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Secant varieties and tensors
Let V1, . . . , Vd, be C-vector spaces, then the tensor product V1⊗ . . .⊗Vd is the vector space with
elements (Ti1,...,id) considered as hyper-matrices or tensors.

Segre variety (rank 1 tensors): Defined by

Seg : PV1 × · · · × PVd −→ P
(
V1 ⊗ · · · ⊗ Vd

)
([v1], . . . , [vd]) 7−→ [v1⊗ · · ·⊗vd].

In coordinates: Ti1,...,id = v1,i1 · v2,i2 · · · vd,id .

The rth secant variety of a variety X ⊂ PN :

σr(X) :=
⋃

x1,...,xr∈X
P(span{x1, . . . , xr}) ⊂ PN .

General points of σr(Seg(PV1 × · · · × PVd)) have the form[
r∑
s=1

vs1⊗vs2⊗ . . .⊗vsd

]
,

or in coordinates: Ti1,...,in =
∑r
s=1 v

s
1,i1
· vs2,i2 · · · v

s
d,id

.
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Some Applications of Secant Varieties
Classical Algebraic Geometry: When can a given projective variety X ⊂ Pn be isomorphically

projected into Pn−1?

Determined by the dimension of the secant variety σ2(X).

Algebraic Complexity Theory: Bound the border rank of algorithms via equations of secant
varieties. Berkeley-Simons program Fall’14

Algebraic Statistics and Phylogenetics:
Given contingency tables for DNA of several species, determine the correct statistical model
for their evolution.

Find invariants (equations) of mixture models (secant varieties).

For star trees / bifurcating trees this is the salmon conjecture.

Signal Processing: Blind identification of under-determined mixtures, analogous to CDMA
technology for cell phones.

A given signal is the sum of many signals, one for each user.

Decompose the signal uniquely to recover each user’s signal.

Computer Vision, Neuroscience, Quantum Information Theory, Chemistry...
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First algebraic / geometric questions for tensors
Let X ⊂ PCN , with N = n1 × · · · × nd, denote the set of rank-one tensors, and let σr(X) denote
the Zariski closure of the set of rank-r tensors.

1 [Dimensions] What is the dimension of σr(X)?
– When does σr(X) fill the ambient PCN? (defectivity)

2 [Equations] What are the polynomial defining equations of σr(X)?

3 [Decomposition] Given T ∈ CN , can you find an expression of T as a sum of points from X?

4 [Specific Identifiability] Does a given T ∈ CN have an essentially unique decomposition?

5 [Generic Identifiability] Do generic T ∈ CN have essentially unique decompositions?

Knowing equations of secant varieties can help with all of these questions, especially if they’re
determinantal.

Often some equations for secant varieties are known, but the difficult question is to show when the
known equations suffice.

Basic algebraic question: Show that a given ideal is prime.
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Typical situation for implicitization problems

Given a parametrized (irreducible) variety X ⊂ PN .

Found: candidate minimal generators f1, . . . , ft. Set J := 〈f1, . . . , ft〉

Shown: V(J) = X as a set.

Often: Numerical computations in Bertini and a (symbolic) degree computation can often
indicate that J is reduced in its top dimension.

Unknown: If J = I(X) (perhaps there are lower dimensional embedded primes)

Attempt to show that J is prime. The set-theoretic result and the fact that I(X) is prime
then would imply that J = I(X).

Sometimes symmetry and knowing a list of orbits can provide enough information about the
primary decomposition of J to rule out embedded primes (see [Aholt-Oeding 2014]).
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Cohen-Macaulay-ness and showing an ideal is prime

Here’s the typical situation:

Given a parametrized (irreducible) variety X ⊂ PN .

Found: candidate minimal generators f1, . . . , ft.

Shown: V(f1, . . . , ft) = X as a set.

Unknown: If 〈f1, . . . , ft〉 = I(X).

