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assigning deg,,(X;) := w; € Z*. Then, R = Py Rs.
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R := K][xq, ..., Xn] @ polynomial ring over an infinite field K.
A vector w = (w1, ...,wp) € (Z7)"induces a grading in R by
assigning deg,,(X;) := w; € Z*. Then, R = Py Rs.

Let / € R be a w-homogeneous ideal.

The ideal | = (fi, &) C K[xq, X2, X3] with
o fi:=x2 —2xoX3 + X3
@ fr:= X5+ 3x3
is w-homogeneous for w = (3, 4,2) C (Z1)3.



Framework

A common aim is to try to describe a minimal w-graded
free resolution of R// as R-module
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The projective dimension of R/l as R-module is pdg(R/I) = p.

We say that R/l is Cohen-Macaulay if pdg(R/l) = n—dim(R//).
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Framework

Bp Bo
? @ é
0 P R(-ey) = - = P R(—ey)) = R/I—0
j=1 j=1

The w-weighted Hilbert series of R/ is

HSg/(t) = > senldimg(Rs) —dimg(/ N Rs))] t°
>oij (=1 )" teri
[T (1 —t=)
If w=(1,...,1), the Castelnuovo-Mumford regularity of R//is

reg(R/l) :==max{eg; —/; 0 <i<p, 1 <j< B}
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We assume that A — R/l is a Noether normalization, i.e., an
integral ring extension = R/ is a finitely generated A-module.

Hence, it makes sense to study its minimal w-graded resolution
as A-module (the Noether resolution).
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Today’s framework

Let d :=dim(R//) and set A := K[Xn_g+1,-- -, Xn].
We assume that A — R/l is a Noether normalization, i.e., an
integral ring extension = R/ is a finitely generated A-module.

Hence, it makes sense to study its minimal w-graded resolution
as A-module (the Noether resolution).

Yo 0
0 — PA-55) 2 2 PA-sy) 2 R/I— 0
j=1 j=1

The projective dimension of R/l as A-module is pda(R/I) := p.

Ingeneral, 0 < p < d.



Proposition
@ pd,(R/1) = pdg(R/1) +d —n.
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(b) pda(R/I)=0
(c) R/lis a free A-module
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Proposition
@ pds(R/I) = pdg(R/I)+d —n.

In particular, the following are equivalent:
(a) R/Iis Cohen-Macaulay

(b) pda(R/I)=0
(c) R/lis a free A-module
S (=)t
; H?:n—d+1(1 - twi)

Q lfo=(1,...,1), then

Q HSg/(1)

reg(R/l) = max{sj —i; 0 <7 < pdy(R/l), 1 <j <~}

v




The tool: Grobner bases

We consider the w-weighted degree reverse lexicographic order
>, defined as follows:

Fora = (aq,...,an),B8 = (B1,...,5n) € N, we have that
x>, xP iff
@ deg, (x*) > deg,(x?), or

@ deg, (x*) = deg,(x?) and the last nonzero entry of
a — (B € Z" is negative.

Notation:
e For J C Rideal, in(J) denotes its initial ideal (w.r.t. >).
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Let By be the set of monomials NOT belonging to
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Proposition
The set
{x*+ 1| x*e€ By} C R/I
is @ minimal set of generators of R/I as A-module.

Hence, the shifts of the first step of the Noether resolution are
given by deg ,(x) with x* € By.




First step of the Noether resolution

Let By be the set of monomials NOT belonging to
in(/) + (Xp—d+1,-- - Xn)

Proposition

The set
{x*+1|x*e By} Cc R/I

is @ minimal set of generators of R/I as A-module.

Hence, the shifts of the first step of the Noether resolution are
given by deg ,(x) with x* € By.

Indeed, the first step of the Noether resolution is

Yo : @DrepA(—deg,(v)) — R/I
e, — Vv+I




Cohen-Macaulay criterion

Proposition

R/I is Cohen-Macaulay if and only if X,_g+1, ..., Xn do not
divide any minimal generator ofin (/).

