Computing jumping numbers in higher dimensions

Hans Baumers and Ferran Dachs Cadefau

KU Leuven

22 June 2016 EACA, Logroño

4 B 6 4 B

Introduction

What is algebraic geometry?

∃ → < ∃</p>

ъ

Introduction

What is algebraic geometry?

• Consider a polynomial $f \in \mathbb{C}[x_1, \ldots, x_n]$.

Image: Image:

ъ

Introduction

What is algebraic geometry?

- Consider a polynomial $f \in \mathbb{C}[x_1, \ldots, x_n]$.
- Study the properties of {x ∈ Cⁿ | f(x) = 0} (=geometry) using algebraic methods.

Introduction

<□> ▲ ■ > < ■ > ▲ ■ = ● 9 Q @

Introduction

Which is the worst?

三日 のへの

→ □ → → □ →

Introduction

• The jumping numbers of the node are 1, 2, 3...

• • = • • = •

3 5

Introduction

- $\bullet\,$ The jumping numbers of the node are 1, 2, 3. . .
- The jumping numbers of the cusp are $\frac{5}{6}$, 1, $\frac{11}{6}$, 2...

• • = • • = •

Introduction

- $\bullet\,$ The jumping numbers of the node are 1, 2, 3. . .
- The jumping numbers of the cusp are $\frac{5}{6}$, 1, $\frac{11}{6}$, 2...
- The cusp is worse!

• • = • • = • =

Setting

 We consider a smooth complex algebraic variety X of arbitrary dimension, and a hypersurface (= effective divisor) D ⊂ X.

• • = • • = •

Setting

- We consider a smooth complex algebraic variety X of arbitrary dimension, and a hypersurface (= effective divisor) D ⊂ X.
- We study the singularities of *D*.

Setting

- We consider a smooth complex algebraic variety X of arbitrary dimension, and a hypersurface (= effective divisor) D ⊂ X.
- We study the singularities of D.
- Think of $X = \mathbb{C}^n$, and $D = \{x \in \mathbb{C}^n \mid f(x) = 0\}$ for some $f \in \mathbb{C}[x_1, \dots, x_n]$.

ゆ く き く き く き と う く ゆ

Definitions and first properties

A B M A B M

3 5

Definition

A log resolution of D is a birational morphism $\pi: Y \to X$ such that

- Y is smooth,
- π is an isomorphism over $X \setminus Sing(D)$,
- the pullback π^*D is a snc divisor, i.e., the irreducible components of $\pi^{-1}(D)$ are smooth and intersect transversally.

伺 ト く ヨ ト く ヨ ト

Definition

A log resolution of D is a birational morphism $\pi: Y \to X$ such that

- Y is smooth,
- π is an isomorphism over $X \setminus Sing(D)$,
- the pullback π*D is a snc divisor, i.e., the irreducible components of π⁻¹(D) are smooth and intersect transversally.

A log resolution 'makes D smooth'.

• • = • • = •

Definition

If $\pi: Y \to X$ is a mortpism of smooth algebraic varieties, then the **relative canonical divisor** associated to π is the divisor

$$K_{\pi}=K_{Y}-\pi^{*}K_{X}.$$

* E > * E >

ъ

Definition

If $\pi: Y \to X$ is a mortpism of smooth algebraic varieties, then the **relative canonical divisor** associated to π is the divisor

$$K_{\pi}=K_{Y}-\pi^{*}K_{X}.$$

The relative canonical divisors measures the difference between Y and X. Its class has a unique representative supported on $Exc(\pi)$.

Definition

If $\pi: Y \to X$ is a mortpism of smooth algebraic varieties, then the **relative canonical divisor** associated to π is the divisor

$$K_{\pi}=K_{Y}-\pi^{*}K_{X}.$$

The relative canonical divisors measures the difference between Y and X. Its class has a unique representative supported on $Exc(\pi)$.

Example

If $\pi: Y \to X$ is a blow-up of a subvariety V of codimension $r \leq 2$ with exceptional divisor E (='replacing V by a hyperplane E') then $K_{\pi} = (r - 1)E$.

▲母 ▲ ● ▲ ● ▲ ● ■ ■ ● ● ●

Multiplier ideals

Definition

If $\pi : Y \to X$ is a log resolution of a hypersurface $D \subset X$, and $\lambda \in \mathbb{Q}_{\geq 0}$, then the **multiplier ideal** of (X, D) with coefficient λ is

$$\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_Y(K_{\pi} - \lfloor \lambda \pi^* D \rfloor),$$

where we denote $\lfloor \lambda \pi^* D \rfloor = \sum \lfloor \lambda a_i \rfloor E_i$ if $\pi^* D = \sum a_i E_i$.