Standard argument to show primeness: If an ideal J in a polynomial ring R is aCM and the affine
scheme it defines is generically reduced, then it is everywhere reduced, and if the zero set V(J)
agrees with X, then J = I(X). (Used in [Landsberg–Weyman 2007] for some secant varieties)

Definition

Suppose R is a polynomial ring in finitely many variables, and let I be an ideal of R. Then R/I is
Cohen-Macaulay if depth I = codim I. We say that X = V(I) is arithmetically Cohen-Macaulay
(aCM) if R/I is Cohen-Macaualy.
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Known examples of aCM secant varieties
Segre varieties: X = Seg(PV1 × · · · × PVd) (also any homogeneous variety).

Ambient spaces: If k is such that σk(X) = PN - obviously σk(X) is aCM.

Hypersurfaces: If k is such that σk(X) ⊂ PN has codimension 1 then it is aCM.

Determinantal varieties: If X = Seg(PV1 × PV2), then σk(X) is a determinantal variety and aCM
[Eagon, Eagon-Hochster].

(Secretly) Determinantal varieties: Suppose X = Seg(PV1 × · · ·PVd) and Y = Seg(Pa × Pb). If
σk(X) = σk(Y ) (see Thm. 2.4 [CGG08]), then σk(X) is a determinantal variety and aCM.

Subspace varieties: [Weyman]
Subr1,...,rn = {T ∈ V1⊗ · · ·⊗Vn | ∃V ′i ⊂ Vi, dimV ′i = ri, T ∈ V ′1⊗ · · ·⊗V ′n}.
Special case [Landsberg–Weyman]: σ2(Seg(Pn1 × Pn2 × Pn3 × Pn4))

Special case [Landsberg–Weyman]: σ3(Seg(Pn1 × Pn2 × Pn3))

Defective dimension: σ3(Seg(P1 × P1 × P1 × P1)) (complete intersection of 2 quartics).
Secants of RNC: [Thm. 1.56, Iarrobino-Kanev, Kanev’98] σs(νdPn) is aCM if either d = 2, or n = 1
or s ≤ 2, . (dim., deg., and, sing. loc. also given).
Geramita’s conjecture: σs(νdPn) is aCM for all d, n, s, [p55 Geramita Lectures].
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Known examples of locally CM secant varieties

Theorem (Michalek-Oeding-Zwiernik, 2014)

σ2(Seg(PV1 × · · · × PVd)) is covered by open normal toric varieties, and in particular is (locally)
Cohen Macaulay. The only Gorenstein cases are:

σ2(Pa × Pa), σ2(P1 × Pk) = P2k+1 (known),
σ2(P1 × P1 × P3), σ2(P1 × P3 × P3), σ2(P3 × P3 × P3),

σ2(P1 × P1 × P1 × P1 × P1).

Note σ2(P3 × P3) ∼= σ2(P1 × P1 × P3) is arithmetically Gorenstein. What about the others?
Using LW lifting, can lift the resolution of σ2(P1 × P1 × P3), to σ2(P1 × P3 × P3), and
σ2(P3 × P3 × P3), and find that they are aG.
Still not sure about σ2(P1 × P1 × P1 × P1 × P1).
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A new example of an aCM secant variety

B. Sturmfels’s “algebraic fitness session” at the Simon’s Institute, Fall 2014:

Theorem? (Oeding-Sam 2015)

The affine cone of σ5(Seg(P1×5)) is a complete intersection of a degree 6 and a degree 16 equation.

In particular (up to our belief in the careful numerical, sometimes probablistic computations in our

proofs), σ5(Seg(P1×5)) is arithmetically Cohen Macaulay. Our computations took approximately
two weeks of human/computer time.

Inspiration:

[Classical] 2× 2× 2× 2 tensors are defective in rank 3.

[Bocci-Chiantini 2014]: 2× 2× 2× 2× 2 tensors are not identifiable in rank 5.
— the generic tensor of that format has exactly 2 decompositions.

