-resolution RS — 7Z

then the differential on the tensor product of chain complexes
RN ®7 R? can be perturbed to produce a free Z G-resolution

RV&RQ - 7.



Analysis of computer proof
> |Ks| = 15625 = 5°

» Given a group extension
1-N—-G—-Q—1

and

» a free ZN-resolution RN — Z
» a free ZQ-resolution RS — 7Z

then the differential on the tensor product of chain complexes
RN ®7 R? can be perturbed to produce a free Z G-resolution

RV&RQ - 7.

» There are several explanations of this perturbation. We use a
Lemma of CTC Wall .
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Let A be aring. (e.g. A=7ZG.) Let

G: = C—=C1— - — (G

be an A-resolution of some A-module M, where the A-modules C,
are not assumed to be free.

Suppose that, for each p, we have a free A-resolution of C,

Dp«: — Dpg — Dpg—1— -+ — Dpo— G

Lemma (C.T.C. Wall)

There exists a free A-resolution R, — M with

Ro= P Dpg

p+q=n
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Lemma (C.T.C. Wall)

There is a free A-resolution R, — M with

R, = @ Dp.q

p+q=n

and boundary homomorphism
O=d"+d' +d*+d>+ -

On any summand Dy, 4 all but finitely many d’ are zero.
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Lemma (C.T.C. Wall)

There is a free A-resolution R, — M with

Rn = @ Dp.q

p+q=n
and boundary homomorphism
d=d"+d' +d+d>+--
On any summand Dy, 4 all but finitely many d’ are zero.

The d' can be constructed using the contracting homotopy on Dp..

A contracting homotopy on R, can be constructed using
homotopies on D, and C,



EXAMPLE 3

(Linear Algebra & Grobner Bases)



Theorem

The mod 2 cohomology H"(Mi1,7Z5) of the Mathieu group My is
a vector space of dimension equal to the coefficients of x" in the
Poincaré series

(x* =+ x2—x+1)/(x° =X+ x* =23+ x> —x+1)
for all n.

Proof.
P.J. Webb, “A local method in group cohomology” Comment.
Math. Helv. 62 (1987), no. 1, 135-167. O



Theorem

The mod 2 cohomology H"(Mi1,7Z5) of the Mathieu group My is
a vector space of dimension equal to the coefficients of x" in the
Poincaré series

(x* =+ x2—x+1)/(x° =X+ x* =23+ x> —x+1)

for all n.

Proof.

P.J. Webb, “A local method in group cohomology” Comment.
Math. Helv. 62 (1987), no. 1, 135-167. O

Computer proof for n < 20.

gap> PoincareSeriesPrimePart (MathieuGroup(11),2,20);
(x74-x"3+x"2-x+1) /(X" 6-x"B+x"4-2%x"3+x"2-x+1)
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Analysis of computer proof

> For the field IF of p elements any free FG-module (FG)" can
be treated as a vector space of dimension n x |G|. Linear
algebra can be used to determine minimal generators for
kernels of IFG-homomorphisms.

> For P = Syl,(G) the minimal FP-resolution RY — F can be
constructed and used (with the Cartan-Eilenberg double coset
formula if necessary) to find a Poincaré series which is correct
at least in low degrees.

» Warning: for P = Syl,(Mi2) the binary matrix
ds: RS, — RE, needs at lest 50mB.

But how do we compute a Poincaré series which is known to be
correct in all degrees?



Theorem (Well-Known)

The quaternion group G of order 8 has cohomology ring
H*(G,F) =F[x,y,e]/ < x> +xy +y?, y* >

where F is the field of two elements, x,y have degree 1 and e has
degree 2.
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Theorem (Well-Known)

The quaternion group G of order 8 has cohomology ring
H*(G,F) =F[x,y,e]/ < x> +xy +y?, y* >

where F is the field of two elements, x,y have degree 1 and e has
degree 2.