This result (slightly) generalizes [Bermejo & Gimenez (2001)].

Whenever R/l is Cohen-Macaulay, the result in the previous
slide provides the whole Noether resolution.



R/l is 2-dimensional

We work under the following hypotheses:
e d=dim(R/Il) =2,
@ A= KJ[xn_1, Xn] is a Noether normalization of R//, and
@ Xxp is a nonzero divisor of R/ (or | saturated).



R/l is 2-dimensional

We work under the following hypotheses:
e d=dim(R/Il) =2,
@ A= KJ[xn_1, Xn] is a Noether normalization of R//, and
@ Xxp is a nonzero divisor of R/ (or | saturated).
Consider the evaluation map

x: R — R
xi +— 1forie{n—1,n}.

Theorem
LetJ := x(in(/)) - R and set By := By N J.

The shifts of the second step of the Noether resolution are

deg, (ux® ), where u € By and 8, := min{d | ux}_, € in(/)}.




Corollary

ZVGBO tdeg.(v) — Zue& #deg,, (u)+uwn_1
(1 — ton—1)(1 — wn)

HSg/(t) =

Corollary (Bermejo-Gimenez (1999))
Ifw=(1,...,1), then:

reg (R/I) = max ({deg(v)|v € Bo} U{deg(u)+d,—1|u€ B1})J
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Let / = I(T") be the ideal of the surface I' C A%, defined as
M= {(s® + &2t t* +st3,6% 12) € Ak |s, t e K}
If ch(K) =0, then G = {91, 92,93, 94} is a Grébner basis of /

w.r.t. >, withw = (3,4,2,2), where
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@ gy :=2x2xy — XPx3xXy + X5 X4 — BX2XE — 2X3xZ + XEX3.

Hence, in (/) = (xox2, x{, x2, x2x2)



A worked out example

Let / = I(T") be the ideal of the surface I' C A%, defined as
M= {(s® + &2t t* +st3,6% 12) € Ak |s, t e K}
If ch(K) =0, then G = {91, 92,93, 94} is a Grébner basis of /

w.r.t. >, withw = (3,4,2,2), where

@ gy :=2xx5 — X2Xy + X3X4 — XEXE

@ 9o = X7 —2X2x3 + x5 — 2xBxExq — 2X3 X4 + X3 XE

@ g5 1= X2 — 2xXoXZ — XaXP + X§

@ gy :=2x2xy — XPx3xXy + X5 X4 — BX2XE — 2X3xZ + XEX3.

Hence, in (/) = (xox2, x{, x2, x2x2) => R/l is not C-M.



in (1) = (X2, X, X3, X2xz) = in (1) + (¥, Xa) = (xf, X2, X2x2, X3, Xa)

@ By = {uy, Up, U3, Uy, Us, Ug} With
. . L ) L L
b = 17 Up i= Xq, U3 := X, Ug = X, Us 1= X1 X2, Ug 1= x3.



ln(/) - (X2X§7X“|17 227X12X2) = in(/)+(X3,X4) - (X?7X227X12X27X37X4)

@ By = {uy, Up, U3, Uy, Us, Ug} With
Up =1, Up = Xy, U i= Xo, Ug i= X2, Us := X1 X2, Up := X5.

The first step of the Noether resolution is:

 AGAC-3) D A4
Yo A(—8) @ A(~7) @ A(-9)

induced by e; — u; + 1.

— R/l =0,



ln(/) - (X2X§7X“|17 227X12X2) = in(/)+(x3,x4) - (X?7X227X12X27X37X4)

@ By = {uy, Up, U3, Uy, Us, Ug} With ,
Up =1, Up := Xq, U3 := X, Ug := X5, Us = X1 Xp, Ug 1= X3

The first step of the Noether resolution is:

 AGA(-3) B A(-4) D
Yo A6y A(-7) D A(-9)

induced by e; — u; + 1.