[Bocci-Chiantini-Ottaviani 2014]: For ≥ 6 factors, the Segre is almost always k-identifiable.
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Theorem? (Oeding-Sam 2015)

The affine cone of σ5(Seg(P1×5)) is a complete intersection of a degree 6 and a degree 16 equation.

Use Bertini (with Jon Hauenstein’s help) to discover that deg σ5(Seg(P1×5)) = 96

Known codim 2, so we suspect complete intersection of two polynomials.

Compute the only degree 6 invariant, and show that it vanishes on any number of
pseudorandom points of X.
It turns out that there are 5 standard tableaux of shape (3, 3) and content {1, 2, . . . , 6} and the
following Schur module, which uses one of each of the 5 standard fillings, realizes the
non-trivial copy of

⊗5
i=1(S3,3Vi) inside of Sym6(V):

S 1 3 5
2 4 6

V1 ⊗ S 1 3 4
2 5 6

V2 ⊗ S 1 2 5
3 4 6

V3 ⊗ S 1 2 4
3 5 6

V4 ⊗ S 1 2 3
4 5 6

V5.
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Check invariants of degree 8,10,12,14, 16. In degree 16, dimU16 = 1313.

Find a basis of the 10-dimensional space US5,sgn
16 of skew invariants via sums of Young

symmetrizers. We discovered that US5,sgn
16 ∩ I(X) is full-dimensional.

Find a basis of the 39-dimensional space US5
16 of invariants via sums of Young symmetrizers.

We discovered that US5
16 ∩ I(X) has dimension 36 (pseudorandom).

f6 · US5,sgn
10 is 2-dimensional, so there is ≥ 1 mingen of degree 16 in I(X).

Y = V (f6, f16), a complete intersection. Also X ⊆ Y and degX ≥ deg Y = 96. Since X is
irreducible of codimension 2, and Y is equidimensional, Y is also irreducible (otherwise the
degree inequality would be violated). So X is the reduced subscheme of Y .

Also, this implies that deg(X) = deg(Y ), so Y is generically reduced. Since Y is
Cohen–Macaulay, generically reduced is equivalent to reduced. Hence X = Y is a complete
intersection.
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An adaptation of Weyman’s geometric technique

Theorem (Landsberg–Weyman 2007)

Suppose X := σr(Seg(Pr−1×d)) is aCM, with “a resolution by small partitions.” If ni ≥ r − 1 for
all 1 ≤ i ≤ d, then σr(Seg(Pn1 × · · · × Pnd)) is aCM and its ideal is generated by the equations
inherited from X and the (r + 1)× (r + 1)-minors of flattenings.

New cases found by [LW] using this result:

Direct computation: σ2(Seg(P1 × P1 × P1 × P1)) is aCM with small partitions, and its ideal is
defined by 3× 3 minors of flattenings.

[LW] result implies σ2(Seg(Pn1 × Pn2 × Pn3 × Pn4)) is aCM, and ideal defined by 3× 3 minors
of flattenings.

Direct computation: σ3(Seg(P2 × P2 × P2)) is aCM with small partitions, and its ideal is
defined by (Strassen’s) 27 quartic equations.

[LW] result implies that σ3(Seg(Pn1 × Pn2 × Pn3)) is aCM and ideal defined by quartic
equations: those inherited from Strassen’s and the 4× 4 minors of flattenings.
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An adaptation of Landsberg–Weyman 2007
What about the cases of σr(Seg(Pn1 × · · · × Pnd)) when ni < r − 1 for some i?

Suppose A′i ⊆ Ai for 1 ≤ i ≤ n. We will say that a G-variety Y has an (sj)-small resolution if for
every module SπA occurring in the resolution has the property

for each j the first part of πj is not greater than sj .

Let âj := a1...an
aj

, r̂j := r1...rn
rj

, G = GL(A1)× · · · ×GL(An) and G′ = GL(A′1)× · · · ×GL(A′n).

