Generators of multiple failure ideals of k-out-of-n and consecutive k-out-of-n systems

F. Mohammadi E. Sáenz-de-Cabezón H. Wynn

June 23, 2016
Algebraic reliability

We use algebra to study the reliability of a system
We use algebra to study the reliability of a system

- A system S in m components is said to be coherent if improvement of any component does not lead to worse behavior of the system.
Algebraic reliability

We use algebra to study the reliability of a system.

- A system S in m components is said to be coherent if improvement of any component does not lead to worse behavior of the system.
- Each component has a probability of failure. The reliability of the system is the probability that the system is working.
Algebraic reliability

We use algebra to study the reliability of a system

- A system S in m components is said to be coherent if improvement of any component does not lead to worse behavior of the system.
- Each component has a probability of failure. The reliability of the system is the probability that the system is working.
- Different kinds of reliability: two-terminal, all-terminal, source to a set of targets, non network ...
Algebraic reliability

We use algebra to study the reliability of a system

- A system S in m components is said to be coherent if improvement of any component does not lead to worse behavior of the system.
- Each component has a probability of failure. The reliability of the system is the probability that the system is working.
- Different kinds of reliability: two-terminal, all-terminal, source to a set of targets, non network ...

Canonical Example: Networks (communication, electrical,..)
Monomial Ideals and Reliability

- To any coherent system S we associate a monomial ideal I_S
Monomial Ideals and Reliability

- To any coherent system S we associate a monomial ideal I_S
- The reliability of the system is given by the numerator of the Hilbert series of I_S
To any coherent system S we associate a monomial ideal I_S.

The reliability of the system is given by the numerator of the Hilbert series of I_S.

If we compute the Hilbert series by any resolution of I_S we also obtain bounds for the reliability of S.
Monomial Ideals and Reliability

- To any coherent system S we associate a monomial ideal I_S
- The reliability of the system is given by the numerator of the Hilbert series of I_S
- If we compute the Hilbert series by any resolution of I_S we also obtain bounds for the reliability of S the smaller the resolution, the tighter the bounds.
To any coherent system S we associate a monomial ideal I_S.

The reliability of the system is given by the numerator of the Hilbert series of I_S.

If we compute the Hilbert series by any resolution of I_S we also obtain bounds for the reliability of S the smaller the resolution, the tighter the bounds.

The importance of each component (system design problem) can be computed using Hilbert function of I_S and related ideals.
Examples of the use of combinatorial commutative algebra in reliability analysis

- The ideals of several relevant systems have been studied giving exact and recursive formulas for their Betti numbers.
Examples of the use of combinatorial commutative algebra in reliability analysis

- The ideals of several relevant systems have been studied giving exact and recursive formulas for their Betti numbers.
- These formulas give fast algorithms for computing the reliability of these systems. Include k-out-of-n and variants, series-parallel systems.
Examples of the use of combinatorial commutative algebra in reliability analysis

- The ideals of several relevant systems have been studied giving exact and recursive formulas for their Betti numbers.
- These formulas give fast algorithms for computing the reliability of these systems. Include k-out-of-n and variants, series-parallel systems.
- The Hilbert function of \(I_S \) has been used to define importance measures for optimal design of robust systems in terms of reliability.
Examples of the use of combinatorial commutative algebra in reliability analysis

- The ideals of several relevant systems have been studied giving exact and recursive formulas for their Betti numbers.
- These formulas give fast algorithms for computing the reliability of these systems. Include k-out-of-n and variants, series-parallel systems.
- The Hilbert function of I_S has been used to define importance measures for optimal design of robust systems in terms of reliability.
- A generalization along the same principles have been used to study percolation on trees (of importance in probability theory) using asymptotic behavior of Betti numbers.
Multiple failure analysis

We want a finer description of reliability: what is the probability that at least i simultaneous failures occur.
Multiple failure analysis

We want a finer description of reliability: what is the probability that at least i simultaneous failures occur. Assume we can repair the system unless more than i simultaneous failures occur. Managing spare components. Detect dependency between component failures.

Let Y be the number of simultaneous elementary failure events. We want to study the probabilities $F(i) = \text{prob}\{Y \geq i\}$, i.e., the probability distribution as i increases. Algebraically, we then want to study the ideals generated by lcm's of the generators of the system ideal.
Multiple failure analysis

We want a finer description of reliability: what is the probability that at least \(i \) simultaneous failures occur. Assume we can repair the system unless more than \(i \) simultaneous failures occur. Managing spare components. Detect dependency between component failures.

