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Discovery of ABO-blood groups

K. Landsteiner,
Zur Kenntnis der antifermentativen, lytischen und agglutinierenden
Wirkungen des Blutserums und der Lymphe.
Zbl. Bakt. 27 (1900), 357–362.

A blood group system is a classification of blood based on the presence or absence
of antigenic substances on the surface of red blood cells.

ABO-blood group system
Presence and absence of two different types of agglutinogens, type “A” and type
“B” determines four major ABO-blood groups.
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Short definitions of some terms of genetics

Reed, Mary Lynn
Algebraic structure of genetics inheritance
Bull. Amer. Math. Soc. (N.S.) 34(2), (1997), 107–130

Gene – a unit of hereditary information.
The genetic code of an organism is carried on chromosomes.
Each gene on a chromosome has different forms that it can take. These
forms are called alleles.

Example
The gene which determines blood group in humans has three different alleles :

A, B, and O.
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Humans are diploid organisms!

We carry double set of chromosomes, one from each parent.
Possiblities are {O,O}, {O,A}, {O,B}, {A,A}, {B,B}, {A,B}.
Denote blood genotypes by AA,BB,OO,AB,OA and OB.
The allele O is recessive to A and B.
The genotypes OA and AA express blood group A (phenotype A).
OB together with BB corresponds to group B (phenotype B).
There are four blood groups (phenotypes): O,A,B and AB.
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Establishing the genetics of ABO-blood groups

From parents to child...
When diploid organisms reproduce, a process called meiosis produces gametes
(sex cells) which carry a single set of chromosomes.

A parent with blood group O produces gametes with alleles O.
A parent with blood group AB produces gametes with alleles A or B.
A parent with blood group A produces gametes with alleles A or O if his
genotype is OA, and only A if it is of AA.
When these gamete cells fuse the result is a zygote.
If parents are of blood group O and AB possibilities for zygotes are A or B
only.
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Probabilities of zygotes’ blood groups

Parents A B O AB
A A (15/16) A (3/16) A (3/4) A (1/2)

O (1/16) B (3/16) O (1/4) B (1/8)
O (1/16) AB (3/8)
AB (9/16)

B A B (15/16) B (3/4) A (1/8)
B O (1/16) O (1/4) B (1/2)
O AB (3/8)
AB

O A B O (1) A (1/2)
O O B (1/2)

AB A A A A (1/4)
B B B B (1/4)
AB AB AB (1/2)

Here it is assumed that parents’ gametes are chosen randomly and independently
during meiosis.
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......

When gametes fuse to form zygotes a
natural multiplication happens.
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Uncovering the mathematical nature of genetics

Gregor Mendel
Versuche über Plflanzenhybriden
Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr,
(1865) Abhandlungen: 3–47

(Experiments in plant hybridization)

Serebrowsky A.
On the properties of the Mendelian equations
Doklady A.N.SSSR. 2, 33-36, 1934 (in Russian)

Gave an algebraic interpretation of the sign “×”, which indicated sexual
reproduction, and presented mathematical formulation of the Mendelian laws.

The systematic study of algebras occurring in genetics was due to I. M. H.
Etherington. Presented a precise mathematical formulation of Mendel’s laws in
terms of non-associative algebras.
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ABO-blood group algebra

Consider the blood groups O,A,B and AB as basis elements of a
four-dimensional vector space over R and a bilinear operation ◦ as the result of
meiosis.

Conditions we assume
A and B have equal probabilities to contribute with the allele O to a child’s
genotype pO|A = pO|B = α.
All parents with group AB contribute the allele A during meiosis with
probability pA|AB = β.

Definition
A commutative four-dimensional R-algebra with basis {O,A,B,AB} and with
multiplication ◦ satisfying equalities (i)–(x) is called a generalized ABO-blood
group algebra (GBGA) and is denoted by B(α, β).
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Generalized ABO-blood group algebra B(α, β)

(i) O ◦O = O;
(ii) O ◦A = αO + (1− α)A;
(iii) O ◦B = αO + (1− α)B;
(iv) O ◦AB = βA+ (1− β)B;
(v) A ◦A = α2O + (1− α2)A;
(vi) A ◦B = α2O + α(1− α)A+ α(1− α)B + (1− α)2AB;

(vii) A ◦AB = βA+ α(1− β)B + (1− α)(1− β)AB;

(viii) B ◦B = α2O + (1− α2)B;
(ix) B ◦AB = αβA+ (1− β)B + (1− α)βAB;

(x) AB ◦AB = β2A+ (1− β)2B + 2β(1− β)AB.

Here α = pO|A = pO|B and β = pA|AB .
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More assumptions
We assume that 0 < α, β < 1.

Remark
Note that if we interchange A and B and β to 1− β = 1− pA|AB = pB|AB , we
obtain the same products as above. That is B(α, β) ∼= B(α, 1− β).
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Algebraic relations of GBGA from a different perspective

Let x1, x2, x3, x4 be corresponding proportions of O,A,B,AB blood groups in
one population. Then the underlying allele frequencies are equal to

pO = x1 + αx2 + αx3,
pA = (1− α)x2 + βx4,
pB = (1− α)x3 + (1− β)x4.

