Algebraic invariants of projective monomial curves associated to generalized arithmetic sequences

Eva García Llorente

Universidad de La Laguna

Joint work with I. Bermejo and I. García Marco

EACA 2016 Alg. inv. of proj. monomial curves gener. arithmetic sequences

DEFINITIONS AND NOTATIONS

Let $m_1 < \ldots < m_n$ be a sequence of positive integers. Consider the projective monomial curve associated to $m_1 < \ldots < m_n$ $C \subset \mathbb{P}^n_K$ parametrically defined by

$$x_1 = s^{m_1} t^{m_n - m_1}, \dots, x_{n-1} = s^{m_{n-1}} t^{m_n - m_{n-1}}, x_n = s^{m_n}, x_{n+1} = t^{m_n}$$

Consider the k-algebra homomorphism

$$\begin{array}{rcl} \varphi: R & \longrightarrow & K[s,t] \\ x_i & \mapsto & s^{m_i}t^{m_n-m_i}, \text{ for } i \in \{1,\ldots,n-1\}, \\ x_n & \mapsto & s^{m_n}, \\ x_{n+1} & \mapsto & t^{m_n}, \end{array}$$

where $R := K[x_1, ..., x_{n+1}]$ with K an infinite field. Since K is infinite, ker (φ) $\subset R$ is the vanishing ideal $I(\mathcal{C})$ of \mathcal{C} , which is binomial, prime and homogeneous. Denote by $K[\mathcal{C}]$ the homogeneous coordinate ring $R/I(\mathcal{C})$ of \mathcal{C} .

Consider a minimal graded free resolution of $\mathcal{K}[\mathcal{C}]$

$$0 \to \bigoplus_{j=1}^{\beta_p} R(-e_{pj}) \xrightarrow{\phi_p} \cdots \xrightarrow{\phi_2} \bigoplus_{j=1}^{\beta_1} R(-e_{1j}) \xrightarrow{\phi_1} R \to K[\mathcal{C}] \to 0,$$

then,

- the Castelnuovo-Mumford regularity of K[C] is $reg(K[C]) := max\{e_{ij} i; 1 \le i \le p, 1 \le j \le \beta_i\},\$
- K[C] is Cohen-Macaulay if p = n 1;

Whenever K[C] is Cohen-Macaulay,

- its Cohen-Macaulay type is β_p ,
- it is Gorenstein if its Cohen-Macaulay type is one, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

• I(C) is a complete intersection if $\beta_1 = n - 1$.

Moreover

- K[C] is a Koszul algebra if the resolution of the residue class field K over K[C] is linear.
- *H_{K[C]}(t)* := ∑_{s∈ℕ} dim_K(R_s/I(C) ∩ R_s) t^s ∈ ℤ[[t]] is the
 Hilbert series of K[C], where where R_s is the K-vector
 space generated by all homogeneous polynomials of
 degree s, s ∈ ℕ.

IN THIS WORK

we consider C the projective monomial curve associated to $m_1 < \ldots < m_n$ a **generalized arithmetic sequence**, i.e., there exist $m_1, h, d \in \mathbb{Z}^+$ such that $m_i = hm_1 + (i - 1)d$ for all $i \in \{2, \ldots, n\}$.

◆□▶ ◆□▶ ◆三▶ ◆三 ● ● ●

IN THIS WORK

we consider C the projective monomial curve associated to $m_1 < \ldots < m_n$ a **generalized arithmetic sequence**, i.e., there exist $m_1, h, d \in \mathbb{Z}^+$ such that $m_i = hm_1 + (i - 1)d$ for all $i \in \{2, \ldots, n\}$.

In this setting, we characterize both the Cohen-Macaulay and Koszul properties of K[C]. Moreover, we obtain **formulas** for reg(K[C]) and also for $\mathcal{H}_{K[C]}(t)$ in terms of the sequence.

