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Introduction

Abstract
We give an algorithm for deciding if an explicitable higher-order system of
linear differential equations over the complex rational functions, given
symbolically, admits non-null Liouvillian solutions, computing one in the
positive case, by numeric-symbolic methods in the sense of J. van der
Hoeven.

This brings up the following questions I will answer in the following slides.
What differential equations?
What kind of solutions?
By what methods?
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What differential equations?

We work with explicitable higher-order systems of linear homogeneous
differential equations over the complex rational functions.

Explicitable higher-order systems of linear differential equations
A higher-order system of linear homogeneous differential equations

Ar (x)y(r) + Ar−1(x)y(r−1) + · · ·+ A0(x)y = 0,

with A0(x), A1(x) . . . , Ar (x) matrices n × n, is explicitable if det Ar (x) 6≡ 0.

“Explicitable” because they can be made explicit in y(r).
This deals with both scalar linear differential equations (for n = 1) and
first-order linear systems of differential equations (for r = 1) at once.
The matrices A0(x), A1(x) . . . , Ar (x) consist of complex rational functions
symbolically given.
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What kind of solutions?

Liouvillian solutions
A function is Liouvillian if it is built up by the use of

rational operations
derivatives
exponentials
quadratures
solution of polynomials

over the rational functions.
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By what methods?

I speak of numeric-symbolic methods in the sense of J. van der Hoeven’s
Around the numeric-symbolic computation of differential Galois groups
(JSC 2007), where he proposes an algorithm for decomposing differential
operators.

Global structure
symbolic preprocess
numerical computation at a given precision

it may give false positives, but not false negatives
the result is correct for precision fine enough

symbolic reconstruction of the candidate solution and symbolic testing
if the test successes, the candidate solution is true
if the test fails, we repeat the numerical computation at finer precision

These properties of the numerical step grant that the procedure terminates
if the answer is positive, with a true solution at the symbolic step
if the answer is negative, with a true negative at the numerical step
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The solutions we look for

Applying the Cyclic Vector Lemma, we can extend the following theorem of
Singer to systems.

Singer’s theorem
There exists an arithmetic function I : N→ N such that, if a scalar
differential equations of order r has a non-null Liouvillian solution, then
there exists a solution y 6= 0 such that y ′/y is algebraic of degree I (r) at
most.

I called such solutions Singerian solutions.

Galoisian characterization
If G is the differential Galois group of an n×n system of order r , and G ◦ its
identity component, a solution y 6= 0 is Singerian if and only if the line Cy
is invariant by G ◦ and its orbit by the action of G has length I (nr) at most.
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The solutions we look for

Form of the Singerian solutions
For any Singerian solution y, there exist an integer p > 0, α ∈ C, a
polynomial q with q(0) = 0 and convergent series f1, f2, . . . , fn such that
y = exp

(
q(x−1/p)

)
xα
(
f1(x

1/p), f2(x
1/p), . . . , fn(x

1/p)
)ᵀ
.

Compared with Fabry-Hukuhara-Turrittin form, Singerian solutions are free
of logarithms and divergence, so they present a special behavior under
Ramis generators of the differential Galois group.

Ramis generators of the local Galois group
monodromy
Stokes automorphisms
exponential torus
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Computation of Ramis generators

Centered at a singularity, we can compute symbolically the
ramification index p and the admissible pairs (q, α) of the
Fabry-Hukuhara-Turrittin formal solutions.
For each pair (q, α), we can compute numerically the solutions in
exp
(
q(x−1/p)

)
xαC{x1/p}. We need only numerical analytic

continuation and linear algebra.
This structure (a union of vector subspaces whose sum is direct)
contains the Singerian solutions, can be moved (by numerical analytic
continuation) to a common point for all the singularities and (by
numerical linear algebra) can be intersected getting another structure
of this kind.
By numerical analytic continuation we can compute the generators of
the monodromy group.
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Effective numerics

For these computations of the Ramis generators, we will not use ordinary
numerics, but effective numerics.

Effective complex numbers
A complex number a is effective if it is endowed with an algorithm
f : N2Z → (Z+ iZ)2Z such that |f (ε)− a| < ε for any ε ∈ N2Z.

