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The medial axis of an object is the set of all (inside) points 
having more than one closest point on the object's boundary.
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Medial Axis: basics. 

Computing the medial axis. 

Equations and topologies of the bisectors: 
point & conic (including lines). 
conic & conic (including lines). 

Bisector of curve segments (conics and lines). 

The algorithm.

OUTLINE
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The Medial Axis  
of a Planar Domain 
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Medial Axis: the definition

Let D be bounded domain in R2
with boundary C consisting of a finite number of curve

segments.

The medial axis of D, denoted M(D), can be geometrically defined as the closed locus of

the centers of all maximal circles inside D which are tangent at least at two di↵erent points

in the boundary of D, i.e:

M(D) = {P 2 D : there exists P1, P2 2 C such that P1 6= P2, d(P, P1) = d(P, P2)}.

If C is a curve given by a parametrization C(u) (u 2 [a, b], C(a) = C(b) and C continuous and

di↵erentiable except in a finite number of points), M(D) can be defined by

M(D) = {P 2 D : there exists u1, u2 2 [a, b] such that u1 6= u2, d(P, C(u1)) = d(P, C(u2))}.
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Medial Axis: the characterization

P 2 M(D) if there exists parameter values u1, u2 2 [a, b] such that

• P is at normals of C from C1 = C(u1) and C2 = C(u2):

hP � C(u1), C0
(u1)i = 0 and hP � C(u2), C0

(u2)i = 0

• P is at equal distance from C1 = C(u1) and C2 = C(u2):

hP, 2(C(u2)� C(u1))i+ kC(u1)k2 � kC(u2)k2 = 0

• The points C(u1) and C(u2) are not equal: C(u2) 6= C(u1) .
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M(D) is a collection of finitely many curve segments coming from the bisectors

of any two curve segments in the boundary C of D (including the vertices).

Medial Axis: the characterization
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Medial Axis: the background
Medial axis was introduced by Blum (1967) as a concept for efficient shape 
description. Meanwhile it has proven useful in many scientific areas, and its fast 
and stable computation is of vital interest.  

However, even in the plane, the task of computing the correct medial axis of a 
given free-form shape is a highly non-trivial one.

O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, M. Rabl: Medial axis 
computation for planar free--form shapes. CAD 41, 339-349, 2009.

There exist two principal problems -apart from stability issues- that need 
to be addressed when computing a medial axis: 

One of them is determining the combinatorial structure (i.e., the 
topology) of the medial axis. 
Even when the topology of the medial axis is assumed to be 
known, the (usually hard) problem of computing its bisectors 
remains. 
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Computing the Medial Axis:  
The Algorithm 
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Medial Axis: the algorithm

Let the boundary C of D be a finite number of segments and conic arcs.

We introduce a new approach determining the medial axis of D which is

• topologically correct (no components are missed), and

• geometrically exact (each component is represented exactly).
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Medial Axis: the algorithm

Preprocessing step:

• Determining exact representations for the bisector of two parametric curves

which are either lines or conics.

• Determining exact representations for the bisector of a point and a para-

metric curve which is either a lines or a conic.

• Determining all possible “topologies” for the bisector of two parametric

curves which are either lines or conics.

• Determining all possible “topologies” for the bisector of a point and a

parametric curve which is either a lines or a conic.
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Medial Axis: the algorithm

Specialization step, computing the medial axis:

• Analyzing what happens when bisector computations for a concrete do-

main are applied to segments and (bounded) conic arcs.

• Computing the arrangement of all those bisectors to derive the medial

axis of D by keeping only those curves fulfilling the conditions defining

the medial axis.

O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, M. Rabl: Medial 
axis computation for planar free--form shapes. CAD 41, 339-349, 2009.
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The Equations of the 
Bisectors 

Point and Conic 
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Point and Conic: equations

The bisector curve of a point and a parametric 
curve c(t)=(a(t),b(t)) is always rational

R. T. Farouki,  J. K. Johnstone: The bisector of a point and a plane parametric 
curve. CAGD 11, 117-151, 1994.
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The Topologies of the 
Bisectors 

Point and Conic 
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Point and Conic: topologies
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The Equations of the 
Bisectors 

Conic and Conic 
(including lines)
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Conic and Conic: equations

I. Adamou: Curvas y Superficies Bisectrices y Diagrama de Voronoi de una familia finita 
de semirrectas paralelas en R3. PhD Thesis, Universidad de Cantabria, 2013.
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Conic and Conic: equations

I. Adamou: Curvas y Superficies Bisectrices y Diagrama de Voronoi de una familia finita 
de semirrectas paralelas en R3. PhD Thesis, Universidad de Cantabria, 2013.