(日本) (日本) (日本) (日本)

First properties

$$\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_Y(K_{\pi} - \lfloor \lambda \pi^* D \rfloor)$$

< 回 > < 回 > < 回 >

三日 のへの

First properties

$$\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_Y(K_{\pi} - \lfloor \lambda \pi^* D \rfloor)$$

• The multiplier ideals do not depend on the log resolution,

• = • • = •

-

First properties

$$\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_Y(K_{\pi} - \lfloor \lambda \pi^* D \rfloor)$$

- The multiplier ideals do not depend on the log resolution,
- $\mathcal{J}(\lambda D) \subseteq \mathcal{O}_X$ for all λ ,

同 ト イヨト イヨト ヨヨ のくべ

First properties

$$\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_Y(K_{\pi} - \lfloor \lambda \pi^* D \rfloor)$$

- The multiplier ideals do not depend on the log resolution,
- $\mathcal{J}(\lambda D) \subseteq \mathcal{O}_X$ for all λ ,
- $\mathcal{J}(\lambda D) = \mathcal{O}_X$ if $\lambda \ll 1$,

伺 ト イヨト イヨト ヨヨー わえつ

First properties

$$\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_Y(K_{\pi} - \lfloor \lambda \pi^* D \rfloor)$$

- The multiplier ideals do not depend on the log resolution,
- $\mathcal{J}(\lambda D) \subseteq \mathcal{O}_X$ for all λ ,
- $\mathcal{J}(\lambda D) = \mathcal{O}_X$ if $\lambda \ll 1$,
- if $\lambda < \lambda'$, then $\mathcal{J}(\lambda D) \supseteq \mathcal{J}(\lambda' D)$,

First properties

$$\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_Y(K_{\pi} - \lfloor \lambda \pi^* D \rfloor)$$

- The multiplier ideals do not depend on the log resolution,
- $\mathcal{J}(\lambda D) \subseteq \mathcal{O}_X$ for all λ ,
- $\mathcal{J}(\lambda D) = \mathcal{O}_X$ if $\lambda \ll 1$,
- if $\lambda < \lambda'$, then $\mathcal{J}(\lambda D) \supseteq \mathcal{J}(\lambda' D)$,
- if $0 < \varepsilon \ll 1$, then $\mathcal{J}((\lambda + \varepsilon)D) = \mathcal{J}(\lambda D)$.

► < E ► < E ► E E < <</p>

Jumping numbers

So there is a chain of rational numbers

$$0 = \lambda_0 < \lambda_1 < \cdots < \lambda_i < \lambda_{i+1} < \dots$$

such that

• • = • • = •

Jumping numbers

So there is a chain of rational numbers

$$0 = \lambda_0 < \lambda_1 < \cdots < \lambda_i < \lambda_{i+1} < \dots$$

such that

•
$$\mathcal{J}(\lambda_i D) \supseteq \mathcal{J}(\lambda_{i+1} D)$$
 for all *i*,

• • = • • = •

Jumping numbers

So there is a chain of rational numbers

$$0 = \lambda_0 < \lambda_1 < \cdots < \lambda_i < \lambda_{i+1} < \dots$$

such that

•
$$\mathcal{J}(\lambda_i D) \supseteq \mathcal{J}(\lambda_{i+1}D)$$
 for all i ,

• if $\lambda \in [\lambda_i, \lambda_{i+1})$ for some *i*, then $\mathcal{J}(\lambda D) = \mathcal{J}(\lambda_i)$.

Jumping numbers

So there is a chain of rational numbers

$$0 = \lambda_0 < \lambda_1 < \cdots < \lambda_i < \lambda_{i+1} < \dots$$

such that

- $\mathcal{J}(\lambda_i D) \supseteq \mathcal{J}(\lambda_{i+1}D)$ for all *i*,
- if $\lambda \in [\lambda_i, \lambda_{i+1})$ for some *i*, then $\mathcal{J}(\lambda D) = \mathcal{J}(\lambda_i)$.

The numbers λ_i , i > 0, are called the **jumping numbers** of the pair (X, D).