The rational operations among effective complex numbers are
effective, provided we have a lower bound of the denominator.
J. van der Hoeven (1999) develops the numerical analytic continuation
of the solutions of a linear differential equation with polynomial
coefficients, which can be extended to explicitable systems.
Numerical linear algebra is a bit problematic, as we cannot decide if a
small number is zero, so we must resort to the following device.
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Effective numerics

In order to deal with the fact that we cannot decide if a small number
is zero, J. van der Hoeven (2007) introduces a global parameter
tol ∈ N2Z such that, for an effective complex number (a, f ), we deem
a = 0 if |f (tol)| < tol.
The numerical version of Gaussian elimination may deem zero a
non-zero row/column, and thus underestimate the rank, but it cannot
overestimate the rank.
Nevertheless, for tol small enough, this approximate zero-test works
correctly.
The algorithm of this work is devised in such a way that the space of
Singerian solutions may be overestimated, but never underestimated.
So, it satisfies the conditions to fit in a numeric-symbolic method as
exposed at the beginning.
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Eurymeric closure of the Galois group

H. Derksen (2005) and J. van der Hoeven (2007) devised an algorithm
for computing the algebraic group generated by a finite family of
matrices, but it relies on some exact computations which would
require infinite time in effective numerics.
In order to avoid this impossibility, we define the eurymeric closure of
a linear algebraic group, which can be computed in effective numerics
up to testing if a number is zero or a root of unity.
What we can effectively compute is a truncation of the eurymeric
closure, which is enough for the computation of Singerian solutions.
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Sketch of the global algorithm

1 Compute the truncation of the eurymeric group G generated by the
Ramis generators, on a space containing all the Singerian solutions, as
the Lie algebra g and generators of G/G ◦.

2 Choose a common eigenvector of g with the indications of my thesis
and in such a determined way that the same Lie algebra yields always
the same eigenvector.

If there is no common eigenvector, this proves that there is no non-null
Liouvillian solution.

3 Construct the Darboux polynomial corresponding to the chosen
eigenvector and reconstruct symbolically its coefficients.

4 Check if the reconstruction of the Darboux polynomial is an actual
Darboux polynomial and if it satisfies the Brill equations.

In case of failure, we restart the numerical computation with finer
precision, which will be explained later.
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Symbolic reconstruction

Given a rational function f (x) as an effective power series, we
reconstruct symbolically the numerator and the denominator of f (x)
by means of Padé approximation.
We proved that the constants in the final result are algebraic over the
constants of the original data.
In order to reconstruct the minimal polynomial of such constants,
J. van der Hoeven proposes using the LLL algorithm, and I added
HJLS and PSLQ to the repertoire, whose terminations proofs I had to
refine for effective numerics.
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The main results of the work

Several steps of the algorithm require truncation parameters in order to
keep the computations finite.
Giving a suitable meaning to “refining the precision” for all these truncation
parameters together, we get the following result.

The main theorem of the work
The main algorithm of the work terminates with a non-zero Liouvillian
solution, if such a solution exists, or with the statement that zero is the
only Liouvillian solution if this is the case.
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Examples

The simplest non-trivial examples are second-order equations or
systems, studied by Kovacic (1979).
An interesting higher-order example can be built up as direct sum of
second-order ones.
If we do not know the coordinates that split the system as direct sum,
we cannot use the techniques designed for second-order equations.
So, we shall review how our algorithm works with some significant
second-order equations.
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Example: Euler equation

Example (Euler equation)
The differential equation,

x3y ′′ + (x2 + x)y ′ − y = 0,

has as a fundamental system of solutions

f = exp
(
1
x

)
and ĝ =

∞∑
n=0

(−1)nn! xn+1.

This equation has two singularities (at the origin and at infinity) and
hence one monodromy.
The ramification index is 1, so the Singerian solutions must be
invariant by the monodromy.
If g is any sum of ĝ , we have that f is invariant by the monodromy
and g is not.
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Example: Euler equation

The admissible pairs are {q(t) = t, α = 0} and {q(t) = 0, α = 0},
yielding exp

(
q(x−1)

)
xα = f and exp

(
q(x−1)

)
xα = 1 respectively.

Then we check if f −1y or y annihilate y 7→
∫
	0 y(z) z

k dz for k > 0.

All these integrals vanish for f −1f = 1, but none of them does for f ,
so the only candidate space is Cf with q(t) = t and α = 0.
As Cf is invariant by the Galoisian action, it is a candidate Singerian
orbit.
Then we reconstruct symbolically the Darboux polynomial, getting
that the candidate Singerian solution is exp(1/x) and that it is indeed
a solution.
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Example: Airy equation

Example (Airy equation)
The differential equation,

y ′′ = x y ,

has as a fundamental system of solutions

h± = exp
(
±2

3x
3/2
)
x−1/4 ϕ̂(±x−3/2),

where ϕ̂ is a formal series with no null term.

This equation has one singularity (at infinity) and hence no
monodromy.
We center the variable u = x−1 at infinity, where the ramification
index is 4.
The admissible pairs are {q±(t) = ±2

3 t
6, α = 1

4}.
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Example: Airy equation

Then we check if any solution divided by exp
(
q(u−1/4)

)
uα annihilates

y 7→
∫
	∞ y(z) z−k/4 dz for k > −3.

As some integrals fail to vanish for both exponential parts and both
fundamental solution, we conclude that zero is the only Liouvillian
solution of Airy equation.
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