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Framework

R := K [x1, . . . , xn] a polynomial ring over an infinite field K .

A vector ω = (ω1, . . . , ωn) ∈ (Z+)n induces a grading in R by
assigning degω(xi) := ωi ∈ Z+. Then, R =

⊕
s∈N Rs.

Let I ⊂ R be a ω-homogeneous ideal.

The ideal I = (f1, f2) ⊂ K [x1, x2, x3] with
f1 := x2

1 − 2x2x3 + x3
3

f2 := x2
2 + 3x4

3

is ω-homogeneous for ω = (3,4,2) ⊂ (Z+)3.
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Framework

A common aim is to try to describe a minimal ω-graded
free resolution of R/I as R-module

0→
βp⊕

j=1

R(−epj)
φp−→ · · · φ1−→

β0⊕
j=1

R(−e0j)
φ0−→ R/I → 0
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R(−e0j)
φ0−→ R/I → 0

The projective dimension of R/I as R-module is pdR(R/I) = p.

We say that R/I is Cohen-Macaulay if pdR(R/I) = n− dim(R/I).
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j=1
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φp−→ · · · φ1−→

β0⊕
j=1

R(−e0j)
φ0−→ R/I → 0

The ω-weighted Hilbert series of R/I is

HSR/I(t) :=
∑

s∈N[dimK (Rs)− dimK (I ∩ Rs))] ts

=

∑
i,j (−1)i tei,j∏n
i=1(1− tωi )

If ω = (1, . . . ,1), the Castelnuovo-Mumford regularity of R/I is

reg(R/I) := max{eij − i ; 0 ≤ i ≤ p, 1 ≤ j ≤ βi}.
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Today’s framework

Let d := dim(R/I) and set A := K [xn−d+1, . . . , xn].

We assume that A ↪→ R/I is a Noether normalization, i.e., an
integral ring extension

=⇒ R/I is a finitely generated A-module.

Hence, it makes sense to study its minimal ω-graded resolution
as A-module (the Noether resolution).

0 −→
γp⊕

j=1

A(−spj)
ψp−→ · · · ψ1−→

γ0⊕
j=1

A(−s0j)
ψ0−→ R/I −→ 0

The projective dimension of R/I as A-module is pdA(R/I) := p.

In general, 0 ≤ p < d .
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Proposition
1 pdA(R/I) = pdR(R/I) + d − n.

In particular, the following are equivalent:
(a) R/I is Cohen-Macaulay
(b) pdA(R/I) = 0
(c) R/I is a free A-module

2 HSR/I(t) =

∑
i,j(−1)i tsij∏n

i=n−d+1(1− tωi )

3 If ω = (1, . . . ,1), then

reg(R/I) = max{sij − i ; 0 ≤ i ≤ pdA(R/I), 1 ≤ j ≤ γi}.
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The tool: Gröbner bases

We consider the ω-weighted degree reverse lexicographic order
>ω, defined as follows:

For α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn, we have that
xα >ω xβ iff

degω(xα) > degω(xβ), or
degω(xα) = degω(xβ) and the last nonzero entry of
α− β ∈ Zn is negative.

Notation:
• For J ⊂ R ideal, in (J) denotes its initial ideal (w.r.t. >ω).



First step of the Noether resolution

Let B0 be the set of monomials NOT belonging to
in (I) + (xn−d+1, . . . , xn)

Proposition
The set

{xα + I | xα ∈ B0} ⊂ R/I

is a minimal set of generators of R/I as A-module.

Hence, the shifts of the first step of the Noether resolution are
given by degω(xα) with xα ∈ B0.

Indeed, the first step of the Noether resolution is

ψ0 : ⊕v∈B0A(−degω(v)) −→ R/I
ev 7→ v + I.
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Cohen-Macaulay criterion

Proposition
R/I is Cohen-Macaulay if and only if xn−d+1, . . . , xn do not
divide any minimal generator of in (I).

This result (slightly) generalizes [Bermejo & Gimenez (2001)].

Whenever R/I is Cohen-Macaulay, the result in the previous
slide provides the whole Noether resolution.



R/I is 2-dimensional

We work under the following hypotheses:
d = dim(R/I) = 2,
A = K [xn−1, xn] is a Noether normalization of R/I, and
xn is a nonzero divisor of R/I (or I saturated).

Consider the evaluation map

χ : R −→ R
xi 7→ 1 for i ∈ {n − 1,n}.

Theorem
Let J := χ(in(I)) · R and set B1 := B0 ∩ J.