- Let \(Y \) be the number of simultaneous elementary failure events.
Multiple failure analysis

We want a finer description of reliability: what is the probability that at least i simultaneous failures occur.
Assume we can repair the system unless more than i simultaneous failures occur. Managing spare components. Detect dependency between component failures.

- Let Y be the number of simultaneous elementary failure events.
- We want to study the probabilities $F(i) = \text{prob}\{Y \geq i\}$ i.e. the probability distribution as i increases.
Multiple failure analysis

We want a finer description of reliability: what is the probability that at least i simultaneous failures occur. Assume we can repair the system unless more than i simultaneous failures occur. Managing spare components. Detect dependency between component failures.

- Let Y be the number of simultaneous elementary failure events.
- We want to study the probabilities $F(i) = \text{prob}\{Y \geq i\}$ i.e. the probability distribution as i increases.
- Algebraically, we then want to study the ideals generated by lcm’s of the generators of the system ideal.
The lcm-filtration of a monomial ideal

- \(l = \langle m_1, \ldots, m_r \rangle \) a monomial ideal
The lcm-filtration of a monomial ideal

- $I = \langle m_1, \ldots, m_r \rangle$ a monomial ideal
- $I_i = \langle \text{lcm}(m_\sigma) | \sigma \subseteq \{1, \ldots, r\} | |\sigma| = i \rangle$
The lcm-filtration of a monomial ideal

- $I = \langle m_1, \ldots, m_r \rangle$ a monomial ideal
- $I_i = \langle \text{lcm}(m_\sigma) | \sigma \subset \{1, \ldots, r\}, |\sigma| = i \rangle$
- The filtration $I = I_1 \supseteq I_2 \supseteq \cdots \supseteq I_r$ is called the lcm-filtration of I
The lcm-filtration of a monomial ideal

- $I = \langle m_1, \ldots, m_r \rangle$ a monomial ideal
- $I_i = \langle \text{lcm}(m_\sigma) | \sigma \subset \{1, \ldots, r\} | |\sigma| = i \rangle$
- The filtration $I = I_1 \supseteq I_2 \supseteq \cdots \supseteq I_r$ is called the lcm-filtration of I

We are interested in the Hilbert series and free resolutions of all the ideals I_i in the filtration.
Computational issues come from the fact that the number of generators of I_i is potentially $\binom{r}{i}$ (r is the number of generators of I_S).
Computational issues come from the fact that the number of generators of I_i is potentially $\binom{r_i}{i}$ (r is the number of generators of I_S).

▶ We have to compute all lcm's
Computational issues come from the fact that the number of generators of I_i is potentially $\binom{r}{i}$ (r is the number of generators of I_S).

- We have to compute all lcm's
- Autorreducing the generating set is expensive
Computational issues come from the fact that the number of generators of I_i is potentially $\binom{r}{i}$ (r is the number of generators of I_S).

- We have to compute all lcm\s
- Autorreducing the generating set is expensive
- We have to compute the Hilbert series or resolutions for ideals with a big number of generators
Resolutions for I_i

- $\mathcal{T}(I_i)$, Taylor resolution based on the generating set $\langle \text{lcm}(m_\sigma) | \sigma \subset \{1, \ldots, r\} | |\sigma| = k \rangle$
Resolutions for I_i

- $T(l_i)$, Taylor resolution based on the generating set $\langle \text{lcm}(m_{\sigma}) | \sigma \subset \{1, \ldots, r\} | |\sigma| = k \rangle$
- $T'(l_i)$, Taylor resolution based on the minimal generating set of I_i
Resolutions for I_i

- $\mathbb{T}(I_i)$, Taylor resolution based on the generating set
 $\langle lcm(m_\sigma) | \sigma \subset \{1, \ldots, r\} | \sigma | = k \rangle$
- $\mathbb{T}'(I_i)$, Taylor resolution based on the minimal generating set of I_i
- $\mathbb{M}(I_i)$, the minimal free resolution of I_k
Resolutions for I_i