Theorem (Skoda's theorem)

If $\lambda > 1$, then λ is a jumping number if and only if $\lambda - 1$ is a jumping number.

• • = • • = •

Theorem (Skoda's theorem)

If $\lambda > 1$, then λ is a jumping number if and only if $\lambda - 1$ is a jumping number.

Hence it suffices to compute the jumping numbers in the interval (0,1].

A B + A B +

Recall: $\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_X(K_\pi - \lfloor \lambda \pi^* D \rfloor)$. If $\pi : Y \to X$ is a log resolution, and we denote

$$K_{\pi} = \sum k_i E_i$$

and

$$\pi^*D=\sum a_iE_i,$$

同 ト イヨト イヨト ヨヨ のくべ

Recall: $\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_X(K_\pi - \lfloor \lambda \pi^* D \rfloor)$. If $\pi : Y \to X$ is a log resolution, and we denote

$$K_{\pi} = \sum k_i E_i$$

and

$$\pi^*D=\sum a_iE_i,$$

then the jumping numbers are contained in the set

$$\left\{\left.\frac{k_i+m}{a_i}\right|m\in\mathbb{Z}_{>0}\right\}.$$

레이 에 크 이 에 크 이 크레

Recall: $\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_X(K_\pi - \lfloor \lambda \pi^* D \rfloor)$. If $\pi : Y \to X$ is a log resolution, and we denote

$$K_{\pi} = \sum k_i E_i$$

and

$$\pi^*D=\sum a_iE_i,$$

then the jumping numbers are contained in the set

$$\left\{ \left. \frac{k_i + m}{a_i} \right| m \in \mathbb{Z}_{>0} \right\}.$$

The numbers in this set are the **candidate jumping numbers**. The smallest candidate is always a jumping number, it is the **log canonical threshold**, denoted lct(D).

周 ト イ ヨ ト イ ヨ ト 「ヨ」

The algorithm

<回><モン<

三日 のへの

• Recall: $\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_Y(K_{\pi} - \lfloor \lambda \pi^* D \rfloor).$

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ 三日 の Q @
- Recall: $\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_Y(K_{\pi} \lfloor \lambda \pi^* D \rfloor).$
- Key: Study when $\pi_*\mathcal{O}_Y(-D_1) = \pi_*\mathcal{O}_Y(-D_2)$ for two divisors D_1 and D_2 , i.e., when they are **equivalent**.

伺 ト イヨト イヨト ヨヨー わえつ

- Recall: $\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_Y(K_{\pi} \lfloor \lambda \pi^* D \rfloor).$
- Key: Study when $\pi_*\mathcal{O}_Y(-D_1) = \pi_*\mathcal{O}_Y(-D_2)$ for two divisors D_1 and D_2 , i.e., when they are **equivalent**.
- We want to find the biggest divisor D_{λ} equivalent to $\lfloor \lambda \pi^* D \rfloor K_{\pi}$.

伺 ト イヨト イヨト ヨヨー わえつ

- Recall: $\mathcal{J}(\lambda D) = \pi_* \mathcal{O}_Y(K_{\pi} \lfloor \lambda \pi^* D \rfloor).$
- Key: Study when $\pi_*\mathcal{O}_Y(-D_1) = \pi_*\mathcal{O}_Y(-D_2)$ for two divisors D_1 and D_2 , i.e., when they are **equivalent**.
- We want to find the biggest divisor D_{λ} equivalent to $\lfloor \lambda \pi^* D \rfloor K_{\pi}$.
- Then the jumping number following to λ is the smallest number λ' such that $\lfloor \lambda' \pi^* D \rfloor K_{\pi}$ has a coefficient bigger than the one in D_{λ} .

伺 ト イヨト イヨト ヨヨー わくべ

π -antieffective divisors

Definition

A divisor D on Y is called π -antieffective if $-D|_E$ is an effective divisor for every π -exceptional divisor E.

• • = • • = •

-

π -antieffective divisors

Definition

A divisor D on Y is called π -antieffective if $-D|_E$ is an effective divisor for every π -exceptional divisor E.

Algorithm (Unloading procedure; B., Dachs Cadefau, after Laufer, Enriques, Reguera, AAD...

Input: A divisor D on Y.

Output: The smallest π -antieffective divisor bigger than D. While $-D|_E$ is not effective for some E, replace D by D + E.

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

π -antieffective divisors

Definition

A divisor D on Y is called π -antieffective if $-D|_E$ is an effective divisor for every π -exceptional divisor E.

