Computing the medial axis for closed planar domains bounded by finitely many segments and conic arcs

Ibrahim Adamou
Université de Maradi, Niger

Mario Fioravanti, Laureano González-Vega,
Universidad de Cantabria, Spain

Partially supported by the Spanish Ministerio de Economía y Competitividad and by the European Regional Development Fund (ERDF), under the project MTM2014-54141-P.

June 2016, Logroño, EACA 2016
The **medial axis** of an object is the set of all (inside) points having more than one closest point on the object's boundary.
Medial Axis: basics.

Computing the medial axis.

Equations and topologies of the bisectors:
- point & conic (including lines).
- conic & conic (including lines).

Bisector of curve segments (conics and lines).

The algorithm.
The Medial Axis of a Planar Domain
Let \mathcal{D} be bounded domain in \mathbb{R}^2 with boundary \mathcal{C} consisting of a finite number of curve segments.

The medial axis of \mathcal{D}, denoted $\mathcal{M}(\mathcal{D})$, can be geometrically defined as the closed locus of the centers of all maximal circles inside \mathcal{D} which are tangent at least at two different points in the boundary of \mathcal{D}, i.e:

$$\mathcal{M}(\mathcal{D}) = \{ P \in \mathcal{D} : \text{there exists } P_1, P_2 \in \mathcal{C} \text{ such that } P_1 \neq P_2, \ d(P, P_1) = d(P, P_2) \}.$$

If \mathcal{C} is a curve given by a parametrization $\mathcal{C}(u)$ ($u \in [a, b]$, $\mathcal{C}(a) = \mathcal{C}(b)$ and \mathcal{C} continuous and differentiable except in a finite number of points), $\mathcal{M}(\mathcal{D})$ can be defined by

$$\mathcal{M}(\mathcal{D}) = \{ P \in \mathcal{D} : \text{there exists } u_1, u_2 \in [a, b] \text{ such that } u_1 \neq u_2, \ d(P, \mathcal{C}(u_1)) = d(P, \mathcal{C}(u_2)) \}.$$
\(P \in \mathcal{M}(\mathcal{D}) \) if there exists parameter values \(u_1, u_2 \in [a, b] \) such that

- \(P \) is at normals of \(\mathcal{C} \) from \(C_1 = \mathcal{C}(u_1) \) and \(C_2 = \mathcal{C}(u_2) \):

\[
\langle P - \mathcal{C}(u_1), \mathcal{C}'(u_1) \rangle = 0 \text{ and } \langle P - \mathcal{C}(u_2), \mathcal{C}'(u_2) \rangle = 0
\]

- \(P \) is at equal distance from \(C_1 = \mathcal{C}(u_1) \) and \(C_2 = \mathcal{C}(u_2) \):

\[
\langle P, 2(\mathcal{C}(u_2) - \mathcal{C}(u_1)) \rangle + \| \mathcal{C}(u_1) \|^2 - \| \mathcal{C}(u_2) \|^2 = 0
\]

- The points \(\mathcal{C}(u_1) \) and \(\mathcal{C}(u_2) \) are not equal: \(\mathcal{C}(u_2) \neq \mathcal{C}(u_1) \).
\(\mathcal{M}(\mathcal{D}) \) is a collection of finitely many curve segments coming from the bisectors of any two curve segments in the boundary \(\mathcal{C} \) of \(\mathcal{D} \) (including the vertices).
\(M(D) \) is a collection of finitely many curve segments coming from the bisectors of any two curve segments in the boundary \(C \) of \(D \) (including the vertices).
Medial axis was introduced by Blum (1967) as a concept for efficient shape description. Meanwhile it has proven useful in many scientific areas, and its fast and stable computation is of vital interest.

However, even in the plane, the task of computing the correct medial axis of a given free-form shape is a highly non-trivial one.

There exist two principal problems -apart from stability issues- that need to be addressed when computing a medial axis:

- One of them is determining the combinatorial structure (i.e., the topology) of the medial axis.
- Even when the topology of the medial axis is assumed to be known, the (usually hard) problem of computing its bisectors remains.

Computing the Medial Axis: The Algorithm
Let the boundary C of D be a finite number of segments and conic arcs. We introduce a new approach determining the medial axis of D which is

- topologically correct (no components are missed), and
- geometrically exact (each component is represented exactly).
Preprocessing step:

- Determining exact representations for the bisector of two parametric curves which are either lines or conics.

- Determining exact representations for the bisector of a point and a parametric curve which is either a lines or a conic.

- Determining all possible “topologies” for the bisector of two parametric curves which are either lines or conics.

- Determining all possible “topologies” for the bisector of a point and a parametric curve which is either a lines or a conic.
Medial Axis: the algorithm

Specialization step, computing the medial axis:

- Analyzing what happens when bisector computations for a concrete domain are applied to segments and (bounded) conic arcs.

- Computing the arrangement of all those bisectors to derive the medial axis of D by keeping only those curves fulfilling the conditions defining the medial axis.

The Equations of the Bisectors Point and Conic
The bisector curve of a point and a parametric curve \(c(t) = (a(t), b(t)) \) is always rational.