Circle & Ellipse case: 
a parametrization involving radicals
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The Topologies of the 
Bisectors 

Conic and Conic 
(including lines) 
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Conic and Conic: topologies

Line & Ellipse case: 
a parametrization involving radicals
3 possible topologies
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Conic and Conic: topologies
Circle & Circle case
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Medial Axis  
Bisectors  

of  
Curve Segments
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Bisector of two curve segments: trimming
Each segment in the medial axis comes from a point-point, point-
curve or curve-curve bisector derived from the points and 
segments in the boundary of our domain.

Let s1(u), (u 2 [a1, b1]) and s2(t), (t 2 [a2, b2]) be two parametric curve segments

whose bisector is to be computed. Using

hP � C(u1), C0
(u1)i = 0 and hP � C(u2), C0

(u2)i = 0

we obtain for P a description B(u, t) that, after replacement in

hP, 2(C(u2)� C(u1))i+ kC(u1)k2 � kC(u2)k2 = 0 ,

produces the following relation for the values of u and t when they generate, as

footpoints, a point in the bisector of these two curve segments:

h(u, t) = hB(u, t), 2(s1(u)� s2(t))i+ ks2(t)k2 � ks1(u)k2 = 0 .
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Let s1(u), (u 2 [a1, b1]) and s2(t), (t 2 [a2, b2]) be two parametric curve segments

whose bisector is to be computed. Using
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(u1)i = 0 and hP � C(u2), C0

(u2)i = 0

we obtain for P a description B(u, t) that, after replacement in

hP, 2(C(u2)� C(u1))i+ kC(u1)k2 � kC(u2)k2 = 0 ,

produces the following relation for the values of u and t when they generate, as

footpoints, a point in the bisector of these two curve segments:

h(u, t) = hB(u, t), 2(s1(u)� s2(t))i+ ks2(t)k2 � ks1(u)k2 = 0 .

The intersection of h(u, t) = 0 with the boundary of [a1, b1] ⇥ [a2, b2] together
with some of the non bounded branches of the involved bisectors produces the

searched bisector for the two considered curve segments.

Bisector of two curve segments: trimming I
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Blue: curve-curve bisector and h(u,t)=0.
Red: bisector of two endpoints 
Orange: point-curve bisector of one endpoint and the other curve

Bisector of two curve segments: trimming II
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Blue: curve-curve bisector and h(u,t)=0 .
Red: bisector of endpoints B1 and B2 .
Orange: bisector of B1 and the other curve.

Bisector of two curve segments: trimming
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Bisector of two curve segments: trimming

How many components?
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Bisector of two curve segments: trimming

How many components?
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Medial Axis  
FINAL COMPUTATION
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Medial axis: final computation

Boundary C of D:

• finitely many bounded segments and conic arcs Ci, i 2 {1, 2, . . . , n}.

Analyzing the arrangement of the bisectors Si,j for Ci and Cj with i 6= j inside

D produces the medial axis:

• Checking all possible arcs in the arrangement produces the medial axis

after keeping only those verifying the conditions in medial axis definition

• It is enough to check one point in each arc in order to select it or to discard

it).
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Medial axis: final computation
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Medial Axis Computation  
(Conclusions and …) 
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Fully use the the Bentley-Ottmann sweep-line method in order to 
reduce and simplify the combinatorial “final” burden. 

Parametric representations for the bisectors, even those 
involving radicals, work pretty well. Further work is required 
when the only available exact representation is the implicit one. 

Implicit equations for all involved bisector curves are available in 
order to be used for answering intersection queries.

Conclusions and further work
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Apart from stability issues, for exact data representation of the 
boundary, we provide (when conic segments define the 
boundary of our planar and closed domain): 

Exact representation for each medial axis component (or 
curve segment). 
Guaranteed topology or combinatorial description (no 
components are missed).

Conclusions and further work
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