

The universal enveloping algebra of an *n*-Lie algebra

Xabier García Martínez

Universidade de Santiago de Compostela

FACA 2016

Joint work with Rustam Turdibaev and Tim Van der Linden

Logroño; June 22-24, 2016

European FEDER support included

Lie algebras

Definition

Let \mathbb{K} be a field. A \mathbb{K} -Lie algebra is a \mathbb{K} -vector space L with a bilinear operation $[-,-]:L\times L\to L$ satisfying

$$[x, x] = 0,$$

$$[[y_1, y_2], x] = [[y_1, x], y_2] + [y_1, [y_2, x]].$$

Lie algebras

Definition

Let \mathbb{K} be a field. A \mathbb{K} -Lie algebra is a \mathbb{K} -vector space L with a bilinear operation $[-,-]\colon L\times L\to L$ satisfying

$$[x,x]=0,$$

$$[[y_1, y_2], x] = [[y_1, x], y_2] + [y_1, [y_2, x]].$$

Example

Associative algebras.

Representations

Definition

A Lie algebra representation over L is a \mathbb{K} -vector space M with a bilinear map $L \times M \to M, (x, m) \mapsto xm$ such that

$$[x,y]m = x(ym) - y(xm)$$

Representations

Definition

A Lie algebra representation over L is a \mathbb{K} -vector space M with a bilinear map $L \times M \to M, (x, m) \mapsto xm$ such that

$$[x,y]m = x(ym) - y(xm)$$

Definition

A Lie algebra representation over L is a \mathbb{K} -vector space M with a Lie algebra homomorphism

$$L \to \mathsf{Der}_{\mathbb{K}}(M)$$

Representations

Definition

A Lie algebra representation over L is a \mathbb{K} -vector space M with a bilinear map $L \times M \to M, (x, m) \mapsto xm$ such that

$$[x,y]m = x(ym) - y(xm)$$

Definition

A Lie algebra representation over L is a \mathbb{K} -vector space M with a Lie algebra homomorphism

$$L \to \mathsf{Der}_{\mathbb{K}}(M)$$

Definition

A Lie algebra representation is a \mathbb{K} -vector space M with a Lie algebra structure on

- $L \oplus M$ such that
 - M is an ideal,
 - M is abelian,
 - L is a subalgebra.

Lie algebras case

Definition

Let L be a \mathbb{K} -Lie algebra. The universal enveloping algebra $\mathrm{U}(L)$ is the tensor algebra $\mathrm{T}(L)$ quotient by the ideal generated by the elements

$$x \otimes y - y \otimes x - [x, y].$$

Lie algebras case

Definition

Let L be a \mathbb{K} -Lie algebra. The universal enveloping algebra $\mathrm{U}(L)$ is the tensor algebra $\mathrm{T}(L)$ quotient by the ideal generated by the elements

$$x \otimes y - y \otimes x - [x, y].$$

Properties

- (U1) The category of representations over L is isomorphic to the category of modules over U(L).
- (U2) The universal enveloping functor U: $\mathrm{Lie}_{\mathbb{K}} \to \mathrm{Alg}_{\mathbb{K}}$ is left adjoint of the liezation functor $(-)_{\mathrm{Lie}} \colon \mathrm{Alg}_{\mathbb{K}} \to \mathrm{Lie}_{\mathbb{K}}$.
- (U3) The inclusion $i: L \to U(L)$ is injective.

n-Lie algebras

Definition

An *n*-Lie algebra or Filippov algebra L is a \mathbb{K} -vector space with a multilinear map $[-, \ldots, -]: L^{\times n} \to L$ satisfying

- (i) $[x_1, \ldots, x_i, \ldots, x_j, \ldots, x_n] = 0$ if $x_i = x_j$ for some i, j,
- (ii) $[[x_1,\ldots,x_n],y_1,\ldots,y_{n-1}] = \sum_{i=1}^n [x_1,\ldots,x_{i-1},[x_i,y_1,\ldots,y_n],x_{i+1},\ldots,x_n].$

n-Lie algebras

Definition

An *n*-Lie algebra or Filippov algebra L is a \mathbb{K} -vector space with a multilinear map $[-, \ldots, -]: L^{\times n} \to L$ satisfying

- (i) $[x_1, \ldots, x_i, \ldots, x_j, \ldots, x_n] = 0$ if $x_i = x_j$ for some i, j, j
- (ii) $[[x_1,\ldots,x_n],y_1,\ldots,y_{n-1}] = \sum_{i=1}^n [x_1,\ldots,x_{i-1},[x_i,y_1,\ldots,y_n],x_{i+1},\ldots,x_n].$

Definition

An *n*-Lie algebra representation is a \mathbb{K} -vector space M with an *n*-Lie algebra structure on $L \oplus M$ such that

- M is an ideal,
- M is abelian,
- L is a subalgebra.

Attempts

First attempt

Let be the functor $F: n\text{-Lie}_{\mathbb{K}} \to \text{Lie}_{\mathbb{K}}, \ L \mapsto \Lambda^{n-1}L$, with bracket

$$[x_1 \wedge \cdots \wedge x_{n-1}, y_1 \wedge \cdots \wedge y_{n-1}] = \sum_{i=1}^{n-1} (-1)^{i+1} [x_1, \dots, \widehat{x}_i, \dots, x_{n-1}, [x_i, y_1, \dots, y_{n-1}]].$$

Consider the universal enveloping algebra of F(L) in the Lie algebras sense.

