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Introduction Motivation

Motivation

I Isabelle/HOL has a number of Libraries that deal with Algebra and
Multivariate Analysis

I On the contrary, Linear Algebra algorithms had been superficially
explored or implemented

I Linear Algebra algorithms can be applied to compute properties of
linear maps and matrices

I We aim at improving the performance of verified algorithms with:

I the available tools in conventional functional programming languages
(SML, Haskell)

I the available tools in Isabelle/HOL
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Introduction Methodology

Methodology

I A Linear Algebra result is chosen and formalised

I A naive algorithm, performing matrix elementary operations, is
implemented

I The algorithm and its mathematical meaning are formalised

I The algorithm and its data structures are refined to better performing
ones

I The optimised version is generated to functional languages, and
applied to case studies
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Introduction Logical Toolkit

Toolkit

I Proof assistant: Isabelle (L. Paulson, T. Nipkow, M. Wenzel)

I Underlying logic: Higher-order logic (HOL) + type classes

I Additional libraries: HOL Multivariate Analysis (HMA, J. Harrison)

I Code generation infrastructure (F. Haftmann)

I Proof language: Intelligible semi-automated reasoning (Isar,
M. Wenzel)

I Execution environments: GH(askell)C, PolyML (D. Matthews) and
MLton
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Introduction Logical Toolkit

HMA - Multivariate Analysis session

I Our formalisations are based on the HOL Multivariate Analysis session

I Nice vector and matrix representation from the formalisation point of
view

typedef (α,β) vec = UNIV :: ((β::finite) ⇒ α) set
morphisms vec−nth vec−lambda ..

I Type System vs Logic
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Gauss-Jordan The Gauss-Jordan algorithm

Fn

nullspace

{x .Ax = 0}
N(A)

dim(n − r)

Fm

column space

{y .y = Ax}

C(A)

dim r

A ∈ M(m,n)(F)

Figure : Rank Nullity Theorem
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Gauss-Jordan The Gauss-Jordan algorithm

From theorems to algorithms

I Gauss-Jordan elimination provides a direct way to compute
dim(C (A)) by means of elementary row operations over
A ∈ M(m,n)(F)

Gauss-Jordan example

A =


1 −2 1 −3 0
3 −6 2 −7 0
5 −1 3 2 5
0 7 4 5 1
3 −6 2 −7 0

 // A =


1 0 0 0 3
0 1 0 0 2
0 0 1 0 −2
0 0 0 1 −1
0 0 0 0 0



dim(C (A)) = 4
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Gauss-Jordan The Gauss-Jordan algorithm

Elementary operations

Most Linear Algebra algorithms can be implemented using exclusively
elementary row (column) operations on matrices, i.e.

Elementary row (column) operations

I Interchange two different rows (columns)

I Multiply a row (column) by an invertible element

I Add to a row (column) another one multiplied by a constant

We have implemented these operations and their properties in Isabelle.
These are later on used to formalise, execute and refine algorithms.
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Gauss-Jordan The Gauss-Jordan algorithm

The following matrices (over real numbers) computations can be
performed by means of the Gauss-Jordan algorithm

Gauss-Jordan algorithm applications

I Ranks

I Determinants

I Inverses

I Dimensions and bases of the null space, left null space, column space
and row space

I Solution(s) of systems of linear equations
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Gauss-Jordan The Gauss-Jordan algorithm

Relying on invariants

Elementary row operations do not modify, or modify in a predictable way,
the previous computations

Isabelle lemmas about elementary operations

lemma crk-is-preserved:
fixes A::realˆ ′cols::{finite, wellorder}ˆ ′rows and P::realˆ ′rowsˆ ′rows
assumes inv-P: invertible P
shows col-rank A = col-rank (P ∗∗ A)

lemma det-mult-row:
shows det (mult-row A a k) = k ∗ det A

lemma matrix-inv-Gauss-Jordan-PA:
fixes A::realˆ ′n::{mod-type}ˆ ′n::{mod-type}
assumes inv-A: invertible A
shows matrix-inv A = fst (Gauss-Jordan-PA A)
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Gauss-Jordan The Gauss-Jordan algorithm

Relying on the properties of Gauss-Jordan

Isabelle lemmas to compute the previous properties

definition basis-null-space A =
{row i (P-Gauss-Jordan (transpose A)) | i. to-nat i ≥ rank A}

definition basis-row-space A =
{row i (Gauss-Jordan A) |i. row i (Gauss-Jordan A) 6= 0}

definition solve-system A b =
(let GJ = Gauss-Jordan-PA A in (snd GJ, (fst GJ) ∗v b))

definition solve A b = (if consistent A b then
Some (solve-consistent-rref (fst (solve-system A b)) (snd (solve-system A b)),

basis-null-space A)
else None)
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Gauss-Jordan The technique

Refinement

Abstract representation

Abstract definitions Proof

Concrete representation Concrete definitions Execution

A refinement has been carried out so that operations over the abstract
type vec can be executed