MAIN TOOL

• $a, b \in \mathbb{N}^{n+1}, x^a >_{rlex} x^b$ if and only if $\deg(x^a) > \deg(x^b)$ or $\deg(x^a) = \deg(x^b)$ and the last non-zero entry of $a - b \in \mathbb{Z}^{n+1}$ is negative.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 のへぐ

MAIN TOOL

- a, b ∈ Nⁿ⁺¹, x^a>_{rlex}x^b if and only if deg(x^a) > deg(x^b) or deg(x^a) = deg(x^b) and the last non-zero entry of a − b ∈ Zⁿ⁺¹ is negative.
- *f* ∈ *R* a polynomial, in(*f*) is the greatest monomial of *f* w.r.t. >_{rlex}. Moreover in(*I*) := ⟨{in(f) | *f* ∈ *I*}⟩ for any *I* ⊂ *R* ideal.

◆□▶ ◆□▶ ◆三▶ ◆三 ● ● ●

MAIN TOOL

- a, b ∈ Nⁿ⁺¹, x^a>_{rlex}x^b if and only if deg(x^a) > deg(x^b) or deg(x^a) = deg(x^b) and the last non-zero entry of a − b ∈ Zⁿ⁺¹ is negative.
- *f* ∈ *R* a polynomial, in(*f*) is the greatest monomial of *f* w.r.t. >_{rlex}. Moreover in(*I*) := ⟨{in(f) | *f* ∈ *I*}⟩ for any *I* ⊂ *R* ideal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

• $\mathcal{G} = \{g_1, \ldots, g_s\} \subset I$ is a **Gröbner basis** of $I \subset R$ if $in(I) = \langle \{in(g_1), \ldots, in(g_s)\} \rangle$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$\mathcal{H}_{\mathcal{K}[\mathcal{C}]}(t) = \mathcal{H}_{R/\mathrm{in}(I(\mathcal{C}))}(t)$

▲□▶
▲□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶

 $\mathcal{K}[\mathcal{C}]$ is C-M \iff none of the minimal generators of $\operatorname{in}(I(\mathcal{C}))$ is divisible by x_n, x_{n+1} .

◆□▶
◆□▶

 $I(\mathcal{C})$ possesses a quadratic Gröbner basis $\Rightarrow K[\mathcal{C}]$ is Koszul $\Rightarrow I(\mathcal{C})$ is generated by quadrics.

 $\operatorname{reg}(\mathcal{K}[\mathcal{C}]) = \operatorname{reg}(\mathcal{R}/\operatorname{in}(\mathcal{I}(\mathcal{C}))) \\ = \max\{\operatorname{reg}(\mathcal{R}/\mathfrak{q}_i) \mid \operatorname{in}(\mathcal{I}(\mathcal{C})) = \cap_i \mathfrak{q}_i\}$

ARITHMETIC SEQUENCES

Let $m_1 < \cdots < m_n$ be an **arithmetic sequence** of relatively prime positive integers, i.e., there exist $d, m_1 \in \mathbb{Z}^+$ such that $m_i = m_1 + (i-1)d$ for all $i \in \{1, \ldots, n\}$, where $gcd\{m_1, d\} = 1$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

ARITHMETIC SEQUENCES

Let $m_1 < \cdots < m_n$ be an **arithmetic sequence** of relatively prime positive integers, i.e., there exist $d, m_1 \in \mathbb{Z}^+$ such that $m_i = m_1 + (i-1)d$ for all $i \in \{1, \dots, n\}$, where $gcd\{m_1, d\} = 1$.

Theorem $\mathcal{G} = \{ \mathbf{x}_i \mathbf{x}_j - x_{i-1} x_{j+1} \mid 2 \le i \le j \le n-1 \} \cup \{ \mathbf{x}_1^{\alpha} \mathbf{x}_i - x_{n+1-i} x_n^q x_{n+1}^d \mid 1 \le i \le k \}.$ where $\mathbf{q} := \lfloor \frac{m_1 - 1}{n-1} \rfloor,$ $\alpha := \mathbf{q} + \mathbf{d} y$ $\mathbf{k} := n - m_1 + \lfloor \frac{m_1 - 1}{n-1} \rfloor (n-1),$ is a minimal Gröbner basis of $I(\mathcal{C})$ w.r.t. rlex.