- $\mathbb{T}(I_i)$, Taylor resolution based on the generating set $\langle lcm(m_\sigma) | \sigma \subset \{1, \ldots, r\} | |\sigma| = k \rangle$
- $\mathbb{T}'(I_i)$, Taylor resolution based on the minimal generating set of I_i
- $\mathbb{M}(I_i)$, the minimal free resolution of I_k
- Aramova-Herzog resolution for k-out-of-r ideals, as a frame $\mathbb{P}(I_i)$
Resolutions for I_i

- $\mathcal{T}(I_i)$, Taylor resolution based on the generating set
 $\langle lcm(m_\sigma) | \sigma \subset \{1, \ldots, r\} | |\sigma| = k \rangle$
- $\mathcal{T}'(I_i)$, Taylor resolution based on the minimal generating set
 of I_i
- $\mathcal{M}(I_i)$, the minimal free resolution of I_k
- Aramova-Herzog resolution for k-out-of-r ideals, as a frame
 $\mathcal{P}(I_i)$
- Mayer-Vietoris trees (computes ranks of the mapping cone resolution).
Example

Consecutive 2-out-of-n for n=10,11,12
\[I = \langle x_1x_2, x_2x_3, \ldots, x_9x_{10} \rangle \]
Log of the sizes of the resolutions of \(I = I_1, I_2, \ldots, I_{n-1} \) (size= sum of all Betti numbers)
In green: Taylor with minimal generating set
In red: \(\mathbb{P}(I_i) \)
In blue: Minimal free resolution
k-out-of-n and consecutive-k-out-of-n

Two important cases:
k-out-of-n and consecutive-k-out-of-n

Two important cases:

- k-out-of-n: System with n components that fails whenever k components fail.
k-out-of-n and consecutive-k-out-of-n

Two important cases:

- k-out-of-n: System with n components that fails whenever k components fail.
- Consecutive k-out-of-n: System with n components that fails whenever k consecutive components fail.
Two important cases:

- **k-out-of-n:** System with n components that fails whenever k components fail.

- **Consecutive k-out-of-n:** System with n components that fails whenever k consecutive components fail.

In these cases we can have a combinatorial description of the minimal generating set of the lcm-ideals.
Let $S_{k,n}$ be a k-out-of-n system. The failure ideal of $S_{k,n}$ is given by $I_{k,n} = \langle \prod_{i \in \sigma} x_i | \sigma \subseteq \{1, \ldots, n\}, |\sigma| = k \rangle$. Let $I_{k,n,i}$ be the i-fold lcm-ideal of $I_{k,n}$.

Theorem

Let $k < j \leq n$. For all $(\begin{pmatrix} j - 1 \end{pmatrix} / k) < i \leq \begin{pmatrix} j \end{pmatrix} / k)$ we have that $I_{k,n,i} = \langle \prod_{s \in \sigma} x_s | \sigma \subseteq \{1, \ldots, n\}, |\sigma| = j \rangle = I_{j,n}$.
Let \(S_{k,n} \) be a consecutive \(k \)-out-of-\(n \) system, its failure ideal is given by \(J_{k,n} = \langle x_1 \cdots x_k, x_2 \cdots x_{k+1}, \ldots, x_{n-k+1} \cdots x_n \rangle = \langle m_1, m_2, \ldots, m_{n-k+1} \rangle \). Let \(J_{k,n,i} \) be the \(i \)-fold \(lcm \)-ideal of \(J_{k,n} \).

Let us denote by \(S \) the set of subsets of \(\{1, \ldots, n - k + 1\} \), and let \(S^i \) the elements of \(S \) of cardinality \(i \). Let \(\sigma \subseteq \{1, \ldots, n - k + 1\} \). We say that \(\sigma \) has a gap of size \(s \) if there is a subset of \(s \) consecutive elements of \(\{\min(\sigma), \ldots, \max(\sigma)\} \) that are not in \(\sigma \).

Let \(S_a \) be the set of subsets \(\sigma \) of \(\{1, \ldots, n - k + 1\} \) such that the smallest gap in \(\sigma \) has size \(a \). Let \(S_a^i \) be the elements in \(S_a \) of cardinality \(i \).

Theorem

\(J_{k,n,i} \) is minimally generated by the monomials \(m_\sigma \) such that \(\sigma \in S_0^i \cup S_k^i \cup S_{k+1}^i \cup \cdots \cup S_{n-k+1}^i \) i.e. the minimal generators of \(J_{k,n,i} \) corresponds to the \(lcm \)’s of sets of monomials of cardinality \(i \) with no gaps of sizes between 1 and \(k - 1 \) both included.
Example: $J_{2,9}$

$J_{2,9}$ is generated by 8 monomials in 9 variables. $J_{2,9,4}$ is minimally generated by the 26 monomials that correspond to taking \(\text{lcm} \)'s of the following sets of generators of $I_{2,9}$.

