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Introduction

Comanutative Ordinary Differential Operators.
By J. L. BurcanaLL and T. W. CHAUNDY.

(Communicated by A. L. Dixon, F.R.8.—Received December 22, 1926.—Revised
February 1, 1928.)

The paper is conveniently divided into two sections. The first contains the
general and the main propositi bered by proof : in the
first paragraph of this section is collected material already published; the
succeeding paragraphs of the section are devoted to new results. The second
section of the paper includes proofs of these results, together with certain
corollaries not essential to the main argument.

Parr 1.
L.—Preamble.
‘We make certain notational conventions. There is a single independent
variable z; the arbitrary dependent variable of a differential equation or
operation is written y. ‘With these exceptions Greek letters denote functions

. of  and English “lower-case ” letters denote constants.

The distinctions extend to symbols of functional form, which will represent
polynomials, unless the contrary is stated. Thus

fO = af" + ™t + ... +q,

This contentdowrloaded on Sun 13 Jan 2013 052840 AM
I 'use subject to JSTOR Terms and Conditions
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Introduction

Burchnall and Chaundy 1928 established a correspondence between
commutative pairs of ordinary differential operators and algebraic
curves.

(Gardner, Greene, Kruskal, Miura, 1967) With the discovery of
solitons and the integrability of KdV equation, their theory was
applied to partial differential equations called integrable (or with
solitonic type solutions: Sine-Gordon, Schrédinger no lineal, etc).

Algebraic approach to handling the inverse spectral problem for the
finite-gap operators, with the spectral data being encoded in the
spectral curve and an associated line bundle (Krichever 1977).

The spectral curve was later computed by E. Previato (1991) using
differential resultants.
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Differential resultant

Defined by Ritt (1932), Berkovich and Tsirulik (1986) and studied
by Chardin (1991), Li (1998).

(K, 0) differential field with a derivation
P, Q € K[0], ord(P) = n, ord(Q) = m

The Sylvester matrix S(P, Q) is the coefficient matrix of the
extended system

{P,OP,..., 0™ P, Q,0Q,...,0"1Q}.

S(P, Q) squared matrix of size n+ m and entries in K.

Differential resultant of P and Q,

ORes(P, Q) := det(S(P, Q))



ap
0
0
bs
0

Differential resultant

P= 3282 4+ a10+ ag, Q= b383 + b282 + b10 + bg

ORes(P, Q) =

a1 +29(az) ap+20(a1) + 82(32) 20(ao) + (92(31) 82(30)

an ay + 8(32) ag + 8(31) 6(30)
0 an al 0]
by + (bs) by + O(by) bo+0(b1)  O(by)

b3 b2 b 1 bO



Differential resultant
[ ]

ORes(P, Q) = AP + BQ with A, B € K[0J], ord(A) < m,
ord(B) < n.
ORes(P, Q) € (A,B)N K.

ORes(P,Q) =0

T
P = PlR, Q = QlR, with ord(R) > 0, Pl, Ql,R S K[@]



Differential resultant

(Poisson formula: Chardin (1991), Previato (1991)) Given monic
P, Q € K][0] with respective orders n and m and fundamental sys-

tems of solutions yi,...,y, and zi, ..., zy, respectively.
. ,, P(z),...,P(zm
oRes(P, Q) = QW) Qlyn)) _ w(P(21). ..., P(zm))
w(y1,---,Yn) w(z1, ..., 2Zm)

with Wronskian

yl e yn

Oy - Oyn
w(yi,...,yn) = det : _ :
an—ly1 8'7_1}/,7
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Burchnall-Chaundy polynomial

Let C be the field of constants of (K, d), C algebraically closed
and of characteristic zero.

(Burchnall-Chaundy, 1928)

Given P,Q € K[9], if [P,Q] = PQ — QP = 0 then there ex-
ists f(A, ) € C[A, p] such that f(P, Q) = 0, called a Burchnall-
Chaundy polynomial.

g\, p) =0Res(P— A\, Q —p) =apu" — bp A" + ...
a non trivial polynomial
in (P—X\Q—p)NK[A, ]

g\ ) =A(P— )+ B(Q — ) with A, B € K[\, u][0]
if [P, Q] = 0 then g(P, Q) =0.



Burchnall-Chaundy polynomial
@00

(Previato (1991)) Given P, Q € K[0] such that [P, Q] = 0 then
g(A, 1) = ORes(P — A\, Q — ) € C[A, 4]
and g(P, Q) = 0.