Computer Proof. (Paul Smith)

» The central extension 1 — (; — G — ( x G — 1 yields the
LHS spectral sequence

E; = H(G x G, F) ® H (G, F) =F[x,y,z] = H*(G,F)

» Our CTC Wall resolution defines the derivation d>: E5 — E;
by da(x) = da(y) =0, da(z) = x*> + xy + y°.
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» Note that the ring EJ is a finitely generated module over the
subring S of squares in E5 and db: E5 — ES is a
homomorphism of S-modules. (For s = rPeS rec E;:
dr(se) = dr(s)e + sda(e) = 2dx(r)e + sda(e) = sda(e))

» Use SINGULAR's Grobner basis routines to compute

Ej = ker(do)/image(do) = Fx,y,2°]/ < x> +yy +y* >



Note that the ring E5 is a finitely generated module over the
subring S of squares in E5 and db: E5 — ES is a
homomorphism of S-modules. (For s = rPeS rec E;:
dr(se) = dr(s)e + sda(e) = 2dx(r)e + sda(e) = sda(e))

Use SINGULAR's Grobner basis routines to compute
E; = ker(dy)/image(dy) = Flx,y, 2%]/ < x* 4+ yy + y* >

Using the CTC Wall resolution to obtain the differential on
E3, repeat to find

Ey = EL =Flx,y,2]/ <> +xy+y% y* >



EXAMPLES 5

(Convex Hulls & Perturbations)



Theorem (Dutour & E)

H3(Mas, Z) = Z15
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Theorem (Dutour & E)

H3(Mas, Z) = Z15

Computer proof
> | M| = 244823040 = 210.33.5.7.11.23 but the Sylow
subgroup approach doesn’t work on my laptop.

> Moy < Sos acts on R?* by permuting the standard basis. Let
v=(1,2,3,4,5,0,...,0) € R?* and compute the polytope

P(Mog) = ConvexHull(v"2).



» Low dimensional illustrations using POLYMAKE: P(S4) and
P(As) with V = (1,2,3,4)
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» Low dimensional illustrations using POLYMAKE: P(S4) and
P(As) with V = (1,2,3,4)

» The computation of P = P(M,s) is helped by using the
5-transitivity of My to first prove that P is simple.

» C.(P) is a ZMyg-resolution of Z but is not free.

» We use CTC Wall's lemma to enlarge C.(P) to a free
resolution.
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7-dimensional Hantzsche-Wendt manifolds M.
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Theorem
H*(M,Z) has now been computed for each of the 62
7-dimensional Hantzsche-Wendt manifolds M.

Computer proof. (Marc Roeder)

> By definition M is a flat manifold with point group ((;)°.

> There is an extension 1 — Z’ — m1(M) — (G)® — 1. But
we shouldn't use CTC Wall's lemma!

» Let G = myM. Choose v € R" and use POLYMAKE to
determine a fundamental domain

D(G,v)={xeR":||x—v|| <|lx —g(v)|| for all g € G}.

» The resulting C.(R") is a free ZG-resolution.



Low dimensional illustrations.

G=SpaceGroup(3,9) has fundamental domain

D(G,v)



The combinatorial structure of D(G, v) will generally depend on
the choice of v. For G=SpaceGroup(3,165) there are ten possible
fundamental domains.



The combinatorial structure of D(G, v) will generally depend on
the choice of v. For G=SpaceGroup(3,165) there are ten possible
fundamental domains.

The domains depend only on the x and y coordinates of v.




EXAMPLES 6

(Polytopal Combinatorics)



Theorem
The Artin group G =< X,y,Z : Xyx = yxy, Xz = zX,
yzyzy = zyzyz > has

HY(G,Z) = Z(0 < n < 3), H"(G,Z) = 0 (n > 4).

Proof.

C. Landi, "Cohomology rings of Artin groups”, Atti Accad. Naz.
Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11
no. 1 (2000), 41-65.