Theorem

If a G′-variety Y is an aCM with an resolution that is (r̂j − rj)-small for every j for which
0 < rj < aj , then G.Y is aCM.
Moreover we obtain a (not necessarily minimal) resolution of G.Y that is (sj)-small with

sj = maxπ

{
âj − rj , if rj < aj

âj − r̂j + πj1, if rj = aj ,

where the max is taken over all multi-partitions π occurring in the resolution of C[Y ].
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Applying the adaptation of the Landsberg–Weyman inheritance result, we have the following:

Proposition (Oeding)

σ4(P2 × P2 × P2) is aCM, deg. 9 hypersurface [Strassen]
GL(4).σ4(P2 × P2 × P2) is aCM and codim 3 in σ4(P2 × P2 × P3).

GL(4)×2.σ4(P2 × P2 × P2) is aCM and codim 4 in σ4(P2 × P3 × P3).
GL(4)×3.σ4(P2 × P2 × P2) is aCM and codim 5 in σ4(P3 × P3 × P3).

GL(4).σ4(P2 × P2 × P3) is aCM and codim 1 in σ4(P2 × P3 × P3).
GL(4)×2.σ4(P2 × P2 × P3) is aCM and codim 2 in σ4(P3 × P3 × P3).

GL(4).σ4(P2 × P3 × P3) has codim 1 in σ4(P3 × P3 × P3).

Missing: Don’t know how to lift the aCM property further (or if it’s possible).
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Obsessing over salmon

E. Allman gave half of an Alaskan salmon as a prize for the following result:

Theorem (Friedland 2010)

Suppose p, q, r ≥ 4. The set of tensors of border rank 4 in Cp ⊗ Cq ⊗ Cr,

the secant variety σ4(Pp−1 × Pq−1 × Pr−1),

is defined by certain equations of degrees 5, 9 and 16.

This theorem relied on the following reduction:

Theorem (Landsberg–Manivel 2008, Friedland 2010)

σ4
(
P3 × P3 × P3

)
is the zero set of:

1 M5 = { (Strassen’s [1983] degree 5 commutation conditions) }
2 Equations inherited from σ4

(
P2 × P2 × P3

)
Would like to turn these set-theoretic results into ideal-theoretic results.
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Inheritance via an example

Proposition (example of Proposition 4.4 Landsberg–Manivel’04)

M̃6 := S(2,2,2)C4 ⊗ S(2,2,2)C4 ⊗ S(3,1,1,1)C4 ⊂ I
(
σ4(P3 × P3 × P3)

)
if and only if

M6 := S(2,2,2)C3 ⊗ S(2,2,2)C3 ⊗ S(3,1,1,1)C4 ⊂ I
(
σ4(P2 × P2 × P3)

)
.

Note: dim(M̃6) = 103 but dim(M6) = 10, and has basis of polynomials, each with 576 or 936
monomials.

At every stage we study the smallest module possible. This is a significant dimension reduction.

For σ4(P3 × P3 × P3) we only need to consider Sπ1A⊗ Sπ2B ⊗ Sπ3C where π1, π2, π3 have 4 parts,
and those equations we get from inheritance.
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A result of Strassen

Theorem (Strassen 1988 (reinterpreted by Landsberg–Manivel))

The ideal of the hypersurface σ4(P2 × P2 × P2) ⊂ P26 is generated in degree 9 by a nonzero vector
in the 1 dimensional module

S(3,3,3)C3 ⊗ S(3,3,3)C3 ⊗ S(3,3,3)C3

Since σ4(P2 × P2 × P2) ⊂ σ4(P2 × P2 × P3), inheritance implies that
M9 := S(3,3,3)C3 ⊗ S(3,3,3)C3 ⊗ S(3,3,3)C4 ⊂ I(σ4(P2 × P2 × P3))

Strassen’s polynomial only has 9,216 monomials on 27 variables.
dim(M9) = 20, with natural basis of polynomials with 9,216 or 25,488 or 43,668 monomials on 36
variables! 23 Mb file of polynomials... :-(
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Numerical Algebraic Geometry: Bertini

Theorem? (Bates-Oeding 2011)

V(M6 +M9) = σ4(P2 × P2 × P3).