P — X and Q — p are differential operators with coefficients in
(K(X, 1), 0), whose field of constants is Cy ,, :== C(A, it).

Y1,.-.,Yn a fundamental system of solutions of P — X over C, ,, a
basis of the C, ,-vector space V) , := Ker(P — ).

W({(Q— m)(y1)s -+, (Q — 1)(¥n)) = W(y1, ..., yn)M

M is an n x n matrix with entries in Cy ,.

ORes(P—A, Q—p) = 9= “?AE{;B - ’(y?)_ W) _ get(m).
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Let us consider the Schrédinger operator L in the stationary case

d2
L = —@ =+ U(X)
3T T3 4 udx qu dx
This Lax pair has commutator equal to
1 3
KdVl . [L, A3] = LA3 — A3I_ = ZUXXX — EUUX — Uy

In particular, for the Rosen-Morse potential

then [L,A3] =0

u =
cosh?(x)



For u =

cosh2( )’

Burchnall-Chaundy polynomial
ooe

the spectral curve of the Lax pair {L, A3} is

ORes(L — A\, Az —p) = —pi> = AN\ +1)> =

-1

0

0

-1

0

0 ity -} Spmly e - l2im
-1 0 Ty — 4 ey

0 ~1 0 gy — A

N T (;i::((;))f —H Tear 9 ((Zlans}']w((xx))))i

sinh(x)
-1 0 (cosh(x))2 +1 (cosh(x)? M




Burchnall-Chaundy polynomial
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(Gesztesy, Holden, 2003) Given L(u) = —0? + u(x) there exist a
family of differential operators Apst1(u,c®), ¢ = (c3,...,¢S),
s € N such that

[L(u), Agss1(u, c5)] = KdVs(u, c¥).

As(u, ct) = §ux + (238u — P +do

4
15 15 25
A 2 XXX Ux - XX
5(u,c”) = 16u + — g ! +0 80u
15, 5 5 53
3 ou 2 uX8 28 u
3 3
+ Cf(zux + (—Ou ~ )+ 30
For example us = =251 verifies KdV(us, ) = 0 for

cosh?(x)

¢t =(1), e =(5,4), = (14,49,36),...



Burchnall-Chaundy polynomial
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By (Goodearl, 1983), we prove that, given u; and ¢' such that
[L(u1), As(u1, )] = KdVi(ug,ct) = 0, the centralizer

C(L(un)) ={Q € C>[a] | [L, Q] = 0} = C[L|(1, A3)
= {po(L) + p1(L)As | po(L), p1(L) € C[L]}.

Given us and ¢° such that KdVs(us, ¢®) = 0 we define

Pani1 = L") Ay 1, n>s.



Burchnall-Chaundy polynomial
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Observe that Posy1 = A25+1(U5, E‘S), Popnt1 = LP2p—1 and therefore

[L7 P2n+1] = 0, n 2 S.

Let Ls = L(us) be a (stationary) Schrédinger operator defined by
a potential us verifying [Ls, Papn+1] = KdVj(us,€°) = 0 for n > s.
Then

ORes(Ls — A, Popy1 — p) = pi® — X2""9)9Res(Ls — A, Azsy1).



Burchnall-Chaundy polynomial
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For us = s(s +1)/x?, ¢ =(0,...,0), s > 1 let Ly := L(us).

ORes(Ly — A, Pan1 — p) = pi2 — X273 n>1
ORes(Ly — A, Pang1 — p) = pi2 — X225 > 2.

For us = —s(s41) s s >1let L := L(us).

cosh?(x)’
ORes(Ly — A, Pany1 — ) = p? — X2 DN\(A=1)2, n>1

ORes(Ly — A, Pany1 — ) = p? — X202 N(X = 1)2(\ — 4)2,
n>2.
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Factorizations

As differential operators in K[\, u][0], the operators P — X and
Q® — i have no common nontrivial solution.

Let (A, i) be the square free part of ORes(P — A, Q — p). The
algebraic curve

M= {(\p) € C?|f(\pn) =0}

is known as the spectral curve.

Let K(I') be the fraction field of the domain (f([i‘ﬁ)]) As elements

of K(I")[0], the differential operators P — A, @ — i have a common
non constant factor.

L, =gerd(P— X\, Q — p).



