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1. Formalised Mathematics Today



Formalised Mathematics has Arrived!

• Flyspeck project: verifying the proof of the Kepler 
Conjecture by Ferguson and Hales (1998).  

• The proof was too complicated for referees and also 
relied on computer code.  

• The proof text and code were subsequently verified in 
a collaborative effort involving HOL Light and Isabelle. 

• Four Colour Theorem: the 1976 proof relied on code, 
which was finally verified in Coq by Georges Gonthier.



 Other Milestones in Formalised Mathematics

• A formalisation of geometry and nonstandard analysis to 
check infinitesimal proofs in Newton’s Principia (Fleuriot,
1998) [using Isabelle] 

• Prime number theorem (Avigad; Harrison) [Isabelle and 
HOL Light] 

• Odd order theorem (Gonthier et al.) [Coq] 

• Gödel’s constructible universe and (both) incompleteness 
theorems (Paulson)



What is the Point of Doing Maths by Machine?

To reveal hidden assumptions

To create vast libraries of 
mathematical knowledge

Ultimately: to augment 
human intelligence

To validate gigantic proofs



But isn’t Formalised Mathematics Impossible?

Whitehead and Russell needed 
362 pages to prove 1+1=2!

We have better formal 
systems than theirs.

Gödel proved that all “good” formal 
systems must be incomplete!

We don’t need a 
universal formal 

system.

Church proved that first-order 
logic is undecidable!

We use automation 
to assist intuition.



Some History; Some Systems

• NG de Bruijn’s Automath (1968): pioneering; based on a 
novel type theory; formalised the construction of the reals 

• Coq by Coquand and Huet (1984) and many others: the 
most advanced type theory proof assistant 

• A Trybulec’s Mizar (1973): based on set theory with “soft 
typing” and a readable structured language 

• John Harrison: real analysis (1992); floating point 
verification of sqrt, ln, exp; multivariate analysis, etc., 
using higher-order logic: HOL [Light]



Components of a Proof Assistant

core axiomatic 
formalism

proof automation

theory 
management

notational 
support

user interface

proof libraries

basic proof 
language

Correctness, not 
performance, is 
key!



2. Formalised Mathematics: Our Choices



The Dimensions of Formalised Mathematics

Types — or not? What is 1/0?

Syntax of terms 
and proofs

Search and 
automation



Type Theory or Set Theory

classical sets
Isabelle/ZFMizar

simple types
polymorphism

predicate subtypes

type classes
Isabelle/HOLHOL

PVS

dependent types
AUTOMATH

Coq
Agda



Type Class Polymorphism

axiomatically define groups, 
rings, topological spaces, 
metric spaces,…

prove that something is a  
metric spaces (say) and 
inherit all proved properties

… supporting uniform 
mathematical notation 

But less flexible than 
dependent types — 

or classical sets!

 …exchanging some flexibility 
for abstract reasoning



Definedness, or What is 1/0?

• Don’t care: all terms denote something, and1/0 = 1/0. 
[HOL, Isabelle] 

• Dependent types: to use x/y, must prove y≠0 (but does 
the value of x/y depend on this proof?) [Coq,PVS] 

• Free logic: adopt a formalism where defined[x/y] can be 
expressed. But if x/0 = x/0 fails, is x/0 ≠ x/0 true? [IMPS] 

• Three-valued logics??



Search and Automation

decision procedures: 
linear arithmetic, 

elementary set theory, 
Gröbner basis methods

heuristic methods: 
obvious rewriting and 
chaining steps, e.g. 

x+0 = x

fast, predictable, 
powerful… but of 

limited scope

flexible but ad-hoc; 
changes can break proofs



Sledgehammer: The Ultimate in Heuristic Search

Isabelle

Proof

E
SPASS

Vampire

Goal & 
Lemmas

The problem and all known 
facts are preprocessed and 
sent to external provers.

• Any proof is returned as source text. 
• We don’t trust the external provers. 
• Our tools write their own proofs!



Syntax, or the Legibility Problem

Mathematical notation is elegant but ambiguous!

f(x) f(X) f

�1[X]

x

�1
y f

�1(x) sin�1(x) sin2(x)

xy x · y

d

2
f

dx

Machine notations are merely hideous 



Irrationality of √2 in Coq

40 Laurent Théry, Pierre Letouzey, Georges Gonthier

rewrite H in H1; apply main_thm_rat with p q; auto.
Qed.

4.5 Another formalization: Coq in the style of Georges Gonthier

Section Sqrt2.

Variable R : real_model.
Coercion Local fracR := (fracr R).

Theorem sqrt2_irrational : ~(EX f : frac | ‘f = sqrt 2‘).
Proof.
Move=> [f Df]; Step [Hf22 H2f2]: ‘(mulf f f) = F2‘.
Apply: (eqr_trans (fracr_mul ? ? ?)); Apply: eqr_trans (fracrz R (Znat 2)).
By Apply: eqr_trans (square_sqrt (ltrW (ltr02 R))); Apply mulr_morphism.