<table>
<thead>
<tr>
<th>Case</th>
<th>Parametrization</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>point–line</td>
<td>RP</td>
<td>2</td>
</tr>
<tr>
<td>point–circle</td>
<td>RP</td>
<td>2</td>
</tr>
<tr>
<td>point–ellipse</td>
<td>RP</td>
<td>6</td>
</tr>
<tr>
<td>point–parabola</td>
<td>RP</td>
<td>5</td>
</tr>
<tr>
<td>point–hyperbola</td>
<td>RP</td>
<td>6</td>
</tr>
</tbody>
</table>

The Topologies of the Bisectors Point and Conic
Point and Conic: topologies

June 2016, Logroño, EACA 2016
The Equations of the Bisectors
Conic and Conic (including lines)
Conic and Conic: equations

<table>
<thead>
<tr>
<th>Case</th>
<th>Parametrization</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>line–line</td>
<td>RP</td>
<td>2</td>
</tr>
<tr>
<td>line–circle</td>
<td>RP</td>
<td>4</td>
</tr>
<tr>
<td>line–ellipse</td>
<td>NRP</td>
<td>8</td>
</tr>
<tr>
<td>line–hyperbola</td>
<td>NRP</td>
<td>8</td>
</tr>
<tr>
<td>line–parabola</td>
<td>RP</td>
<td>6</td>
</tr>
<tr>
<td>circle–circle</td>
<td>RP</td>
<td>4</td>
</tr>
<tr>
<td>circle–ellipse</td>
<td>NRP</td>
<td>12</td>
</tr>
<tr>
<td>circle–hyperbola</td>
<td>NRP</td>
<td>12</td>
</tr>
<tr>
<td>circle–parabola</td>
<td>RP</td>
<td>10</td>
</tr>
<tr>
<td>ellipse–ellipse</td>
<td>NP</td>
<td>28</td>
</tr>
<tr>
<td>ellipse–hyperbola</td>
<td>NP</td>
<td>28</td>
</tr>
<tr>
<td>ellipse–parabola</td>
<td>NP</td>
<td>22</td>
</tr>
<tr>
<td>hyperbola–hyperbola</td>
<td>NP</td>
<td>28</td>
</tr>
<tr>
<td>hyperbola–parabola</td>
<td>NP</td>
<td>22</td>
</tr>
<tr>
<td>parabola–parabola</td>
<td>NP</td>
<td>17</td>
</tr>
</tbody>
</table>

Circle & Ellipse case:

\[\frac{1}{2106} \left(9 t^6 + 53 t^4 + 19 t^2 + 15 \right) \sqrt{\left(t^4 + 7 t^2 + 1 \right) \left(117 t^4 + 118 t^2 + 21 \right)^2} - 1053 t^{12} - 15822 t^{10} - 30403 t^8 - 19612 t^6 - 6523 t^4 - 630 t^2 + 315 \]

\[\left(-\frac{1}{117} r^2 + \frac{1}{351} \right) \sqrt{\left(t^4 + 7 t^2 + 1 \right) \left(117 t^4 + 118 t^2 + 21 \right)^2} + t^8 + \frac{308}{117} t^6 + \frac{256}{351} t^4 - \frac{16}{351} t^2 + \frac{7}{117} \left(r^2 + 1 \right)^2 \]

\[- \frac{1}{702} \left(117 t^6 + 233 t^4 + 55 t^2 - \sqrt{\left(t^4 + 7 t^2 + 1 \right) \left(117 t^4 + 118 t^2 + 21 \right)^2} - 21 \right) t \left(57 t^4 + 54 t^2 + 17 \right) \]

\[\left(-\frac{1}{117} r^2 + \frac{1}{351} \right) \sqrt{\left(t^4 + 7 t^2 + 1 \right) \left(117 t^4 + 118 t^2 + 21 \right)^2} + t^8 + \frac{308}{117} t^6 + \frac{256}{351} t^4 - \frac{16}{351} t^2 + \frac{7}{117} \left(r^2 + 1 \right)^2 \]

Conic and Conic: equations

Circle & Ellipse case:

a parametrization involving radicals

\[
\frac{1}{2106} \left(9r^6 + 53r^4 + 19r^2 + 15 \right) \sqrt{r^4 + 7r^2 + 1} \left[(117r^4 + 118r^2 + 21)^2 - 1053r^{12} - 15822r^{10} - 30403r^8 - 19612r^6 - 6523r^4 - 630r^2 + 315 \right] \\
- \frac{1}{702} \left(117r^6 + 233r^4 + 55r^2 - \sqrt{r^4 + 7r^2 + 1} \left[(117r^4 + 118r^2 + 21)^2 - 21 \right] r(57r^4 + 54r^2 + 17) \right) \sqrt{r^4 + 7r^2 + 1} \left[(117r^4 + 118r^2 + 21)^2 + 8 + 308 \frac{r^6}{117} + 256 \frac{r^4}{351} - \frac{16}{351} r^2 + \frac{7}{117} \right] (r^2 + 1)^2
\]

The Topologies of the Bisectors
Conic and Conic (including lines)
Conic and Conic: topologies

Line & Ellipse case:
- a parametrization involving radicals
- 3 possible topologies
Conic and Conic: topologies

Circle & Circle case
Medial Axis

Bisectors of Curve Segments
Bisector of two curve segments: trimming

Each segment in the medial axis comes from a point-point, point-curve or curve-curve bisector derived from the points and segments in the boundary of our domain.

