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Algebraic reliability

We use algebra to study the reliability of a system

I A system S in m components is said to be coherent if
improvement of any component does not lead to worse
behavior of the system.

I Each component has a probability of failure. The reliability of
the system is the probability that the system is working

I Different kinds of reliability: two-terminal, all-terminal, source
to a set of targets, non network ...
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behavior of the system.

I Each component has a probability of failure. The reliability of
the system is the probability that the system is working

I Different kinds of reliability: two-terminal, all-terminal, source
to a set of targets, non network ...

Canonical Example: Networks (communication, electrical,..)



Monomial Ideals and Reliability

I To any coherent system S we associate a monomial ideal IS

I The reliability of the system is given by the numerator of the
Hilbert series of IS

I If we compute the Hilbert series by any resolution of IS we
also obtain bounds for the reliability of S .

I The importance of each component (system design problem)
can be computed using Hilbert function of IS and related
ideals.
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Examples of the use of combinatorial commutative algebra
in reliability analysis

I The ideals of several relevant systems have been studied
giving exact and recursive formulas for their Betti numbers

I These formulas give fast algorithms for computing the
reliability of these systems. Include k-out-of-n and variants,
series-parallel systems.

I The Hilbert function of IS has been used to define importance
measures for optimal design of robust systems in terms of
reliability.

I A generalization along the same principles have been used to
study percolation on trees (of importance in probability
theory) using asymptotic behavior of Betti numbers.
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Multiple failure analysis

We want a finer description of reliability: what is the probability
that at least i simultaneous failures occur.

I Let Y be the number of simultaneous elementary failure
events.

I We want to study the probabilities F (i) = prob{Y ≥ i} i.e.
the probability distribution as i increases.

I Algebraically, we then want to study the ideals generated by
lcm’s of the generators of the system ideal
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The lcm-filtration of a monomial ideal

I I = 〈m1, . . . ,mr 〉 a monomial ideal

I Ii = 〈lcm(mσ)|σ ⊂ {1, . . . , r}|σ| = i〉
I The filtration I = I1 ⊇ I2 ⊇ · · · ⊇ Ir is called the lcm-filtration
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We are interested in the Hilbert series and free resolutions of all
the ideals Ii in the filtration.



Computational issues come from the fact that the number of
generators of Ii is potentially
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(r is the number of generators of
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I We have to compute all lcms

I Autorreducing the generating set is expensive

I We have to compute the Hilbert series or resolutions for ideals
with a big number of generators
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Resolutions for Ii

I T(Ii ), Taylor resolution based on the generating set
〈lcm(mσ)|σ ⊂ {1, . . . , r}|σ| = k〉

I T′(Ii ), Taylor resolution based on the minimal generating set
of Ii

I M(Ii ), the minimal free resolution of Ik
I Aramova-Herzog resolution for k-out-of-r ideals, as a frame

P(Ii )

I Mayer-Vietoris trees (computes ranks of the mapping cone
resolution).
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Example

Consecutive 2-out-of-n for n=10,11,12
I = 〈x1x2, x2x3, . . . , x9x10〉
Log of the sizes of the resolutions of I = I1, I2, . . . , In−1 (size= sum
of all Betti numbers)
In green: Taylor with minimal generating set
In red: P(Ii )
In blue: Minimal free resolution
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Two important cases:
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k-out-of-n and consecutive-k-out-of-n

Two important cases:

I k-out-of-n: System with n components that fails whenever k
components fail.

I Consecutive k-out-of-n: System with n components that fails
whenever k consecutive components fail

In these cases we can have a combinatorial description of the
minimal generating set of the lcm-ideals.



Let Sk,n be a k-out-of-n system. The failure ideal of Sk,n is given
by Ik,n = 〈

∏
i∈σ xi |σ ⊆ {1, . . . , n}, |σ| = k〉. Let Ik,n,i be the i-fold

lcm-ideal of Ik,n.

Theorem
Let k < j ≤ n. For all

(j−1
k

)
< i ≤

( j
k

)
we have that

Ik,n,i = 〈
∏

s∈σ xs |σ ⊆ {1, . . . , n}, |σ| = j〉 = Ij ,n.



Let Sk,n be a consecutive k-out-of-n system, its failure ideal is
given by Jk,n = 〈x1 · · · xk , x2 · · · xk+1, . . . , xn−k+1 · · · xn〉 =
〈m1,m2, . . . ,mn−k+1〉. Let Jk,n,i be the i-fold lcm-ideal of Jk,n.
Let us denote by S the set of subsets of {1, . . . , n− k + 1}, and let
S i the elements of S of cardinality i . Let σ ⊆ {1, . . . , n − k + 1}.
We say that σ has a gap of size s if there is a subset of s
consecutive elements of {min(σ), . . . ,max(σ)} that are not in σ.
Let Sa be the set of subsets σ of {1, . . . , n − k + 1} such that the
smallest gap in σ has size a. Let S ia be the elements in Sa of
cardinality i .

Theorem
Jk,n,i is minimally generated by the monomials mσ such that
σ ∈ S i0 ∪ S ik ∪ S ik+1 ∪ · · · ∪ S in−k+1 i.e. the minimal generators of
Jk,n,i corresponds to the lcm’s of sets of monomials of cardinality i
with no gaps of sizes between 1 and k − 1 both included.



Example: J2,9

J2,9 is generated by 8 monomials in 9 variables.
J2,9,4 is minimally generated by the 26 monomials that correspond
to taking lcm’s of the following sets of generators of I2,9.
Observe that e.g. 2345 means lcm(m2,m3,m4,m5).

Pattern sets deg. of generators
4 1234,2345,3456,4567,5678 5
3,1 1236,1237,1238,2347,2348,3458,1456,1567,2567,1678,2678,3678 6
2,2 1256,1267,1278,2367,2378,3478 6
2,1,1 1258,1458,1478 7

If we considered all possible subsets of 4 elements of {1, . . . , 8} we
would have considered 70 sets among which we should have made
the corresponding finding and elimination of the 44 redundant
ones.



Experiments

Using all i-subsets

Ideal sets generators ideals total size hilbert resolution
J2,17 0.23094 37.1002 1.39358 38.72472 65535 2.14741 212.412
J2,20 8.00368 712.543 6.7571 727.30378 1048575 14.7015 > 2h
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Next version (in progress) CoCoALib implementation using bit set

operations and optimized algorithms
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