Observe that e.g. 2345 means \(\text{lcm}(m_2, m_3, m_4, m_5) \).

<table>
<thead>
<tr>
<th>Pattern</th>
<th>sets</th>
<th>deg. of generators</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1234, 2345, 3456, 4567, 5678</td>
<td>5</td>
</tr>
<tr>
<td>3,1</td>
<td>1236, 1237, 1238, 2347, 2348, 3458, 1456, 1567, 2567, 1678, 2678, 3678</td>
<td>6</td>
</tr>
<tr>
<td>2,2</td>
<td>1256, 1267, 1278, 2367, 2378, 3478</td>
<td>6</td>
</tr>
<tr>
<td>2,1,1</td>
<td>1258, 1458, 1478</td>
<td>7</td>
</tr>
</tbody>
</table>

If we considered all possible subsets of 4 elements of \(\{1, \ldots, 8\} \) we would have considered 70 sets among which we should have made the corresponding finding and elimination of the 44 redundant ones.
Experiments

Using all i-subsets

<table>
<thead>
<tr>
<th>Ideal</th>
<th>sets</th>
<th>generators</th>
<th>ideals</th>
<th>total</th>
<th>size</th>
<th>hilbert</th>
<th>resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_{2,17}$</td>
<td>0.23094</td>
<td>37.1002</td>
<td>1.39358</td>
<td>38.72472</td>
<td>65535</td>
<td>2.14741</td>
<td>212.412</td>
</tr>
<tr>
<td>$J_{2,20}$</td>
<td>8.00368</td>
<td>712.543</td>
<td>6.7571</td>
<td>727.30378</td>
<td>1048575</td>
<td>14.7015</td>
<td>$> 2h$</td>
</tr>
</tbody>
</table>
Experiments

Using all i-subsets

<table>
<thead>
<tr>
<th>Ideal</th>
<th>sets</th>
<th>generators</th>
<th>ideals</th>
<th>total</th>
<th>size</th>
<th>hilbert</th>
<th>resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_{2,17})</td>
<td>0.23094</td>
<td>37.1002</td>
<td>1.39358</td>
<td>38.72472</td>
<td>65535</td>
<td>2.14741</td>
<td>212.412</td>
</tr>
<tr>
<td>(J_{2,20})</td>
<td>8.00368</td>
<td>712.543</td>
<td>6.7571</td>
<td>727.30378</td>
<td>1048575</td>
<td>14.7015</td>
<td>(> 2h)</td>
</tr>
</tbody>
</table>

Using our Theorem

<table>
<thead>
<tr>
<th>Ideal</th>
<th>sets</th>
<th>generators</th>
<th>ideals</th>
<th>total</th>
<th>size</th>
<th>hilbert</th>
<th>resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_{2,17})</td>
<td>6.77863</td>
<td>15.0727</td>
<td>0.111284</td>
<td>21.962614</td>
<td>10251</td>
<td>2.14741</td>
<td>212.412</td>
</tr>
<tr>
<td>(J_{2,20})</td>
<td>32.2467</td>
<td>60.8308</td>
<td>1.32166</td>
<td>94.39916</td>
<td>55405</td>
<td>14.7015</td>
<td>(> 2h)</td>
</tr>
</tbody>
</table>

Sizes for the \(n=17 \) case:

| 16 | 120 | 560 | 1820 | 4368 | 8008 | 11440 | 12870 | 11440 | 8008 | 4368 | 1820 | 560 | 120 |
|------|------|------|------|------|------|-------|-------|-------|------|------|------|------|------|------|
| 16 | 106 | 390 | 916 | 1512 | 1882 | 1856 | 1500 | 1016 | 586 | 286 | 126 | 40 | 16 |
Experiments

Using all i-subsets

<table>
<thead>
<tr>
<th>Ideal</th>
<th>sets</th>
<th>generators</th>
<th>ideals</th>
<th>total</th>
<th>size</th>
<th>hilbert</th>
<th>resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_{2,17}$</td>
<td>0.23094</td>
<td>37.1002</td>
<td>1.39358</td>
<td>38.72472</td>
<td>65535</td>
<td>2.14741</td>
<td>212.412</td>
</tr>
<tr>
<td>$J_{2,20}$</td>
<td>8.00368</td>
<td>712.543</td>
<td>6.7571</td>
<td>727.30378</td>
<td>104857</td>
<td>14.7015</td>
<td>$>2h$</td>
</tr>
</tbody>
</table>