Factorizations
[ 1]

Given us and €° such that K(us,c®) = 0, the spectral curve 5 is
defined by

fo = ORes(L(us) — A, Aosi1(us, €°) — 1)

The Sylvester matrix S(Ls — \, Aos1 — 1) is the coefficient matrix
of
{Ls =X, ..., 0%(Ls = N), Agsi1 — 1, O(Azsy1 — 1)}



Factorizations
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Given us and ¢° such that K(us,¢°) = 0, the spectral curve g is
defined by

fo = ORes(L(us) — A, Aosi1(us, €°) — 1)

Let S! be the (25 + 1) x (25 + 2) coefficient matrix of
{Ls—X,..., 0% Y (Ls = \), Ans1 — ).



Factorizations
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Given us and ¢° such that K(us,¢°) = 0, the spectral curve g is
defined by

fo = ORes(L(us) — A, Aosi1(us, €°) — 1)

Let S! be the (25 + 1) x (25 + 2) coefficient matrix of
{Ls—X,..., 0% Y (Ls = \), Ans1 — ).

S¢ = submatrix(S',1...25,[1...25,25 +2]), ¢1 = det(S})
S = submatrix(S',1...2s,[1...25,25 +1]), ¢ = det(S})

The subresultant is ¢1 + ¢20

gerdy(r,)(Ls = A Aosp1 —p) =0 — ¢ =0+ z;



Factorizations

Given s € N and a potential us(x) (solution of KdV5).
Return a factor 9 — ¢(7, x) of Ls — A = =92+ us — X in K(I').

Obtain the vector of constants ¢° so that Azn+1(us, €°)
commutes with L.

Compute f; := dRes(Ls — A\, Agpt1 — 1), the defining
polynomial of I's.

Check if I's admits a global parametrization (for example, if it
is a rational curve). If not return No global factorization
obtained.

Compute a (rational) parametrization P(7) = (P1(7), P2(7))
of Is.

Return the monic greatest common right divisor 9 — ¢(T, x) of
Ls — 731(7') and A2n+1 — 732(7').



Factorizations
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Factorization of L — A\ = —0? + u(x) — A = (=0 — ¢)(0 — ¢)
¢ verifies the Ricatti ¢y + ¢ = us — \.

AW N R0

F(A )
2 )3
2 )8
_Iu2_)\7
2 )\

P(7)
[_7-27 _7_3]
[_7-27 _7-5]

[_7-27 7_7]

[_7-2’ _7_9]

_(b(Ta X)
X% —x141
(xT7—1)x
3343 72x246 x7+6
(72x243 x7+3)x
T4x446 x373421 72x? 445 x7+45
(x373+46 72x2415 x7+15)x

x375410 74x* 455 x3734195 72x2+420 x7+420

(T4 x*+10 x373+45 72x2+105 x7+105)x



f=—p?—XA+1)>

72 T(27+1)
2 4+27+1'372437+73+1

Factorization of L — A = —9? + u(x) — A = (=0 — ¢)(0 — ¢) with

—p1(T1,x)
¢2(1,x)

P(r) =

¢(7—7 X) =

¢1 = — sinh (x) 72 cosh (x) — cosh (x) 7 sinh (x) — 27 + 72 (cosh (x))?
—r? -1

¢2 =(1+ 7) cosh (x) (cosh (x) T — sinh (x) 7 — sinh (x))



Factorizations
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—2(2+1)

Examples: Rosen-Morse Potentials u(x) = oo ()

f=—12=X(A+42(A+1)%, P(r) = [Pi(r), Pa(7)]
P(7) = [P1(7), Pa(7)]

2

256724327+ 1
7 (442567 + 613972 + 65376 73 + 260865 7*)
80 7 + 2560 72 + 40960 73 + 327680 74 + 1048576 75 + 1

P =

P2 =



Factorizations

Factorization of L — A = —9? + u(x) — A = (=0 — ¢)(0 — ¢) with

—p1(T1,x)

¢(7—7 X) = ¢2(T,X)

¢1 = — 288 sinh (x) 7 — 4608 sinh (x) 7% — 24576 sinh (x) 73
+ 372 (cosh (x))*sinh (x) + 48 sinh (x) (cosh (x))> 7> — 6 sinh (x)
+ 513 (cosh (x))* 7° — 1536 cosh (x) 7° 4 64 72 (cosh (x))?
— 192 cosh (x) 72 4 2 (cosh (x))* 7 — 6 cosh (x) T

¢2 = (167 + 1) cosh (x) (513 72 (cosh (x))? + 64 (cosh (x))? 7
+ 2 (cosh (x))? + 48 sinh (x) 72 cosh (x) + 3 cosh (x) 7 sinh (x)
—7687° - 967 — 3
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