• in($I(\mathcal{C})$) = $\langle \{ \mathbf{x}_i \mathbf{x}_j; 2 \le i \le j \le n-1 \} \rangle + \langle \{ \mathbf{x}_1^{\alpha} \mathbf{x}_i; 1 \le i \le k \} \rangle.$

◆□▶ ◆□▶ ◆三▶ ◆三 ● ● ●

• in($I(\mathcal{C})$) = $\langle \{ \mathbf{x}_i \mathbf{x}_j; \ 2 \le i \le j \le n-1 \} \rangle + \langle \{ \mathbf{x}_1^{\alpha} \mathbf{x}_i; \ 1 \le i \le k \} \rangle.$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目 - のへで

• *K*[*C*] *is C-M*.

• in($I(\mathcal{C})$) = $\langle \{ \mathbf{x}_i \mathbf{x}_j; \ 2 \le i \le j \le n-1 \} \rangle + \langle \{ \mathbf{x}_1^{\alpha} \mathbf{x}_i; \ 1 \le i \le k \} \rangle.$

• *K*[*C*] *is C-M*.

• The C-M type of $K[\mathcal{C}]$ is $m_1 - 1 - \lfloor \frac{m_1 - 2}{n-1} \rfloor (n-1)$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目 - のへで

• in($I(\mathcal{C})$) = $\langle \{ \mathbf{x}_i \mathbf{x}_j; \ 2 \le i \le j \le n-1 \} \rangle + \langle \{ \mathbf{x}_1^{\alpha} \mathbf{x}_i; \ 1 \le i \le k \} \rangle.$

◆□▶ ◆□▶ ◆三▶ ◆三 ● ● ●

• *K*[*C*] *is C-M*.

- The C-M type of $K[\mathcal{C}]$ is $m_1 1 \lfloor \frac{m_1 2}{n-1} \rfloor (n-1)$.
- $K[\mathcal{C}]$ is Gorenstein $\iff m_1 \equiv 2 \pmod{n-1}$

• in($I(\mathcal{C})$) = $\langle \{ \mathbf{x}_i \mathbf{x}_j; 2 \le i \le j \le n-1 \} \rangle + \langle \{ \mathbf{x}_1^{\alpha} \mathbf{x}_i; 1 \le i \le k \} \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三 ● ● ●

• *K*[*C*] *is C-M*.

- The C-M type of $K[\mathcal{C}]$ is $m_1 1 \lfloor \frac{m_1 2}{n-1} \rfloor (n-1)$.
- $K[\mathcal{C}]$ is Gorenstein $\iff m_1 \equiv 2 \pmod{n-1}$
- I(C) is a C.I. $\iff n = 3$ and m_1 is even.

•
$$\operatorname{reg}(K[\mathcal{C}]) = \left\lceil \frac{m_1 - 1}{n - 1} \right\rceil + d.$$

EACA 2016 Alg. inv. of proj. monomial curves gener. arithmetic sequences

•
$$\operatorname{reg}(K[\mathcal{C}]) = \left\lceil \frac{m_1 - 1}{n - 1} \right\rceil + d.$$

reg(K[C]) is attained at the last step of the resolution of K[C].

EACA 2016 Alg. inv. of proj. monomial curves gener. arithmetic sequences

æ.

•
$$\operatorname{reg}(K[\mathcal{C}]) = \left\lceil \frac{m_1 - 1}{n - 1} \right\rceil + d$$

reg(K[C]) is attained at the last step of the resolution of K[C].

•
$$\mathcal{H}_{\mathcal{K}[\mathcal{C}]}(t) = \frac{1 + (n-1)(t + \dots + t^{\alpha}) + (n-1-k)t^{\alpha+1}}{(1-t)^2}$$

EACA 2016 Alg. inv. of proj. monomial curves gener. arithmetic sequences

ъ

Example

We consider $m_1 < \cdots < m_5$ with $m_1 = 10$, $m_2 = 13$, $m_3 = 16$, $m_4 = 19$ and $m_5 = 22$. Then:

- the C-M type $K[\mathcal{C}]$ is $10 1 \lfloor \frac{10-2}{4} \rfloor 4 = 1$,
- K[C] is Gorenstein, and
- I(C) is not a complete intersection.