 $\mathsf{Algorithm}\ ($ Unloading procedure; B., Dachs Cadefau, after Laufer, Enriques, Reguera, AAD...

Input: A divisor D on Y.

Output: The smallest π -antieffective divisor bigger than D. While $-D|_E$ is not effective for some E, replace D by D + E.

The algorithm always stops. The result is the π -antieffective closure of D.

π -antieffective divisors

Theorem (B., Dachs Cadefau)

If \tilde{D} is the π -antieffective closure of D, then

$$\pi_*\mathcal{O}_Y(-\tilde{D})=\pi_*\mathcal{O}_Y(-D).$$

(*) *) *) *)

ъ

π -antieffective divisors

Theorem (B., Dachs Cadefau)

If \tilde{D} is the π -antieffective closure of D, then

$$\pi_*\mathcal{O}_Y(-\tilde{D})=\pi_*\mathcal{O}_Y(-D).$$

So if λ' is the smallest jumping number bigger than λ , $\lfloor \lambda' \pi^* D \rfloor - K_{\pi}$ must exceed the π -antieffective closure of $\lfloor \lambda \pi^* D \rfloor - K_{\pi}$ in at least one coefficient.

지 수준지 수준지 모님

π -antieffective divisors

Theorem (B., Dachs Cadefau)

If \tilde{D} is the π -antieffective closure of D, then

$$\pi_*\mathcal{O}_Y(-\tilde{D})=\pi_*\mathcal{O}_Y(-D).$$

So if λ' is the smallest jumping number bigger than λ , $\lfloor \lambda' \pi^* D \rfloor - K_{\pi}$ must exceed the π -antieffective closure of $\lfloor \lambda \pi^* D \rfloor - K_{\pi}$ in at least one coefficient.

 \Rightarrow Lower bound for the next jumping number!

• • = • • = •

The two-dimensional case

Theorem (Lipman, 1969)

Suppose X is a surface. The mapping $D \mapsto \pi_* \mathcal{O}_Y(-D)$ determines a one-to-one correspondence between

1 π -antieffective divisors on Y, and

2 complete ideal sheaves on X.

(이 문) 이 문 (이 문)

ъ

The two-dimensional case

Theorem (Lipman, 1969)

Suppose X is a surface. The mapping $D \mapsto \pi_* \mathcal{O}_Y(-D)$ determines a one-to-one correspondence between

• π -antieffective divisors on Y, and

2 complete ideal sheaves on X.

Theorem (Alberich-Carramiñana, Àlvarez-Montaner, Dachs Cadefau)

If $D_{\lambda} = \sum a_i^{\lambda} E_i$ is the π -antieffective closure of $\lfloor \lambda \pi^* D \rfloor - K_{\pi}$, then the smallest jumping number bigger then λ is

$$\lambda' = \min\left\{\frac{k_i + a_i^{\lambda} + 1}{a_i}\right\},\,$$

where
$$K_{\pi} = \sum k_i E_i$$
 and $\pi^* D = \sum a_i E_i$

The two-dimensional case

Algorithm (Alberich-Carramiñana, Àlvarez-Montaner, Dachs Cadefau)

Input: A curve C on X. Output: The jumping numbers of (X, C).

The two-dimensional case

Algorithm (Alberich-Carramiñana, Àlvarez-Montaner, Dachs Cadefau)

Input: A curve C on X.

Output: The jumping numbers of (X, C).

• Compute the minimal log resolution $\pi: Y \to X$ of C.

The two-dimensional case

Algorithm (Alberich-Carramiñana, Àlvarez-Montaner, Dachs Cadefau)

Input: A curve C on X.

Output: The jumping numbers of (X, C).

- **①** Compute the minimal log resolution $\pi: Y \to X$ of C.
- Ompute lct(C).

The two-dimensional case

Algorithm (Alberich-Carramiñana, Àlvarez-Montaner, Dachs Cadefau)

Input: A curve C on X.

Output: The jumping numbers of (X, C).

- **(**) Compute the minimal log resolution $\pi: Y \to X$ of *C*.
- Ompute lct(C).
- Having computed a jumping number λ_j , compute the π -antieffective closure $D_{\lambda} = \sum a_i^{\lambda_j} E_i$ of $\lfloor \lambda_j \pi^* C \rfloor K_{\pi}$ using the unloading procedure. Then the next jumping number is

$$\lambda_{j+1} = \min\left\{\frac{k_i + a_i^{\lambda_j} + 1}{a_i}\right\}$$

The two-dimensional case

Algorithm (Alberich-Carramiñana, Àlvarez-Montaner, Dachs Cadefau)

Input: A curve C on X.