Let \(s_1(u), (u \in [a_1, b_1]) \) and \(s_2(t), (t \in [a_2, b_2]) \) be two parametric curve segments whose bisector is to be computed. Using

\[
\langle P - C(u_1), C'(u_1) \rangle = 0 \quad \text{and} \quad \langle P - C(u_2), C'(u_2) \rangle = 0
\]

we obtain for \(P \) a description \(B(u, t) \) that, after replacement in

\[
\langle P, 2(C(u_2) - C(u_1)) \rangle + \|C(u_1)\|^2 - \|C(u_2)\|^2 = 0 ,
\]

produces the following relation for the values of \(u \) and \(t \) when they generate, as footpoints, a point in the bisector of these two curve segments:

\[
h(u, t) = \langle B(u, t), 2(s_1(u) - s_2(t)) \rangle + \|s_2(t)\|^2 - \|s_1(u)\|^2 = 0 .
\]
Let $s_1(u), (u \in [a_1, b_1])$ and $s_2(t), (t \in [a_2, b_2])$ be two parametric curve segments whose bisector is to be computed. Using

$$\langle P - C(u_1), C'(u_1) \rangle = 0 \text{ and } \langle P - C(u_2), C'(u_2) \rangle = 0$$

we obtain for P a description $B(u, t)$ that, after replacement in

$$\langle P, 2(C(u_2) - C(u_1)) \rangle + \|C(u_1)\|^2 - \|C(u_2)\|^2 = 0,$$

produces the following relation for the values of u and t when they generate, as footpoints, a point in the bisector of these two curve segments:

$$h(u, t) = \langle B(u, t), 2(s_1(u) - s_2(t)) \rangle + \|s_2(t)\|^2 - \|s_1(u)\|^2 = 0.$$

The intersection of $h(u, t) = 0$ with the boundary of $[a_1, b_1] \times [a_2, b_2]$ together with some of the non bounded branches of the involved bisectors produces the searched bisector for the two considered curve segments.
Bisector of two curve segments: trimming II

Blue: curve-curve bisector and $h(u,t)=0$.
Red: bisector of two endpoints
Orange: point-curve bisector of one endpoint and the other curve
Bisector of two curve segments: trimming

Blue: curve-curve bisector and $h(u,t)=0$.
Red: bisector of endpoints B_1 and B_2.
Orange: bisector of B_1 and the other curve.
Bisector of two curve segments: trimming

How many components?
Bisector of two curve segments: trimming

How many components?
Medial Axis

FINAL COMPUTATION
Boundary C of D:

- finitely many bounded segments and conic arcs $C_i, i \in \{1, 2, \ldots, n\}$.

Analyzing the arrangement of the bisectors $S_{i,j}$ for C_i and C_j with $i \neq j$ inside D produces the medial axis:

- Checking all possible arcs in the arrangement produces the medial axis after keeping only those verifying the conditions in medial axis definition.

- It is enough to check one point in each arc in order to select it or to discard it.)
Medial axis: final computation
Medial Axis Computation

(Conclusions and ...)
Conclusions and further work

Fully use the Bentley-Ottmann sweep-line method in order to reduce and simplify the combinatorial “final” burden.

Parametric representations for the bisectors, even those involving radicals, work pretty well. Further work is required when the only available exact representation is the implicit one.

Implicit equations for all involved bisector curves are available in order to be used for answering intersection queries.
Conclusions and further work

Fully use the the Bentley-Ottmann sweep-line method in order to reduce and simplify the combinatorial “final” burden.

Parametric representations for the bisectors, even those involving radicals, work pretty well. Further work is required when the only available exact representation is the implicit one.

Implicit equations for all involved bisector curves are available in order to be used for answering intersection queries.

<table>
<thead>
<tr>
<th></th>
<th>NP</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>ellipse–ellipse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ellipse–hyperbola</td>
<td>NP</td>
<td>28</td>
</tr>
<tr>
<td>ellipse–parabola</td>
<td>NP</td>
<td>22</td>
</tr>
<tr>
<td>hyperbola–hyperbola</td>
<td>NP</td>
<td>28</td>
</tr>
<tr>
<td>hyperbola–parabola</td>
<td>NP</td>
<td>22</td>
</tr>
<tr>
<td>parabola–parabola</td>
<td>NP</td>
<td>17</td>
</tr>
</tbody>
</table>
Apart from stability issues, for exact data representation of the boundary, we provide (when conic segments define the boundary of our planar and closed domain):

- Exact representation for each medial axis component (or curve segment).
- Guaranteed topology or combinatorial description (no components are missed).
GRACIAS
THANKS
MERCI