Suppose x ∈ V(M6) = σ4
(
P2 × P2 × P3

)
∪ Sub3,3,3.

If x 6∈ σ4
(
P2 × P2 × P3

)
, then use M9 and consider x ∈ Sub3,3,3 ∩ V(M9)

⇒ x is in some σ4
(
P2 × P2 × P2

)
⊂ σ4

(
P2 × P2 × P3

)
.

Theorem? ( Bates-Oeding 2011, Cor. to Landsberg–Manivel ’08, Friedland ’10)

The salmon variety is cut out set-theoretically in degrees 5, 6, 9:

V
(
M5 + M̃6 + M̃9

)
= σ4

(
P3 × P3 × P3

)
Resolves the salmon problem set-theoretically.
Provides a more efficient set of equations than [Friedland 2010].
Sharpens the conjecture for the ideal-theoretic question.
Friedland–Gross 2011 make Theorem? into Theorem.
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Another new example of an aCM secant variety

Using Macaulay2 (and 30s of computational time on a 2009 MacBook Pro), found the minimal free
resolution of M6 +M9, the set-theoretic defining equations for σ4(P2×P2×P3), which has codim 4.
The Betti table of this minimal free resolution is:

0 1 2 3 4
total: 1 30 144 180 65
0: 1 . . . .
1: . . . . .
2: . . . . .
3: . . . . .
4: . . . . .
5: . 10 . . .
6: . . . . .
7: . . . . .
8: . 20 144 180 65

codimσ4(P2 × P2 × P3) = 4, the length 4 resolution implies it is aCM.
Daleo and Hauenstein were able to obtain the same result numerically using Bertini.
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A nice equivariant resolution

Federico Galetto’s Macaulay2 package determines the G-module structure from the maps in a
resolution (provided one can compute the resolution in the first place). Using this package, we
obtain the following G-equivariant version of the resolution of M6 +M9.

C ← ⊗ ⊗⊕

⊗ ⊗

←
⊗ ⊗⊕

⊗ ⊗

←

⊗ ⊗⊕


⊗⊕

⊗


⊗

←
⊗ ⊗⊕

⊗ ⊗

← 0

We only record the Young tableau that index the G-modules in the resolution. The grading is
captured by the number of boxes in each factor.
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Theorem (Oeding)

σ4(P2 × P2 × P3) is codim 4, aCM, with resolution by small partitions, and ideal generated by
equations of degrees 6 (Landsberg–Manivel’s) and 9 (Strassen’s).

σ4(P2 × P2 × Pn) is aCM, with resolution by small partitions, and ideal generated by equations
of degrees 5(flattenings), and those of degrees 6 and 9 inherited from σ4(P2 × P2 × P3).

GL(n1)×GL(n2).σ4(P2 × P2 × Pn3) is aCM, with resolution by small partitions, and ideal
generated by equations of degrees 5 (flattenings), and those of degrees 6 and 9 inherited from
σ4(P2 × P2 × P3).
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2nd and 3rd secant varieties

Theorem (C. Raicu 2012)

Let X be the Segre-Veronese variety embedded by O(a1, . . . , an). The ideal of the secant variety
σ2(X) is generated by 3× 3 minors of flattenings.

Theorem (Michalek-Oeding-Zwiernik, 2014)

σ2(Seg(PV1 × · · · × PVd)) is (locally) Cohen Macaulay.

Unknown: Is σ2 actually arithmetically Cohen-Macaulay?

Theorem (Yang Qi, 2013)

Let X be the Segre variety embedded by O(1, . . . , 1). As a set, σ3(X) is cut out by the 4× 4 minors
of flattenings and Strassen’s degree 4 commutation conditions.

It would be nice to turn Qi’s result into an ideal-theoretic result. Possible if σ3 is aCM.
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Thanks!
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