Using our Theorem

<table>
<thead>
<tr>
<th>Ideal</th>
<th>sets</th>
<th>generators</th>
<th>ideals</th>
<th>total</th>
<th>size</th>
<th>hilbert</th>
<th>resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_{2,17}$</td>
<td>6.77863</td>
<td>15.0727</td>
<td>0.111284</td>
<td>21.962614</td>
<td>10251</td>
<td>2.14741</td>
<td>212.412</td>
</tr>
<tr>
<td>$J_{2,20}$</td>
<td>32.2467</td>
<td>60.8308</td>
<td>1.32166</td>
<td>94.39916</td>
<td>55405</td>
<td>14.7015</td>
<td>$>2h$</td>
</tr>
</tbody>
</table>

Sizes for the n=17 case:

| 16 | 120 | 560 | 1820 | 4368 | 8008 | 11440 | 12870 | 11440 | 8008 | 4368 | 1820 | 560 | 120 |
|----|-----|-----|------|------|------|-------|-------|-------|------|------|------|-----|-----|-----|
| 16 | 106 | 390 | 916 | 1512 | 1882 | 1856 | 1500 | 1016 | 586 | 286 | 126 | 40 | 16 |

These implementations have been done using Macaulay 2 v. 1.8.2 on an Intel Core i5 (2 cores) and 4GB RAM
Experiments

Using all i-subsets

<table>
<thead>
<tr>
<th>Ideal</th>
<th>sets</th>
<th>generators</th>
<th>ideals</th>
<th>total</th>
<th>size</th>
<th>hilbert</th>
<th>resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_{2,17})</td>
<td>0.23094</td>
<td>37.1002</td>
<td>1.39358</td>
<td>38.72472</td>
<td>65535</td>
<td>2.14741</td>
<td>212.412</td>
</tr>
<tr>
<td>(J_{2,20})</td>
<td>8.00368</td>
<td>712.543</td>
<td>6.7571</td>
<td>727.30378</td>
<td>1048575</td>
<td>14.7015</td>
<td>(> 2h)</td>
</tr>
</tbody>
</table>

Using our Theorem

<table>
<thead>
<tr>
<th>Ideal</th>
<th>sets</th>
<th>generators</th>
<th>ideals</th>
<th>total</th>
<th>size</th>
<th>hilbert</th>
<th>resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_{2,17})</td>
<td>6.77863</td>
<td>15.0727</td>
<td>0.111284</td>
<td>21.962614</td>
<td>10251</td>
<td>2.14741</td>
<td>212.412</td>
</tr>
<tr>
<td>(J_{2,20})</td>
<td>32.2467</td>
<td>60.8308</td>
<td>1.32166</td>
<td>94.39916</td>
<td>55405</td>
<td>14.7015</td>
<td>(> 2h)</td>
</tr>
</tbody>
</table>

Sizes for the \(n=17\) case:

<table>
<thead>
<tr>
<th>16</th>
<th>120</th>
<th>560</th>
<th>1820</th>
<th>4368</th>
<th>8008</th>
<th>11440</th>
<th>12870</th>
<th>11440</th>
<th>8008</th>
<th>4368</th>
<th>1820</th>
<th>560</th>
<th>120</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>106</td>
<td>390</td>
<td>916</td>
<td>1512</td>
<td>1882</td>
<td>1856</td>
<td>1500</td>
<td>1016</td>
<td>586</td>
<td>286</td>
<td>126</td>
<td>40</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
References

- B. Giglio and H. Wynn, Monomial ideals and the Scarf complex for coherent systems in reliability theory, Annals of Statistics, 2004
- E. SdC and H. Wynn, Betti numbers and minimal free resolutions for multi-state system reliability bounds, Journal of Symbolic Computation, 2009 (MEGA 2007 Special Issue)
- E. SdC and H. Wynn, Measuring the robustness of a network using minimal vertex covers, Mathematics and Computers in Simulation, 2014
- F. Mohammadi, Divisors on graphs, orientations, syzygies, and system reliability, arXiv:1405.7972