Moreover, since $\alpha = \lfloor \frac{10-1}{4} \rfloor + 3 = 5$,

•
$$\operatorname{reg}(\mathcal{K}[\mathcal{C}]) = \left\lceil \frac{10-1}{5-1} \right\rceil + 3 = 6$$
, and

•
$$\mathcal{H}_{\mathcal{K}[\mathcal{C}]}(t) = \frac{1 + \sum_{i=1}^{5} 4 t^{i} + t^{6}}{(1-t)^{2}}.$$

(日) (同) (三) (三) (三) (○)

GENERALIZED ARITHMETIC SEQUENCES

Let $m_1 < \cdots < m_n$ be a sequence of positive integers containing a generalized arithmetic sequence $m_{i_1} < \cdots < m_{i_j} = m_n$ with $l \ge 3$, i.e., there exist m_{i_1} , h and dsuch that $m_{i_j} = hm_{i_1} + (j - 1)d$ for all $j \in \{2, \dots, l\}$

GENERALIZED ARITHMETIC SEQUENCES

Let $m_1 < \cdots < m_n$ be a sequence of positive integers containing a generalized arithmetic sequence $m_{i_1} < \cdots < m_{i_l} = m_n$ with $l \ge 3$, i.e., there exist m_{i_1} , h and dsuch that $m_{i_l} = hm_{i_1} + (j - 1)d$ for all $j \in \{2, \dots, l\}$

Theorem

If h > 1 and $hm_{i_1} \notin \{m_1, \dots, m_n\}$, then $K[\mathcal{C}]$ is non Cohen Macaulay.

Let $m_1 < \cdots < m_n$ a generalized arithmetic sequence.

Corollary

K[C] is Cohen-Macaulay $\iff h = 1$ (arithmetic sequence)

Theorem

 $K[\mathcal{C}]$ is a Koszul algebra $\iff h = 1, d = 1$ and $n > m_1$.

◆□▶ ◆□▶ ◆三▶ ◆三 ● ● ●

GENERALIZED ARITHMETIC SEQUENCES such that *h* divides *d*

Consider C' the projective monomial curve associated to $m_2 < \cdots < m_n$.

Why do we consider that *h* divides *d*?

EACA 2016 Alg. inv. of proj. monomial curves gener. arithmetic sequences

(ロ) (同) (E) (E) (E) (O)

GENERALIZED ARITHMETIC SEQUENCES such that *h* divides *d*

Consider C' the projective monomial curve associated to $m_2 < \cdots < m_n$.

Why do we consider that h divides d?

Proposition

$$\operatorname{in}(I(\mathcal{C}')) = \operatorname{in}(I(\mathcal{C})) \cap K[x_2, \ldots, x_{n+1}].$$

EACA 2016 Alg. inv. of proj. monomial curves gener. arithmetic sequences

(日) (同) (三) (三) (三) (○)

Theorem (h > 1)

$$\begin{array}{rcl} \mathcal{G} &:= & \mathcal{G}_1 & \cup & \{x_1^h x_i - x_2 x_{i-1} x_{n+1}^{h-1} \mid 3 \le i \le n\} \\ & & \cup & \{x_1^{jh} x_2^{\beta_j} - x_{\sigma_j} x_n^{\lambda_j} x_{n+1}^{j(h-1)+(d/h)} \mid 1 \le j \le \delta/h\}, \end{array}$$

where

$$\begin{split} \mathcal{G}_{1} \subset \mathcal{K}[x_{2}, \dots, x_{n}, x_{n+1}] \text{ is a minimal Gröbner basis of } l(\mathcal{C}'), \\ \delta &:= \left(\lfloor \frac{m_{1}-1}{n-1} \rfloor + 1 \right) h + d, \\ \beta_{\delta/h-j} &:= j + \lfloor (j+r-2)/(n-2) \rfloor, \ \forall j \in \{1, \dots, \delta/h-1\}, \\ & \text{con } r = m_{1} - \lfloor \frac{m_{1}-1}{n-1} \rfloor (n-1), \\ \sigma_{\delta/h-j} &\in \{3, \dots, n\} \mid \sigma_{\delta/h-j} \equiv r+j-1 \pmod{n-2}, \text{ y} \\ \lambda_{\delta/h-j} &:= p + \lfloor (j+r-2)/(n-2) \rfloor, \ \forall j \in \{1, \dots, \delta/h-1\}, \\ & \text{is a Gröbner basis of } l(\mathcal{C}) \text{ w.r.t rlex.} \end{split}$$

