
Developments in RUBI: RUle-Based Integration

David Jeffrey and Albert Rich

Formerly: The University of Western Ontario

EACA, Logroño, Spain 23 June 2016

Overview

I The Rubi project

I From linear search to tree search.

I Rubi reaches Maple

I A quick tour of the web site.

The Project

I Rubi has 2 aims: to promote rule-based mathematical
software; to integrate functions.

I The second aim, integrating functions, helps the first by
providing ‘proof of concept’.

I The immediate (short-term) aim of Rubi is to create a
public-domain database of rules for the evaluation of indefinite
integrals, also called anti-derivatives or primitives.

I In addition to the integration rules, an important component
is a test suite containing integration problems with solutions.

I The current version of Rubi is freely available from
www.apmaths.uwo.ca/~arich

I The originator and driving force of the project is Albert Rich.

www.apmaths.uwo.ca/~arich

The main author

Albert wrote muLisp, muMath and Derive before starting work
on Rubi.

But Maple and Mathematica can already integrate

I Yes they can, but Rubi does it better.

I In the context of integration, Rubi aims to get optimal
primitives, or anti-derivatives, not just any primitive.

I It does this efficiently and effectively using a rule-based
system, also called rewrite system.

Some statistics

I The test suite contains over 55, 000 items. Each item has
been checked for correctness, generality and optimality. It is
becoming an item of independent interest.

I The database of evaluation rules contains over 6000 rules.

What is optimal?

There are several measures of optimal.
Expression size: Maple demonstration 1: optimal∫

x10

(1 + x)12
dx = Take your pen and paper ...

Another aspect of Optimal

Consider the function

f =
x2 + 2

x4 − 3x2 + 4
.

Its graph and integral are

But many books say ...

∫
(x2 + 2) dx

x4 − 3x2 + 4
= arctan

x

2− x2
,

which has the graph

The continuous primitive

An expression which is continuous for all x is∫
(x2 + 2) dx

x4 − 3x2 + 4
= arctan(2x +

√
7) + arctan(2x −

√
7) .

This form is obtained by Rubi and Maple, but the discontinuous
form is preferred by Mathematica.
Some years ago, the late Manuel Bronstein said he could not put
continuous forms in Axiom because customers would not
understand.

The Customer is Always Right (an aside)

Commercial computer algebra systems have to balance the desires
of customers and mathematical correctness.
For example, system developers want∫

dx

x
= ln x ,

while many customers (school teachers) demand∫
dx

x
= ln |x | .

Another criterion: Æsthetics

Consider∫
16

16− x4
dx =

1

2
ln(2 + x)− 1

2
ln(x − 2) + arctan(x/2)

= arctan(x/2) + arctanh(x/2)

Why so many rules?

I Special cases.

I Efficiencies

I Algebraic simplifications

Implementation

I Initially developed and implemented in Mathematica.

I Mathematica has the strongest pattern matching functions.
I The program consisted of stepping through the list of rules,

and for each rule

1. Call the pattern matcher to decide whether this rule fits the
integrand.

2. Check the values of the parameters against the applicability
conditions.

3. Apply the rule if successful and recursively call the program.
4. If not successful, step to next rule.

Weaknesses

I The search is linear.

I Because each rule is independent, it is difficult to keep track
of cases during development. Have all cases been covered? Is
there overlap?

I Only Mathematica has a strong pattern matcher.
Implementing in Maple (for example) relying on patmatch,

type is frustrating.

New implementation

I Convert to binary tree search.

1. More efficient (as every computer scientist knows).
2. Also imposes order on the development. Missing cases are

easier to identify.

I Write separate utility functions for Maple and other systems,
to remove reliance on system pattern matching.

	Introduction