Theorem
The Artin group G =< X,y,Z : Xyx = yxy, Xz = zX,
yzyzy = zyzyz > has

HY(G,Z) = Z(0 < n < 3), H"(G,Z) = 0 (n > 4).

Proof.

C. Landi, "Cohomology rings of Artin groups”, Atti Accad. Naz.
Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11
no. 1 (2000), 41-65. O

Computer proof

gap> D:=[[1,[2,311,[2,[3,511];;
gap> GroupCohomology(D,1);

[ 0]

gap> GroupCohomology(D,2);

[ 0]

gap> GroupCohomology(D,3);

[ 0]
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Analysis of computer proof
Let X be the "canonical” quotient of the 3-dimensional polytope

|
]

Q,“ &

This polytope is P(Wg) where Wg = G/ < x> = y?> =22 =1 >.

It was shown independently by C. Squier and M. Salvetti that such
a space X is aspherical. Hence H*(G,Z) = H*(X,Z).



Conjecture
The Artin group G’ =< w, X, ¥,z : WXW = XWX, Wy = yW, WZw =
ZWZ, XyX = yXy,XZ = zX, yzyzy = zyzyz > has

HYG',Z) = H*(G',Z) = Z,

H3(G',Z) = (Z,)* ® 72, H"(G',Z) =0 (n > 4).



Conjecture
The Artin group G’ =< w, X, ¥,z : WXW = XWX, Wy = yW, WZw =
ZWZ, XyX = yXy,XZ = zX, yzyzy = zyzyz > has

HYG',Z) = H*(G',Z) = Z,
H3(G',Z) = (Z,)* ® 72, H"(G',Z) =0 (n > 4).
Computer evidence

gap> D:=[[1,[2,3],[4,3]1],[2,[3,3]],[3,[4,5]1];;
gap> GroupCohomology(D,1);

[ 0]

gap> GroupCohomology(D,2) ;

[ 0]

gap> GroupCohomology(D,3);

[ 2,2, 0, 0]



Analysis of computer evidence

Let X’ be the "canonical” path-connected quotient of the four
polytopes:

DA
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Analysis of computer evidence

Let X’ be the "canonical” path-connected quotient of the four
polytopes:

It is not known if X’ is aspherical. Remark: W is infinite whereas
W¢ was finite.

DA



HOMOTOPY 2-TYPES

(Ideas, No Examples Yet!)
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A homotopy n-type is represented by a connected CW-space X
with ;X =0 for i > n+ 1.

B: (groups) — (homotopy 1 — types)
Whitehead, Loday et al.:

B: (cat! — groups) — (homotopy 2 — types)

A cat'-group is a group G with endomorphisms s,t: G — G
satisfying ss = s, ts = s, tt = t, st = t and [ker(s), ker(t)] = 1.

Problem. (with Ana Romero)

Compute H*(G, A) = H*(BG, A).
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B: (cat! — groups) N (simplicial groups)

N

(bisimplicial sets) L. (simplicial sets)
F: (sets) —— (free abelian groups)

H.(G,Z) is the homology of the total complex of the bicomplex:

—— FANONL(G) —— FNLN1(G) —— FANLNy(G)

—— FMN2(G) —— FN1N1(G) — FN1No(G)

—— FNoN2(G) —— FNoN1(G) — FNoNo(G)




The jth column FA,(Nj(G)) is the bar complex for the group
N(G)
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total complex.



The jth column FA,(Nj(G)) is the bar complex for the group
N(G)

We could replace each column by

Ni(G
R @zn506) 2

(G) . : :
where Rivj( ) is an arbitrary free ZNj(G)-resolution of Z. But the
horizontally induced maps won't square to zero if the resolutions
aren’t functorial.

Idea for future work: Use CTC Wall's lemma to obtain a suitable
total complex. And/OR use the KENZO approach.



THE END
THANK YOU!