Step Df2: (eqf F2 (mulf f f)) By Apply/andP; Split; Apply/(fracr_leqPx R ? ?).
Move: f Df2 {Hf22 H2f2 Df} => [d m]; Rewrite: /eqf /= -eqz_leq; Move/eqP.
Rewrite: scalez_mul -scalez_scale scalez_mul mulzC {-1 Zpos}lock /= -lock.
Step []: (Zpos (S d)) = (scalez d (Znat 1)).
By Apply esym; Apply: eqP; Rewrite scalez_pos; Elim d.

Step [n []]: (EX n | (mulz (Zpos n) (Zpos n)) = (mulz m m)).
Case: m => [n | n]; LeftBy Exists n.
By Exists (S n); Rewrite: -{1 (Zneg n)}oppz_opp mulz_oppl -mulz_oppr.

Pose i := (addn (S d) n); Move: (leqnn i) {m}; Rewrite: {1}/i.
Elim: i n d => // [i Hrec] n d Hi Dn2; Move/esym: Dn2 Hi.
Rewrite: -{n}odd_double_half double_addnn !zpos_addn; Move/half: n (odd n) => n.
Case; [Move/((congr oddz) ? ?) | Move/((congr halfz) ? ?)].
By Rewrite: !mulz_addr oddz_add mulzC !mulz_addr oddz_add !oddz_double.

Rewrite: add0n addnC -addnA add0z mulz_addr !halfz_double mulzC mulz_addr.
Case: n => [|n] Dn2 Hi; LeftBy Rewrite: !mulz_nat in Dn2.
Apply: Hrec Dn2; Apply: (leq_trans 3!i) Hi; Apply: leq_addl.
Qed.

End Sqrt2.

4.6 System

What is the home page of the system?

<http://pauillac.inria.fr/coq/>

What are the books about the system? The Coq’Art book

Yves Bertot and Pierre Castéran, Interactive Theorem Proving and Pro-
gram Development, Coq’Art: The Calculus of Inductive Constructions,
Texts in Theoretical Computer Science. An EATCS Series, 2004, 469
pp., ISBN 3-540-20854-2.

provides a pragmatic introduction to the development of proofs and certified
programs using Coq. Its web page is:



Irrationality of √2 in HOL

1 HOL

Formalizations by John Harrison <johnh@ichips.intel.com> (version in HOL
Light), Konrad Slind <slind@cs.utah.edu> (version in HOL4) and Rob Arthan
<rda@lemma-one.com> (version in ProofPower). Answers by John Harrison.

1.1 Statement

~rational(sqrt(&2))

1.2 Definitions

Definition of sqrt

let root = new_definition
‘root(n) x = @u. (&0 < x ==> &0 < u) /\ u pow n = x‘;;

let sqrt = new_definition
‘sqrt(x) = root(2) x‘;;

1.3 Proof

loads "Examples/analysis.ml";;
loads "Examples/transc.ml";;
loads "Examples/sos.ml";;

Definition of rationality (& = natural injection N → R).

let rational = new_definition
‘rational(r) = ?p q. ~(q = 0) /\ abs(r) = &p / &q‘;;

Prove the key property as a lemma about natural numbers.

let NSQRT_2 = prove
(‘!p q. p * p = 2 * q * q ==> q = 0‘,
MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN
REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN
POP_ASSUM MP_TAC THEN CONV_TAC SOS_RULE);;

Hence the irrationality of
√

2.

let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(&2))‘,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS; NOT_EXISTS_THM] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o AP_TERM ‘\x. x pow 2‘) THEN
ASM_SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV; REAL_POW_2; REAL_LT_SQUARE;

REAL_OF_NUM_EQ; REAL_EQ_RDIV_EQ] THEN
ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_EQ; REAL_OF_NUM_MUL]);;

1 HOL

Formalizations by John Harrison <johnh@ichips.intel.com> (version in HOL
Light), Konrad Slind <slind@cs.utah.edu> (version in HOL4) and Rob Arthan
<rda@lemma-one.com> (version in ProofPower). Answers by John Harrison.

1.1 Statement

~rational(sqrt(&2))

1.2 Definitions

Definition of sqrt

let root = new_definition
‘root(n) x = @u. (&0 < x ==> &0 < u) /\ u pow n = x‘;;

let sqrt = new_definition
‘sqrt(x) = root(2) x‘;;

1.3 Proof

loads "Examples/analysis.ml";;
loads "Examples/transc.ml";;
loads "Examples/sos.ml";;

Definition of rationality (& = natural injection N → R).

let rational = new_definition
‘rational(r) = ?p q. ~(q = 0) /\ abs(r) = &p / &q‘;;

Prove the key property as a lemma about natural numbers.

let NSQRT_2 = prove
(‘!p q. p * p = 2 * q * q ==> q = 0‘,
MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN
REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN
POP_ASSUM MP_TAC THEN CONV_TAC SOS_RULE);;

Hence the irrationality of
√

2.

let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(&2))‘,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS; NOT_EXISTS_THM] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o AP_TERM ‘\x. x pow 2‘) THEN
ASM_SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV; REAL_POW_2; REAL_LT_SQUARE;

REAL_OF_NUM_EQ; REAL_EQ_RDIV_EQ] THEN
ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_EQ; REAL_OF_NUM_MUL]);;



Irrationality of √2 in Isabelle/HOL 

sledgehammer proofs



Legible proofs (Mizar, Isar) are Necessary!

