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Introduction

What is algebraic geometry?

Consider a polynomial f ∈ C[x1, . . . , xn].

Study the properties of {x ∈ Cn | f (x) = 0} (=geometry)
using algebraic methods.
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The jumping numbers of the node are 1, 2, 3. . .

The jumping numbers of the cusp are 5
6 , 1, 11

6 , 2. . .

The cusp is worse!
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Setting

We consider a smooth complex algebraic variety X of arbitrary
dimension, and a hypersurface (= effective divisor) D ⊂ X .

We study the singularities of D.

Think of X = Cn, and D = {x ∈ Cn | f (x) = 0} for some
f ∈ C[x1, . . . , xn].
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Definition

A log resolution of D is a birational morphism π : Y → X such
that

Y is smooth,

π is an isomorphism over X\Sing(D),

the pullback π∗D is a snc divisor, i.e., the irreducible
components of π−1(D) are smooth and intersect transversally.

A log resolution ‘makes D smooth’.
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Definition

If π : Y → X is a morhpism of smooth algebraic varieties, then the
relative canonical divisor associated to π is the divisor

Kπ = KY − π∗KX .

The relative canonical divisors measures the difference between Y
and X . Its class has a unique representative supported on Exc(π).

Example

If π : Y → X is a blow-up of a subvariety V of codimension r ≤ 2
with exceptional divisor E (=‘replacing V by a hyperplane E ’)
then Kπ = (r − 1)E .
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Multiplier ideals

Definition

If π : Y → X is a log resolution of a hypersurface D ⊂ X , and
λ ∈ Q≥0, then the multiplier ideal of (X ,D) with coefficient λ is

J (λD) = π∗OY (Kπ − bλπ∗Dc),

where we denote bλπ∗Dc =
∑
bλaicEi if π∗D =

∑
aiEi .
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J (λD) = π∗OY (Kπ − bλπ∗Dc)

The multiplier ideals do not depend on the log resolution,

J (λD) ⊆ OX for all λ,

J (λD) = OX if λ� 1,

if λ < λ′, then J (λD) ⊇ J (λ′D),

if 0 < ε� 1, then J ((λ+ ε)D) = J (λD).
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Jumping numbers

So there is a chain of rational numbers

0 = λ0 < λ1 < · · · < λi < λi+1 < . . .

such that

J (λiD) ) J (λi+1D) for all i ,

if λ ∈ [λi , λi+1) for some i , then J (λD) = J (λi ).

The numbers λi , i > 0, are called the jumping numbers of the
pair (X ,D).

Hans Baumers and Ferran Dachs Cadefau Computing jumping numbers in higher dimensions 11/29



Definitions and first properties
The algorithm

Examples
Implementation

Jumping numbers

So there is a chain of rational numbers

0 = λ0 < λ1 < · · · < λi < λi+1 < . . .

such that

J (λiD) ) J (λi+1D) for all i ,

if λ ∈ [λi , λi+1) for some i , then J (λD) = J (λi ).

The numbers λi , i > 0, are called the jumping numbers of the
pair (X ,D).

Hans Baumers and Ferran Dachs Cadefau Computing jumping numbers in higher dimensions 11/29



Definitions and first properties
The algorithm

Examples
Implementation

Jumping numbers

So there is a chain of rational numbers

0 = λ0 < λ1 < · · · < λi < λi+1 < . . .

such that

J (λiD) ) J (λi+1D) for all i ,

if λ ∈ [λi , λi+1) for some i , then J (λD) = J (λi ).

The numbers λi , i > 0, are called the jumping numbers of the
pair (X ,D).

Hans Baumers and Ferran Dachs Cadefau Computing jumping numbers in higher dimensions 11/29



Definitions and first properties
The algorithm

Examples
Implementation

Jumping numbers

So there is a chain of rational numbers

0 = λ0 < λ1 < · · · < λi < λi+1 < . . .

such that

J (λiD) ) J (λi+1D) for all i ,

if λ ∈ [λi , λi+1) for some i , then J (λD) = J (λi ).

The numbers λi , i > 0, are called the jumping numbers of the
pair (X ,D).

Hans Baumers and Ferran Dachs Cadefau Computing jumping numbers in higher dimensions 11/29



Definitions and first properties
The algorithm

Examples
Implementation

Theorem (Skoda’s theorem)

If λ > 1, then λ is a jumping number if and only if λ− 1 is a
jumping number.

Hence it suffices to compute the jumping numbers in the interval
(0, 1].
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Recall: J (λD) = π∗OX (Kπ − bλπ∗Dc).
If π : Y → X is a log resolution, and we denote

Kπ =
∑

kiEi

and
π∗D =

∑
aiEi ,

then the jumping numbers are contained in the set{
ki + m

ai

∣∣∣∣m ∈ Z>0

}
.

The numbers in this set are the candidate jumping numbers.
The smallest candidate is always a jumping number, it is the log
canonical threshold, denoted lct(D).
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Recall: J (λD) = π∗OY (Kπ − bλπ∗Dc).

Key: Study when π∗OY (−D1) = π∗OY (−D2) for two divisors
D1 and D2, i.e., when they are equivalent.

We want to find the biggest divisor Dλ equivalent to
bλπ∗Dc − Kπ.