The shifts of the second step of the Noether resolution are

degω(uxδu
n−1), where u ∈ B1 and δu := min{δ |uxδn−1 ∈ in(I)}.
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Corollary

HSR/I(t) =

∑
v∈B0

tdegω(v) −
∑

u∈B1
tdegω(u)+δuωn−1

(1− tωn−1)(1− tωn )

Corollary (Bermejo-Gimenez (1999))
If ω = (1, . . . ,1), then:

reg (R/I) = max ({deg(v) | v ∈ B0} ∪ {deg(u) + δu − 1 | u ∈ B1})



A worked out example

Let I = I(Γ) be the ideal of the surface Γ ⊂ A4
K defined as

Γ := {(s3 + s2t , t4 + st3, s2, t2) ∈ A4
K | s, t ∈ K}

If ch(K ) = 0, then G = {g1,g2,g3,g4} is a Gröbner basis of I
w.r.t. >ω with ω = (3,4,2,2), where

g1 := 2x2x2
3 − x2

1 x4 + x3
3 x4 − x2

3 x2
4

g2 := x4
1 − 2x2

1 x3
3 + x6

3 − 2x2
1 x2

3 x4 − 2x5
3 x4 + x4

3 x2
4

g3 := x2
2 − 2x2x2

4 − x3x3
4 + x4

4

g4 := 2x2
1 x2 − x2

1 x3x4 + x4
3 x4 − 3x2

1 x2
4 − 2x3

3 x2
4 + x2

3 x3
4 .

Hence, in (I) = (x2x2
3 , x

4
1 , x

2
2 , x

2
1 x2) =⇒ R/I is not C-M.
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4
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2
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1 , x
2
2 , x

2
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B0 = {u1,u2,u3,u4,u5,u6} with
u1 := 1, u2 := x1, u3 := x2, u4 := x2

1 , u5 := x1x2, u6 := x3
1 .

The first step of the Noether resolution is:

ψ0 :
A⊕ A(−3)⊕ A(−4)⊕

A(−6)⊕ A(−7)⊕ A(−9)
−→ R/I −→ 0,

induced by ei 7→ ui + I.

Now we have that:
J = χ(in(I)) = (x4

1 , x2), and
B1 = B0 ∩ J = {x2} = {u3}.

We compute δ3 = min{δ |u3xδ3 ∈ in (I)} = 2, and observe that
degω(u3x2

3 ) = 8.
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Hence, the Noether resolution is given by:

0 −→ A(−8)
ψ1−→ A⊕ A(−3)⊕ A(−4)⊕

⊕A(−6)⊕ A(−7)⊕ A(−9)
−→ R/I −→ 0,

Moreover, the remainder of the division of x2
3 u3 by G is:

−x4u4 + (x3
3 x4 − x2

3 x2
4 )u1.

Thus, ψ1 is given by the matrix
−x3

3 x4 + x2
3 x2

4
0
x2

3
x4

0
0
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Since the Noether resolution is:

0 −→ A(−8) −→ A⊕ A(−3)⊕ A(−4)⊕
⊕A(−6)⊕ A(−7)⊕ A(−9)

−→ R/I −→ 0,

Then, the ω-weighted Hilbert series of R/I is

HSR/I(t) =
1 + t3 + t4 + t6 + t7 − t8 + t9

(1− t2)2 .



Simplicial semigroup rings

For S = 〈a1, . . . ,an〉 ⊂ Nd a finitely generated semigroup, we
consider the semigroup ring K [S] := K [ts | s ∈ S] ⊂ K [t1, . . . , td ].

We have that K [S] ' R/IS with IS = Ker(ϕ) and

ϕ : R → K [t1, . . . , td ]
xi 7→ tai = tai1

1 · · · t
aid
d for all i ∈ {1, . . . ,n}.

Moreover, IS is S-graded, i.e., multigraded with respect to the
grading degS(xi) = ai ∈ Nm for all i ∈ {1, . . . ,n}.

We also assume that A = K [xn−d+1, . . . , xn] ↪→ R/IS is a Noether
normalization (this is equivalent to S simplicial semigroup).



Simplicial semigroup rings

For S = 〈a1, . . . ,an〉 ⊂ Nd a finitely generated semigroup, we
consider the semigroup ring K [S] := K [ts | s ∈ S] ⊂ K [t1, . . . , td ].