— R/l =0,

Now we have that:
@ J=x(in(/)) = (xf,xz), and
@ By =BoNJ={x2} = {us}.

We compute 63 = min{d | u3x3 € in(/)} = 2, and observe that
deg,,(Usx2) = 8.



Hence, the Noether resolution is given by:

oy Ad A(-3) @ A(—4)D

0— A(-8) — SA—6) @ A(—7) & A(—9) — R/I =0,



Hence, the Noether resolution is given by:

v, ADA(-3) @ A(-4)e

0— A(-8) — SA—6) @ A(—7) & A(—9) — R/I =0,

Moreover, the remainder of the division of x32u3 by G is:
3 2.2
—XgUs + (X3 X4 — X5X5)U1.

Thus, 14 is given by the matrix

—X3x4 + XEXZ
0
X5
X4
0
0



Since the Noether resolution is:

ADA(-3)d A(-4)®

0— A(-8) — DA(—-6) B A(-7) @ A(-9)

— R/l — 0,

Then, the w-weighted Hilbert series of R/l is

1T+ 4+t 4+ 08+t -84 19
(1 - 2)2 '

HSg/(t) =
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For S = (ay,...,an) C N9 afinitely generated semigroup, we
consider the semigroup ring K[S] := K[t°|s € §] C K[t,..., tq].
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v: R = Klt,..., t4]
Xi — =t t3 forallie{1,...,n}

Moreover, Is is S-graded, i.e., multigraded with respect to the
grading degs(x;) = a; € N"forall i € {1,...,n}.



Simplicial semigroup rings

ForS ={(ay,...,an) C N9 a finitely generated semigroup, we
consider the semigroup ring K[S] := K[t°|s € §] C K[t,..., tq].

We have that K[S] ~ R/Is with s = Ker(y) and

v: R = Klt,..., t4]
Xi — =t t3 forallie{1,...,n}

Moreover, Is is S-graded, i.e., multigraded with respect to the
grading degs(x;) = a; € N"forall i € {1,...,n}.

We also assume that A = K[X,_g41,.-.,Xn] < R/Is is a Noether
normalization (this is equivalent to S simplicial semigroup).



In this setting we may consider a S-graded Noether resolution
of K[S], i.e., a minimal multigraded free resolution of K[S] as
A-module:

0— Becs,A s 2o U g A s 2 K[S] — 0,

where S; C Sforalli € {0,...,p} and A- s denotes the shifting
of Aby s € S.



First step of the multigraded Noether resolution

The first step of this resolution corresponds to a minimal set of
generators of K[S] as A-module and is given by the following
well known result.

Proposition

So={seS|s—a ¢Sforalliec{n—d+1,...,n}}.
Moreover,
Yo: Pses,A-s — KI[S]
es +— 15




Cohen-Macaulay criterion

From the previous result we derive the following one, which can
be seen to be equivalent to [Goto-Suzuki-Watanabe (1976)] and
[Stanley (1978)].

Proposition
K[S] is Cohen-Macaulay < |Sp| = [ZS : Z5],

where 7S is the group generated by ay, . .., a, and ZS' is the
group generated by ap_g+1, .- -, an.




K|[S] is 2-dimensional

From now on suppose that K[S] is a 2-dimensional semigroup
ring. The second step of the Noether resolution is given by the

following result.

Theorem

Si={seS|s—a, ,S—aprc€Sands—a,—ap 1¢S}.




An application

Let C C P} be a projective monomial curve:

Xy = 8™t Xp_q = 8Tttt X = 8™ X g =t
We set S := (ay,...,an41) C N2 with a; := (m;, m, — m;) for
ie{1,...,n—1} a,:=(my,0) and an1 := (0, M), then

KIS] ~ K[, ..., Xn1]/1(C).



An application
Let C C P} be a projective monomial curve:
Xxq = sMtMn=m

Mp—_1 #Mpn—Mp_ m, m,
cyXp—q =8 Xy =87 Xppp =1

We set S := (ay,...,an41) C N2 with a; := (m;, m, — m;) for
ie{l,...,n—1} a,:=(mp,0)and ap;1 := (0, m,), then

KIS] ~ K[, ..., Xn1]/1(C).