• To support maintenance 

• sometimes definitions must be corrected 

• heuristic proof methods can change 

• To allow reuse, eventually translation to other systems 

• To build confidence in the correctness of verification tools 

(since we can inspect the reasoning)



What do Real Mathematicians Want?

• Harvey Friedman: set 
theoretic foundations with 
“soft typing” and 
traditional mathematical 
notation. Free logic for 
undefined terms! 

• Tim Gowers: automatic 
theorem proving, no 
search, proofs expressed 
in natural language 

• NG de Bruijn: dependent 
types but with classical 
logic. NO to set theory! 

• Dana Scott: interested in 
existing technology; 
expert on free logic and 
sympathetic to 
intuitionism.



What Does Isabelle/HOL Give Them?

• Polymorphism with axiomatic type classes 

• “Don't care” about undefined values, indeed x/0 = 0! 

• Heuristic proof search including sledgehammer 

• Structured proof language (Isar) 

• Interactive development environment (IDE) with "live 
editing” of proofs

Not a perfect match, but better than some…



3. Formalised Computer Algebra Techniques



real quantifier elimination (QE)

But the equivalent quantifier-free 
formula can be messy and 
enormous…

Automatic removal of quantifiers for 
problems involving real polynomials



real QE: some history and applications

• Tarski (1930): A first-order RCF* 
formula can be replaced by an 
equivalent, quantifier-free one. 

• Implies the decidability of RCF and 
of Euclidean geometry. 

• Collins (1975): Cylindrical Algebraic 
Decomposition (CAD), feasible but 
doubly exponential 

• For constraint solving, optimisation, 
etc., involving polynomials

*RCF (real-closed field):  
any field elementarily 
equivalent to the reals



Computer Algebra + Verification: Some Milestones

• J Harrison: real QE using semi-definite programming, 
sum-of-squares and other decision procedures 

• Isabelle: proof methods for algebra using SOS [as above] 
and Gröbner bases 

• Muñoz et al.: Bernstein polynomials, Sturm’s theorem, 
etc., for proving polynomial inequalities [in PVS] 

• Cohen and Mahboubi: implementation of CAD in Coq, a 
theory of the real algebraic numbers* and a proof of QE 
using pseudo-remainder sequences



Aside: What Are Real Algebraic Numbers?

They are real roots of polynomials (with integer coefficients) 

• typically represented by a squarefree polynomial, along 
with a positive integer or an interval to isolate the root 

• arithmetic performed symbolically (and exactly) by 
polynomial manipulations 

• equality is decidable: they are a subset of the computable 
reals (equality is undecidable on real numbers) 

They are the foundation of many CA algorithms.



Computer Algebra in a Proof Assistant?

problems

verifiable solutions Harrison and Théry, 1998

We don’t trust any external CA system. 
So we must either… 
• Ask for a verifiable certificate. 
• Write our own code and verify it.

internal 
implementation 
of CA algorithm

Mahboubi, 2005



Towards Real QE in Isabelle (work by Wenda Li)

• Univariate case: CAD returns the list of roots of a rational 
polynomial (as real algebraic numbers). This list can be 
verified using the Sturm-Tarski theorem. 

• Can be extended to decide the sign of a bivariate 
polynomial at a real algebraic point. Algebraic arithmetic 
can be performed using external code, then verified. 

• The recent verification of Cauchy's residue theorem, the 
argument principle and Rouché’s theorem will allow the 
verification of bivariate certificates.



4. The Future of Formalised Mathematics



Coq

• The famous “Mathematical Components" library used to 
formalise the odd order theorem 

• Ongoing projects to certify numerical algorithms for 
differential equations 

• Continued work on real algebraic geometry and real QE



HOL Light

• Huge inbuilt library of over 23,000 theorems, including 
12,400 in complex and multivariate analysis 

• including 86 of the “100 famous theorems” list 
maintained by Freek Wiedijk. 

• largely the work of a single person: John Harrison



Isabelle’s Archive of Formal Proofs

• Online repository for users’ proof developments 

• Currently over 280 entries, arriving one per week! 

• Nearly 2 million lines of proof text 

• These have been maintained through successive 
versions of Isabelle since 2004.



The Future?

• Most undergraduate mathematics will be formalised. But 
proofs should be intelligible to people, not just machines. 

• Current verification efforts focus on the digital world: 
compilers, operating systems, protocols… 

• Are we ready to deal with the real, analogue, world? 

• Can we do mathematics as well as we do verification?
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