We have that K [S] ' R/IS with IS = Ker(ϕ) and

ϕ : R → K [t1, . . . , td ]
xi 7→ tai = tai1

1 · · · t
aid
d for all i ∈ {1, . . . ,n}.

Moreover, IS is S-graded, i.e., multigraded with respect to the
grading degS(xi) = ai ∈ Nm for all i ∈ {1, . . . ,n}.

We also assume that A = K [xn−d+1, . . . , xn] ↪→ R/IS is a Noether
normalization (this is equivalent to S simplicial semigroup).



Simplicial semigroup rings

For S = 〈a1, . . . ,an〉 ⊂ Nd a finitely generated semigroup, we
consider the semigroup ring K [S] := K [ts | s ∈ S] ⊂ K [t1, . . . , td ].

We have that K [S] ' R/IS with IS = Ker(ϕ) and

ϕ : R → K [t1, . . . , td ]
xi 7→ tai = tai1

1 · · · t
aid
d for all i ∈ {1, . . . ,n}.

Moreover, IS is S-graded, i.e., multigraded with respect to the
grading degS(xi) = ai ∈ Nm for all i ∈ {1, . . . ,n}.

We also assume that A = K [xn−d+1, . . . , xn] ↪→ R/IS is a Noether
normalization (this is equivalent to S simplicial semigroup).



In this setting we may consider a S-graded Noether resolution
of K [S], i.e., a minimal multigraded free resolution of K [S] as
A-module:

0 −→ ⊕s∈SpA · s
ψp−→ · · · ψ1−→ ⊕s∈S0A · s ψ0−→ K [S] −→ 0,

where Si ⊂ S for all i ∈ {0, . . . ,p} and A · s denotes the shifting
of A by s ∈ S.



First step of the multigraded Noether resolution

The first step of this resolution corresponds to a minimal set of
generators of K [S] as A-module and is given by the following
well known result.

Proposition

S0 = {s ∈ S | s − ai /∈ S for all i ∈ {n − d + 1, . . . ,n}} .

Moreover,
ψ0 : ⊕s∈S0A · s −→ K [S]

es 7→ ts



Cohen-Macaulay criterion

From the previous result we derive the following one, which can
be seen to be equivalent to [Goto-Suzuki-Watanabe (1976)] and
[Stanley (1978)].

Proposition
K [S] is Cohen-Macaulay⇐⇒ |S0| = [ZS : ZS ′],

where ZS is the group generated by a1, . . . ,an and ZS ′ is the
group generated by an−d+1, . . . ,an.



K [S] is 2-dimensional

From now on suppose that K [S] is a 2-dimensional semigroup
ring. The second step of the Noether resolution is given by the
following result.

Theorem

S1 = {s ∈ S | s − an−1, s − an ∈ S and s − an − an−1 /∈ S} .



An application
Let C ⊂ Pn

K be a projective monomial curve:

x1 = sm1 tmn−m1 , . . . , xn−1 = smn−1 tmn−mn−1 , xn = smn , xn+1 = tmn .

We set S := 〈a1, . . . ,an+1〉 ⊂ N2 with ai := (mi ,mn −mi) for
i ∈ {1, . . . ,n − 1},an := (mn,0) and an+1 := (0,mn), then

K [S] ' K [x1, . . . , xn+1]/I(C).

For r ∈ {2, . . . ,n − 1} one may consider the r -th canonical
projection of C, i.e., the curve Cr := πr (C) where

πr (p1 : · · · : pn+1) = (p1 : · · · : pr−1 : pr+1 : · · · : pn+1)

We have that K [Sr ] ' R/I(Cr ), where

Sr = 〈a1, . . . ,ar−1,ar+1, . . . ,an+1〉.
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x1 = sm1 tmn−m1 , . . . , xn−1 = smn−1 tmn−mn−1 , xn = smn , xn+1 = tmn .

We set S := 〈a1, . . . ,an+1〉 ⊂ N2 with ai := (mi ,mn −mi) for
i ∈ {1, . . . ,n − 1},an := (mn,0) and an+1 := (0,mn), then

K [S] ' K [x1, . . . , xn+1]/I(C).

For r ∈ {2, . . . ,n − 1} one may consider the r -th canonical
projection of C, i.e., the curve Cr := πr (C) where

πr (p1 : · · · : pn+1) = (p1 : · · · : pr−1 : pr+1 : · · · : pn+1)

We have that K [Sr ] ' R/I(Cr ), where

Sr = 〈a1, . . . ,ar−1,ar+1, . . . ,an+1〉.