Output: The jumping numbers of (X, C).

- **(**) Compute the minimal log resolution $\pi: Y \to X$ of *C*.
- Ompute lct(C).
- Having computed a jumping number λ_j , compute the π -antieffective closure $D_{\lambda} = \sum a_i^{\lambda_j} E_i$ of $\lfloor \lambda_j \pi^* C \rfloor K_{\pi}$ using the unloading procedure. Then the next jumping number is

$$\lambda_{j+1} = \min\left\{rac{k_i + a_i^{\lambda_j} + 1}{a_i}
ight\}$$

Repeat until we arrive at 1.

The higher dimensional case

Theorem (B., Dachs Cadefau)

If we run the algorithm of [AAD] until we arrive at 1, then we get a set of so-called **supercandidates**, containing all the jumping numbers.

3 1 4 3

ъ

The higher dimensional case

Theorem (B., Dachs Cadefau)

If we run the algorithm of [AAD] until we arrive at 1, then we get a set of so-called **supercandidates**, containing all the jumping numbers.

Remark

No examples are known where not all supercandidates are jumping numbers!

• • 3 • • 3

Checking supercandidates

Definition

The minimal jumping divisor of a supercandidate λ' is the reduced divisor $G_{\lambda'}$ supported on those E_i where the minimum

$$\lambda' = \min\left\{\frac{k_i + a_i^\lambda + 1}{a_i}\right\}$$

is achieved.

ъ

Checking supercandidates

Definition

The minimal jumping divisor of a supercandidate λ' is the reduced divisor $G_{\lambda'}$ supported on those E_i where the minimum

$$\lambda' = \min\left\{\frac{k_i + a_i^\lambda + 1}{a_i}\right\}$$

is achieved.

Proposition (B., Dachs Cadefau)

If the minimum jumping divisor of a supercandidate λ' has an irreducible connected component, then λ' is a jumping number.

(本間) (本臣) (本臣) (王) (王)

Checking supercandidates

Definition

The minimal jumping divisor of a supercandidate λ' is the reduced divisor $G_{\lambda'}$ supported on those E_i where the minimum

$$\lambda' = \min\left\{\frac{k_i + a_i^\lambda + 1}{a_i}\right\}$$

is achieved.

Proposition (B., Dachs Cadefau)

If the minimum jumping divisor of a supercandidate λ' has an irreducible connected component, then λ' is a jumping number.

Good news: this happens very often!

→ 3 → < 3</p>

Checking supercandidates

Otherwise, there are some more techniques to check whether a supercandidate is a jumping number.

* E > * E >

ъ

Examples

Example 1

• Take
$$X = \mathbb{C}^3$$
 and D given by

$$x(yz - x^4)(x^4 + y^2 - 2yz) + yz^4 - y^5 = 0.$$

・ロト ・聞 と ・ ヨ と ・ ヨ と

三日 のへの

Example 1

• Take
$$X = \mathbb{C}^3$$
 and D given by
 $x(yz - x^4)(x^4 + y^2 - 2yz) + yz^4 - y^5 = 0.$

• We find a resolution $\pi: Y \to X$ by six point blow-ups, with

$$K_{\pi} = 2E_1 + 4E_2 + 8E_3 + 14E_4 + 6E_5 + 6E_6$$

and

$$\pi^* D = D_{aff} + 5E_1 + 9E_2 + 16E_3 + 27E_4 + 11E_5 + 11E_6.$$

伺 と く ヨ と く ヨ と

= 990

3

Example 1

λ	G_{λ}
<u>5</u> 9	$E_2 + E_4$
$\frac{2}{3}$	$E_2 + E_4$
5 9 2 3 207 7 9 237 9 207 237 237 257 2607	E ₄
$\frac{7}{9}$	$E_{2} + E_{4}$
$\frac{23}{27}$	E ₄
<u>8</u> 9	$E_2 + E_4$
$\frac{25}{27}$	E ₄
$\frac{26}{27}$	E ₄
1	$E_1 + E_2 + E_3 + E_4 + E_5 + E_6 + D_{aff}$.