Attempts

First attempt

Let be the functor $F: n\text{-Lie}_{\mathbb{K}} \to \text{Lie}_{\mathbb{K}}, L \mapsto \Lambda^{n-1}L$, with bracket

$$[x_1 \wedge \cdots \wedge x_{n-1}, y_1 \wedge \cdots \wedge y_{n-1}] = \sum_{i=1}^{n-1} (-1)^{i+1} [x_1, \dots, \widehat{x}_i, \dots, x_{n-1}, [x_i, y_1, \dots, y_{n-1}]].$$

Consider the universal enveloping algebra of F(L) in the Lie algebras sense.

Second attempt

Let be the functor $G: n\text{-Lie}_{\mathbb{K}} \to \text{Lie}_{\mathbb{K}}, L \mapsto \Lambda^{n-1}L$, with bracket

$$[x_1 \wedge \cdots \wedge x_{n-1}, y_1 \wedge \cdots \wedge y_{n-1}] = \frac{1}{2} \left(\sum_{i=1}^{n-1} (-1)^{i+1} [x_1, \dots, \widehat{x_i}, \dots, x_{n-1}, [x_i, y_1, \dots, y_{n-1}]] \right)$$

$$-\sum_{i=1}^{n-1}(-1)^{i+1}[y_1,\ldots,\widehat{y}_i,\ldots,y_{n-1},[y_i,x_1,\ldots,x_{n-1}]]).$$

Necessary and sufficient conditions

Proposition

Let L be an n-Lie algebra with abelian InnDer(L). Then G(L) is a Lie algebra. In particular, if L is simple, G(L) is a Lie algebra.

Proposition

Let \mathbb{K} be a field and let L be a 3-Lie algebra over \mathbb{K} such that $\operatorname{InnDer}(L)$ is not abelian. If $\dim Z(L) \geq 2$ then $\operatorname{G}(L)$ is not a Lie algebra.

Definition

Let L an n-Lie algebra, the universal enveloping algebra $\mathrm{U}(L)$ is the tensor algebra $\mathrm{T}(\Lambda^{n-1}L)$ quotient by

$$(x_1 \wedge \cdots \wedge x_{n-1})(y_1 \wedge \cdots \wedge y_{n-1}) - (y_1 \wedge \cdots \wedge y_{n-1})(x_1 \wedge \cdots \wedge x_{n-1})$$

$$= \sum_{i=1}^{n-1} y_1 \wedge \cdots \wedge [x_1, \dots, x_{n-1}, y_i] \wedge \cdots \wedge y_{n-1},$$

and

$$[x_1,\ldots,x_n] \wedge y_2 \wedge \cdots \wedge y_{n-1}$$

$$= \sum_{i=1}^n (-1)^{n-i} (x_1 \wedge \cdots \wedge \widehat{x_i} \wedge \cdots \wedge x_n) (x_i \wedge y_2 \wedge \cdots \wedge y_{n-1}).$$

Definition

Let L an n-Lie algebra, the universal enveloping algebra $\mathrm{U}(L)$ is the tensor algebra $\mathrm{T}(\Lambda^{n-1}L)$ quotient by

$$(x_1 \wedge \cdots \wedge x_{n-1})(y_1 \wedge \cdots \wedge y_{n-1}) - (y_1 \wedge \cdots \wedge y_{n-1})(x_1 \wedge \cdots \wedge x_{n-1})$$

$$= \sum_{i=1}^{n-1} y_1 \wedge \cdots \wedge [x_1, \dots, x_{n-1}, y_i] \wedge \cdots \wedge y_{n-1},$$

and

$$[x_1,\ldots,x_n] \wedge y_2 \wedge \cdots \wedge y_{n-1}$$

$$= \sum_{i=1}^n (-1)^{n-i} (x_1 \wedge \cdots \wedge \widehat{x_i} \wedge \cdots \wedge x_n) (x_i \wedge y_2 \wedge \cdots \wedge y_{n-1}).$$

Justification

 $L ext{-}\mathsf{Mod}_\mathbb{K}\cong\mathsf{Mod}_{\mathsf{End}(L_1)}$, where L_1 is the free object on one generator in the category of $n ext{-}\mathsf{Lie}$ representations.

Non-existence of adjoint

Theorem

The functor $U \colon n\text{-}Lie_\mathbb{K} \to Alg_\mathbb{K}$ has a right adjoint if and only if n=2.

Non-existence of adjoint

$\mathsf{Theorem}$

The functor $U \colon n\text{-Lie}_{\mathbb{K}} \to \mathsf{Alg}_{\mathbb{K}}$ has a right adjoint if and only if n=2.

Theorem

For n>2 there is no functor $F: n\text{-Lie}_{\mathbb{K}} \to \mathsf{Alg}_{\mathbb{K}}$ with a right adjoint $G: \mathsf{Alg}_{\mathbb{K}} \to n\text{-Lie}_{\mathbb{K}}$ such that there is an equivalence of categories between $L\text{-Mod}_{\mathbb{K}}$ and $\mathsf{Mod}_{F(L)}$ for all L.

Non-existence of adjoint

$\mathsf{Theorem}$

The functor $U: n\text{-Lie}_{\mathbb{K}} \to \mathsf{Alg}_{\mathbb{K}}$ has a right adjoint if and only if n=2.

Theorem

For n>2 there is no functor $F: n\text{-Lie}_{\mathbb{K}} \to \mathsf{Alg}_{\mathbb{K}}$ with a right adjoint $G: \mathsf{Alg}_{\mathbb{K}} \to n\text{-Lie}_{\mathbb{K}}$ such that there is an equivalence of categories between $L\text{-Mod}_{\mathbb{K}}$ and $\mathsf{Mod}_{F(L)}$ for all L.

Proposition

If L is a simple n-Lie algebra, then U(L) coincides with the algebras generated in the first and second attempts.