The frequencies of O,A,B and AB phenotypes in zygotes of the next generation
(state) verifies classical Hardy-Weinberg Law:

x′1 = p2O

x′2 = p2A + 2pApO

x′3 = p2B + 2pBpO

x′4 = 2pApB .

Evolutionary map: x = (x1, x2, x3, x4) 7→ (x′1, x
′
2, x
′
3, x
′
4) = V (x)
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Evolutionary operator and multiplication ◦

The relation that establishes a connection between the evolutionary operator V
and the multiplication ◦ of a GBGA is

x ◦ x = V (x)

and consequently

x ◦ y =
1

4
(V (x+ y)− V (x− y)).
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Consider the dynamics of x, V (x), V 2(x), . . . . for a given population x.

Definition
Population (or equivalently, an element in our algebra) x is called solvable if this
process terminates with zero.

Definition
Population (or equivalently, an element in our algebra) x is called absolutely
nilpotent if x ◦ x = 0.

Definition
Population (or equivalently, an element in our algebra) x is called idempotent if
x = V (x).
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In order to simplify our investigation of the structure of a GBGA we make the
following linear basis transformation

o = O

a =
1

(1− α)2
(O −A)

b =
1

(1− α)2
(O −B)

ab =
1

(1− α)3
(αO − βA− (1− β)B + (1− α)AB)

and obtain a simpler table of multiplication of a GBGA.
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After basis transformation...

Algebra B(α, β) in the basis {o, a, b, ab} admits the following non-zero table of
multiplication

B′(λ, β) :



o ◦ o = o

o ◦ a = a ◦ o = λa

o ◦ b = b ◦ o = λb

a ◦ a = a

b ◦ b = b

a ◦ b = b ◦ a =
λ− β
λ
· a+ λ− (1− β)

λ
· b+ ab,

where λ = 1− α and omitted products are assumed to be zero.

Proposition
The only absolute nilpotent element of B′(λ, β) up to scalar multiple is ab.
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Set of dominating subpopulations (lattice of ideals)

Mating an element (population) x ∈ I with any other population the result is a
population again in the “dominating” set of population I.

B′(λ, λ), λ 6= 1
2 : 〈a, b, ab〉 B′(λ, 1− λ), λ 6= 1

2 : 〈a, b, ab〉

〈b, ab〉 〈a, ab〉

〈ab〉 〈ab〉
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Dominating Subpopulations (lattice of ideals)

B′(λ, β), β 6= λ, β 6= 1− λ : 〈a, b, ab〉

〈ab〉

B′( 12 ,
1
2 ) : 〈a, b, ab〉

〈a, ab〉 〈b, ab〉

〈ab〉
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Dominating Subpopulations (lattice of ideals)

B′(λ, β), β 6= λ, β 6= 1− λ : 〈a, b, ab〉

〈ab〉

B′( 12 ,
1
2 ) : 〈a, b, ab〉

〈a, ab〉 〈b, ab〉

〈ab〉
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Idempotents elements

Denote by P =
{
(λ, β) | 0 < λ ≤ 1

3 , β = 1
2

(
1±

√
(1− λ)(1− 3λ)

)}
.

Theorem
For the algebra B′(λ, β) the set I of idempotents depending on the parameters
λ, β is as follows:

I = {o, a, b} if (λ, β) ∈ {( 12 ,
1
4 ), (

1
2 ,

3
4 )};

I = {o, a, b, j0} if λ = 1
2 , β 6=

1
4 ,

3
4 ;

I = {o, a, b, o+ (1− 2λ)a, o+ (1− 2λ)b} if
(λ, β) ∈ P ∪ {(2β, β)|β 6= 1

4} ∪ {(2− 2β, β)|β 6= 3
4};

I = {o, a, b, o+ (1− 2λ)a, o+ (1− 2λ)b, j0, j1}, otherwise,
where jξ = ξo+ ρξ(2β − λ)a+ ρξ(2− 2β − λ)b+ 2ρ2ξ(2β − λ)(2− 2β − λ)ab and

ρξ =
λ(1− 2ξλ)

−3λ2 + 4β2 + 4λ− 4β
for ξ = 0, 1.
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Solvable elements

Denote by P =
{
(λ, β) | 0 < λ ≤ 1

3 , β = 1
2

(
1±

√
(1− λ)(1− 3λ)

)}
.

Theorem
For an algebra of ABO-blood group B′(λ, β) to admit a solvable element of index
n ≥ 3 it is necessary and sufficient that (λ, β) ∈ P .

Moreover, solvable elements of degree n are

−2n−4
(
λ+ β − 1

λ

)n−4
ta+ tb+ sab, where t, s ∈ R, t 6= 0.
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Inheritance pattern for different values of parameters

Theorem
Two distinct ABO-blood group algebras B′(λ, β) and B′(λ′, β′) are isomorphic if
and only if λ′ = λ and β′ = 1− β.
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Results are presented in
arXiv (same title)
accepted in ANZIAM (Australia and New Zealand Industrial and Applied
Mathematics) Journal

...
My blood type is
BE POSITIVE

Thank you!
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