$$\begin{array}{ll} \operatorname{in}(\mathbf{I}(\mathcal{C})) &=& \langle \{\operatorname{in}(g) \mid g \in \mathcal{G}_1\} \rangle \\ &+& \langle \{\boldsymbol{x_1^h x_i}; \ 3 \leq i \leq n\} \rangle \\ &+& \langle \{\boldsymbol{x_1^{jh} x_2^{\beta_j}}; \ 1 \leq j \leq \delta/h\} \rangle \end{array}$$

EACA 2016 Alg. inv. of proj. monomial curves gener. arithmetic sequences

(日)

₹.

•
$$\operatorname{reg}(\mathcal{K}[\mathcal{C}]) = \begin{cases} \left(\lfloor \frac{m_1 - 1}{n - 1} \rfloor + 1 \right) h + d - 1, & \text{if } n - 1 \not | m_1, \\ \left(\lfloor \frac{m_1 - 1}{n - 1} \rfloor + 1 \right) h + d, & \text{if } n - 1 | m_1. \end{cases}$$

.

◆□▶ ◆御▶ ◆臣▶ ★臣▶ 臣 の�?

• reg(
$$\mathcal{K}[\mathcal{C}]$$
) =
$$\begin{cases} \left(\lfloor \frac{m_1 - 1}{n - 1} \rfloor + 1 \right) h + d - 1, & \text{if } n - 1 \not | m_1, \\ \left(\lfloor \frac{m_1 - 1}{n - 1} \rfloor + 1 \right) h + d, & \text{if } n - 1 | m_1. \end{cases}$$

.

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 _ ����

reg(K[C]) is attained at the last step of the resolution of K[C].

• reg(
$$\mathcal{K}[\mathcal{C}]$$
) =
$$\begin{cases} \left(\lfloor \frac{m_1 - 1}{n - 1} \rfloor + 1 \right) h + d - 1, & \text{if } n - 1 \not | m_1, \\ \left(\lfloor \frac{m_1 - 1}{n - 1} \rfloor + 1 \right) h + d, & \text{if } n - 1 | m_1. \end{cases}$$

.

- reg(K[C]) is attained at the last step of the resolution of K[C].
- $\mathcal{H}_{\mathcal{K}[\mathcal{C}]}(t) =$ (1+...+t^{h-1}) $\mathcal{H}_{\mathcal{K}[\mathcal{C}']}(t) + \frac{\sum_{j=h}^{\delta-1} t^j - \left(\sum_{j=0}^{h-1} t^j\right) \left(\sum_{i=1}^{(\delta/h)-1} t^{ih+\beta_i}\right)}{(1-t)^2}.$

Consider the sequence 7 < 30 < 39 < 48 < 57 < 66. Notice that the sequence 30 < 39 < 48 < 57 < 66 defines the same projective monomial curve that the sequence 10 < 13 < 16 < 19 < 22. We observe that h = 3 divides d = 9. Then

•
$$\operatorname{reg}(\mathcal{K}[\mathcal{C}]) = \left(\left\lfloor \frac{7-1}{6-1} \right\rfloor + 1 \right) 3 + 9 - 1 = 14$$
, since 5 //7.

• We compute $r = 7 - \lfloor \frac{7-1}{6-1} \rfloor 5 = 2$, $\beta_1 = 4 + \lfloor (4+2-2)/4 \rfloor = 5$, $\beta_2 = 3$, $\beta_3 = 2$ y $\beta_4 = 1$, and in the previous example we computed $\mathcal{H}_{K[\mathcal{C}']}(t)$, so that

$$\mathcal{H}_{\mathcal{K}[\mathcal{C}]}(t) = (1+t+t^2) \left(\frac{1+\sum_{i=1}^5 4 t^i + t^6}{(1-t)^2} \right) + \frac{\sum_{j=3}^{14} t^j - (1+t+t^2)(t^8 + t^9 + t^{11} + t^{13})}{(1-t)^2}.$$