Forre {2,...,n— 1} one may consider the r-th canonical
projection of C, i.e., the curve C; := 7,(C) where

Tr(P1 i Ppgt) = (P1 i P Pret e Pogt)
We have that K[S;] ~ R/I(C;), where

Sr:<a17"'>al’—1aar+17'--aan+1>'



Arithmetic sequences

Theorem (Li-Patil-Roberts (2012))

Ifmy < --- < mpy is an arithmetic sequence, i.e., there exist
e,my € Z* such thatm; = my + (i—1)eforallie {1,...,n},
then:

80:{([n£1wmn—je,je> |j€{0,...,mn—1}}

In particular, K[S] is Cohen-Macaulay, and this result provides
the shifts of the only step of the multigraded Noether resolution.

Now, we study the Noether resolution of the canonical
projections of K[S].



Theorem

Letq:=[(my —1)/(n—1)] and £ := my — q(n — 1). If we set
Sy = ([ 2 Wmn—/\e, Ae) e N2 forall \ € {0, ..., m, — 1}, then the

n—1

multigraded Noether resolution of K[S;] is given by:
@ Formy > 2, then

0— (@T28,1/\¢/\1A : SA) D (@/\em A-(sx+ an)) — K[S2] — 0,

where A1 := {u(n—1)—-1[{1<pu<qg+e+e},ande=1ifl=n—1,o0r
e = 0 otherwise.

@ Forre{3,...,n—2} andr < my, then
0— (@’g;gjmf,A : sA) ®A-(ar +an) - K[S] =0
@ Forr=n—1<m, then
0— (@TLE,K#A | sA) @ A-(an—1+(g+e€)an+ eant1) — K[Sp-1] — 0,

wheree =1 if¢{ = n—1, ore = 0 otherwise.




Theorem (Continuation)
@ Formy =1, then

n—1
EBT:O,,\gz/\ZA S\
&
0 — @,\6/\2A‘(S)\+an+ean+1) — @)\GAZA- (S)\+an) — K[Sg] — 0,
D

Dren,A - (8x + eany1)
where Np := {p(n—1)—1|1 <p<e}.
@ Forre{3,...,n—2} andr > my, then

(GBTQE,‘A##A . SA)
0 — A(ar+antean1) — ® — K[S/] — 0.

A-(ar+an) ©A-(ar + eani1)

@ Forr=n—1> my, then

0— (ea;";g"mA : sk) ®A-(an_t + €ant) — K[Sn_1] — 0.




Corollary
K[S:] is Cohen-Macaulay <= r < my orr=n—1.

Corollary
’Vﬂnu_—_ﬂ-l_‘_‘] ifre{2,n—1} andr < my,
reg(K[S]) = 2e ifr=2andmy =1, and
1) =
m"_j‘} ifre{3,...,n-2}, or

ifr=n—1andmy <r




Consider the projective curve given parametrically by:
x1 =88 % =8, xs=5".x5 = t'.

This corresponds to C», where C is associated to the arithmetic
sequence 1 <3 <5< 7 (i.e.,withmy =1,d =2and n=4).
The multigraded Noether resolution of K[S;] is

AbA-(1,6)dA-(52)

A-(10,18)
’ A-(2,12) @ A-(6,8)®
0— @ — — K[S2] — 0.
A-(11,24) A-(10,4)pA-(3,18)®

A-(11,10) > A-(4,24)

If we consider the standard grading on R, we get:

A A(-1)2 @ A(-2)°
A(-3)2 @ A(—-4)

and the following expression for the Hilbert series of K[S;]:

1+2t+32+213 — 15
(1-1)?

0 — A(—4) ® A(-5) — — K[S2] = 0,

HSk(s,) (1) =

We also have that reg(K[Sz]) = 4.