Arithmetic sequences

Theorem (Li-Patil-Roberts (2012))
If m1 < · · · < mn is an arithmetic sequence, i.e., there exist
e,m1 ∈ Z+ such that mi = m1 + (i − 1) e for all i ∈ {1, . . . ,n},
then:

S0 =

{(⌈
j

n − 1

⌉
mn − je, je

)
| j ∈ {0, . . . ,mn − 1}

}

In particular, K [S] is Cohen-Macaulay, and this result provides
the shifts of the only step of the multigraded Noether resolution.

Now, we study the Noether resolution of the canonical
projections of K [S].



Theorem

Let q := d(m1 − 1)/(n − 1)e and ` := m1 − q(n − 1). If we set
sλ :=

(⌈
λ

n−1

⌉
mn − λe, λe

)
∈ N2 for all λ ∈ {0, . . . ,mn − 1}, then the

multigraded Noether resolution of K [Sr ] is given by:

For m1 ≥ 2, then

0 −→
(
⊕mn−1
λ=0, λ/∈Λ1

A · sλ
)
⊕
(
⊕λ∈Λ1 A · (sλ + an)

)
−→ K [S2] −→ 0,

where Λ1 := {µ(n− 1)− 1 | 1 ≤ µ ≤ q + e + ε}, and ε = 1 if ` = n− 1, or
ε = 0 otherwise.

For r ∈ {3, . . . , n − 2} and r ≤ m1, then

0 −→
(
⊕mn−1
λ=0, λ6=n−r A · sλ

)
⊕ A · (ar + an) −→ K [Sr ] −→ 0

For r = n − 1 ≤ m1, then

0 −→
(
⊕mn−1
λ=0, λ6=1A · sλ

)
⊕ A · (an−1 + (q + ε)an + ean+1) −→ K [Sn−1] −→ 0,

where ε = 1 if ` = n − 1, or ε = 0 otherwise.



Theorem (Continuation)
For m1 = 1, then

0 −→ ⊕λ∈Λ2 A · (sλ+an +ean+1) −→

⊕mn−1
λ=0,λ/∈Λ2

A · sλ
⊕

⊕λ∈Λ2 A · (sλ + an)
⊕

⊕λ∈Λ2 A · (sλ + ean+1)

−→ K [S2] −→ 0,

where Λ2 := {µ(n − 1)− 1 | 1 ≤ µ ≤ e}.
For r ∈ {3, . . . , n − 2} and r > m1, then

0 −→ A·(ar +an+ean+1) −→

(
⊕mn−1
λ=0, λ6=n−r A · sλ

)
⊕

A · (ar + an)⊕ A · (ar + ean+1)

−→ K [Sr ] −→ 0.

For r = n − 1 > m1, then

0 −→
(
⊕mn−1
λ=0, λ 6=1A · sλ

)
⊕ A · (an−1 + ean+1) −→ K [Sn−1] −→ 0.



Corollary
K [Sr ] is Cohen-Macaulay⇐⇒ r ≤ m1 or r = n − 1.

Corollary

reg(K [Sr ]) =



⌈
mn−1
n−1

⌉
+ 1 if r ∈ {2,n − 1} and r ≤ m1,

2e if r = 2 and m1 = 1, and⌈
mn−1
n−1

⌉
if r ∈ {3, . . . ,n − 2}, or
if r = n − 1 and m1 < r



Consider the projective curve given parametrically by:

x1 = st6, x2 = s5t2, x4 = s7, x5 = t7.

This corresponds to C2, where C is associated to the arithmetic
sequence 1 < 3 < 5 < 7 (i.e., with m1 = 1, d = 2 and n = 4).
The multigraded Noether resolution of K [S2] is

0 −→
A · (10,18)

⊕
A · (11,24)

−→

A⊕ A · (1,6)⊕ A · (5,2)⊕
A · (2,12)⊕ A · (6,8)⊕
A · (10,4)⊕ A · (3,18)⊕
A · (11,10)⊕ A · (4,24)

−→ K [S2] −→ 0.

If we consider the standard grading on R, we get:

0 −→ A(−4)⊕ A(−5) −→ A⊕ A(−1)2 ⊕ A(−2)3

A(−3)2 ⊕ A(−4)
−→ K [S2] −→ 0,

and the following expression for the Hilbert series of K [S2]:

HSK [S2](t) =
1 + 2t + 3t2 + 2t3 − t5

(1− t)2 .

We also have that reg(K [S2]) = 4.