Then the jumping number following to λ is the smallest
number λ′ such that bλ′π∗Dc − Kπ has a coefficient bigger
than the one in Dλ.
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π-antieffective divisors

Definition

A divisor D on Y is called π-antieffective if −D|E is an effective
divisor for every π-exceptional divisor E .

Algorithm (Unloading procedure; B., Dachs Cadefau, after Laufer, Enriques, Reguera, AAD. . . )

Input: A divisor D on Y .
Output: The smallest π-antieffective divisor bigger than D.
While −D|E is not effective for some E , replace D by D + E .

The algorithm always stops. The result is the π-antieffective
closure of D.
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π-antieffective divisors

Theorem (B., Dachs Cadefau)

If D̃ is the π-antieffective closure of D, then

π∗OY (−D̃) = π∗OY (−D).

So if λ′ is the smallest jumping number bigger than λ,
bλ′π∗Dc − Kπ must exceed the π-antieffective closure of
bλπ∗Dc − Kπ in at least one coefficient.

⇒ Lower bound for the next jumping number!
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The two-dimensional case

Theorem (Lipman, 1969)

Suppose X is a surface. The mapping D 7→ π∗OY (−D)
determines a one-to-one correspondence between

1 π-antieffective divisors on Y , and

2 complete ideal sheaves on X .

Theorem (Alberich-Carramiñana, Àlvarez-Montaner, Dachs Cadefau )

If Dλ =
∑

aλi Ei is the π-antieffective closure of bλπ∗Dc − Kπ,
then the smallest jumping number bigger then λ is

λ′ = min

{
ki + aλi + 1

ai

}
,

where Kπ =
∑

kiEi and π∗D =
∑

aiEi .
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The two-dimensional case

Algorithm (Alberich-Carramiñana, Àlvarez-Montaner, Dachs Cadefau )

Input: A curve C on X .
Output: The jumping numbers of (X ,C ).

1 Compute the minimal log resolution π : Y → X of C .

2 Compute lct(C ).

3 Having computed a jumping number λj , compute the

π-antieffective closure Dλ =
∑

a
λj

i Ei of bλjπ
∗Cc − Kπ using

the unloading procedure. Then the next jumping number is

λj+1 = min

{
ki + a

λj

i + 1

ai

}
.

4 Repeat until we arrive at 1.

Hans Baumers and Ferran Dachs Cadefau Computing jumping numbers in higher dimensions 19/29



Definitions and first properties
The algorithm

Examples
Implementation

The two-dimensional case
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The higher dimensional case

Theorem (B., Dachs Cadefau)

If we run the algorithm of [AAD] until we arrive at 1, then we get
a set of so-called supercandidates, containing all the jumping
numbers.

Remark

No examples are known where not all supercandidates are jumping
numbers!
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Checking supercandidates

Definition

The minimal jumping divisor of a supercandidate λ′ is the reduced
divisor Gλ′ supported on those Ei where the minimum

λ′ = min

{
ki + aλi + 1

ai

}
is achieved.

Proposition (B., Dachs Cadefau)

If the minimum jumping divisor of a supercandidate λ′ has an
irreducible connected component, then λ′ is a jumping number.

Good news: this happens very often!
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Checking supercandidates

Otherwise, there are some more techniques to check whether a
supercandidate is a jumping number.
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Example 1

Take X = C3 and D given by

x(yz − x4)(x4 + y2 − 2yz) + yz4 − y5 = 0.

We find a resolution π : Y → X by six point blow-ups, with

Kπ = 2E1 + 4E2 + 8E3 + 14E4 + 6E5 + 6E6

and

π∗D = Daff + 5E1 + 9E2 + 16E3 + 27E4 + 11E5 + 11E6.
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Example 1

λ Gλ
5
9 E2 + E4

2
3 E2 + E4

20
27 E4

7
9 E2 + E4

23
27 E4

8
9 E2 + E4

25
27 E4

26
27 E4

1 E1 + E2 + E3 + E4 + E5 + E6 + Daff .
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Example 2

Take X = C3 and D given by

(x3 + y3 + z3)2 + g(x , y , z) = 0,

where g(x , y , z) is a generic homogeneous polynomial of
degree 7.

A resolution can be obtained after 22 point blow-ups, followed
by two blow-ups centered at an elliptic curve C .
E2 and E3 are ruled surfaces over C , so their Picard groups
are very complicated!

π∗D = Daff + 6E1 + 8
21∑

i=1

Ep
i + 7E2 + 14E3,

Kπ = 2E1 + 4
21∑

i=1

Ep
i + 3E2 + 6E3.
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Example 2

It turns out that for the divisors we encounter in the unloading
procedure, we can check effectivity.

We find that the set of supercandidates in (0, 1] is{
7

14
,

9

14
,

11

14
,

13

14
, 1

}
and all of them are jumping numbers contributed by E3.
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For the computation of a log resolution, use “resolve.lib” or
“reszeta.lib” in Singular.

If we are able to describe effective divisors on an exceptional
divisor, the computation of supercandidates and their minimal
jumping divisors is purely combinatorial.

Obstructions:

Describing when −D|E is effective is a very hard problem in
general.

Checking whether a supercandidate is a jumping number can
be hard if our methods do not apply.

However, in many examples, our methods are sufficient.
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Thank you!
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