< 17 ▶

Example 2

• Take $X = \mathbb{C}^3$ and D given by

$$(x^3 + y^3 + z^3)^2 + g(x, y, z) = 0,$$

where g(x, y, z) is a generic homogeneous polynomial of degree 7.

伺 ト イヨト イヨト ヨヨー わえつ

Example 2

• Take $X = \mathbb{C}^3$ and D given by

$$(x^3 + y^3 + z^3)^2 + g(x, y, z) = 0,$$

where g(x, y, z) is a generic homogeneous polynomial of degree 7.

• A resolution can be obtained after 22 point blow-ups, followed by two blow-ups centered at an elliptic curve *C*.

Example 2

• Take $X = \mathbb{C}^3$ and D given by

$$(x^3 + y^3 + z^3)^2 + g(x, y, z) = 0,$$

where g(x, y, z) is a generic homogeneous polynomial of degree 7.

- A resolution can be obtained after 22 point blow-ups, followed by two blow-ups centered at an elliptic curve *C*.
- *E*₂ and *E*₃ are ruled surfaces over *C*, so their Picard groups are very complicated!

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝔄 𝔄 𝔅

Example 2

• Take $X = \mathbb{C}^3$ and D given by

$$(x^3 + y^3 + z^3)^2 + g(x, y, z) = 0,$$

where g(x, y, z) is a generic homogeneous polynomial of degree 7.

- A resolution can be obtained after 22 point blow-ups, followed by two blow-ups centered at an elliptic curve *C*.
- *E*₂ and *E*₃ are ruled surfaces over *C*, so their Picard groups are very complicated!

$$\pi^* D = D_{aff} + 6E_1 + 8\sum_{i=1}^{21} E_i^p + 7E_2 + 14E_3,$$
$$K_{\pi} = 2E_1 + 4\sum_{i=1}^{21} E_i^p + 3E_2 + 6E_3.$$

It turns out that for the divisors we encounter in the unloading procedure, we can check effectivity.

A B + A B +

-

It turns out that for the divisors we encounter in the unloading procedure, we can check effectivity. We find that the set of supercandidates in (0, 1] is

$$\left\{\frac{7}{14},\frac{9}{14},\frac{11}{14},\frac{13}{14},1\right\}$$

A B + A B +

It turns out that for the divisors we encounter in the unloading procedure, we can check effectivity. We find that the set of supercandidates in (0, 1] is

$$\left\{\frac{7}{14}, \frac{9}{14}, \frac{11}{14}, \frac{13}{14}, 1\right\}$$

and all of them are jumping numbers contributed by E_3 .

Implementation

• For the computation of a log resolution, use "resolve.lib" or "reszeta.lib" in Singular.

= 990

伺 と く き と く き と しき

- For the computation of a log resolution, use "resolve.lib" or "reszeta.lib" in Singular.
- If we are able to describe effective divisors on an exceptional divisor, the computation of supercandidates and their minimal jumping divisors is purely combinatorial.

4 3 5 4 3 5 5

- For the computation of a log resolution, use "resolve.lib" or "reszeta.lib" in Singular.
- If we are able to describe effective divisors on an exceptional divisor, the computation of supercandidates and their minimal jumping divisors is purely combinatorial.

Obstructions:

4 3 5 4 3 5 5

- For the computation of a log resolution, use "resolve.lib" or "reszeta.lib" in Singular.
- If we are able to describe effective divisors on an exceptional divisor, the computation of supercandidates and their minimal jumping divisors is purely combinatorial.

Obstructions:

• Describing when $-D|_E$ is effective is a very hard problem in general.

- For the computation of a log resolution, use "resolve.lib" or "reszeta.lib" in Singular.
- If we are able to describe effective divisors on an exceptional divisor, the computation of supercandidates and their minimal jumping divisors is purely combinatorial.

Obstructions:

- Describing when $-D|_E$ is effective is a very hard problem in general.
- Checking whether a supercandidate is a jumping number can be hard if our methods do not apply.

周 とうきょう きょうしょう

- For the computation of a log resolution, use "resolve.lib" or "reszeta.lib" in Singular.
- If we are able to describe effective divisors on an exceptional divisor, the computation of supercandidates and their minimal jumping divisors is purely combinatorial.

Obstructions:

- Describing when $-D|_E$ is effective is a very hard problem in general.
- Checking whether a supercandidate is a jumping number can be hard if our methods do not apply.

However, in many examples, our methods are sufficient.

周 とうきょう きょうしょう

Thank you!

글 🛌 글 🔁