1. Mapping vec to iarray

J. Aransay (UR) Verified Computer Linear Algebra 23rd June 2016 14 / 44



Gauss-Jordan The technique

Refinement

Abstract representation //

Abstract definitions Proof

Concrete representation Concrete definitions Execution

A refinement has been carried out so that operations over the abstract
type vec can be executed

1. Mapping vec to iarray

J. Aransay (UR) Verified Computer Linear Algebra 23rd June 2016 14 / 44



Gauss-Jordan The technique

Refinement

Abstract representation // Abstract definitions

Proof

Concrete representation Concrete definitions Execution

A refinement has been carried out so that operations over the abstract
type vec can be executed

1. Mapping vec to iarray

J. Aransay (UR) Verified Computer Linear Algebra 23rd June 2016 14 / 44



Gauss-Jordan The technique

Refinement

Abstract representation // Abstract definitions // Proof

Concrete representation Concrete definitions Execution

A refinement has been carried out so that operations over the abstract
type vec can be executed

1. Mapping vec to iarray

J. Aransay (UR) Verified Computer Linear Algebra 23rd June 2016 14 / 44



Gauss-Jordan The technique

Refinement

Abstract representation // Abstract definitions // Proof

Concrete representation

Concrete definitions Execution

A refinement has been carried out so that operations over the abstract
type vec can be executed

1. Mapping vec to iarray

J. Aransay (UR) Verified Computer Linear Algebra 23rd June 2016 14 / 44



Gauss-Jordan The technique

Refinement

Abstract representation //

Projection
��

Abstract definitions // Proof

Concrete representation

Concrete definitions Execution

A refinement has been carried out so that operations over the abstract
type vec can be executed

1. Mapping vec to iarray

J. Aransay (UR) Verified Computer Linear Algebra 23rd June 2016 14 / 44



Gauss-Jordan The technique

Refinement

Abstract representation //

Projection
��

Abstract definitions // Proof

Concrete representation //

Concrete definitions Execution

A refinement has been carried out so that operations over the abstract
type vec can be executed

1. Mapping vec to iarray

J. Aransay (UR) Verified Computer Linear Algebra 23rd June 2016 14 / 44



Gauss-Jordan The technique

Refinement

Abstract representation //

Projection
��

Abstract definitions // Proof

Concrete representation // Concrete definitions

Execution

A refinement has been carried out so that operations over the abstract
type vec can be executed

1. Mapping vec to iarray

J. Aransay (UR) Verified Computer Linear Algebra 23rd June 2016 14 / 44



Gauss-Jordan The technique

Refinement

Abstract representation //

Projection
��

Abstract definitions

Code lemmas
��

// Proof

Concrete representation // Concrete definitions

Execution

A refinement has been carried out so that operations over the abstract
type vec can be executed

1. Mapping vec to iarray

J. Aransay (UR) Verified Computer Linear Algebra 23rd June 2016 14 / 44



Gauss-Jordan The technique

Refinement

Abstract representation //

Projection
��

Abstract definitions

Code lemmas
��

// Proof

Concrete representation // Concrete definitions // Execution

A refinement has been carried out so that operations over the abstract
type vec can be executed

1. Mapping vec to iarray

J. Aransay (UR) Verified Computer Linear Algebra 23rd June 2016 14 / 44



Gauss-Jordan The technique

Refinement

Abstract representation //

Projection
��

Abstract definitions

Code lemmas
��

// Proof

Concrete representation // Concrete definitions // Execution

A refinement has been carried out so that operations over the abstract
type vec can be executed

1. Mapping vec to iarray

J. Aransay (UR) Verified Computer Linear Algebra 23rd June 2016 14 / 44



Gauss-Jordan The technique

From vec to iarray

In order to achieve better performance, a new refinement has been
developed using immutable arrays

I There exists a datatype in the Isabelle library called iarray which
represents immutable arrays

I iarray is implemented in both SML (Vector structure) and Haskell
(IArray class)

I We have refined vec elements and operations to iarray ones (proving
the corresponding morphisms)

Features of this refinement

1. Code can be generated to both SML and Haskell

2. Both vec and iarray have a similar functional flavour (for instance, in
access operations)
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Gauss-Jordan The technique

ααα ˆcols ˆrows Gauss Jordan Isabelle

Abstract representation //

Projection
��

Abstract definitions

Code lemmas
��

// Proof

Concrete representation // Concrete definitions // Execution

ααα iarray iarray Gauss Jordan iarrays Isabelle,SML,Haskell
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Gauss-Jordan Serialisations

Serialisations

Isabelle/HOL SML Haskell

iarray Vector.vector IArray.Array
rat IntInf.int / IntInf.int Rational
real Real.real Double
bit Bool.bool Bool

Table : Type serialisations
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Gauss-Jordan Judgement Day

Judgement Day

Size (n) Poly/ML MLton GHC
100 0.04 0.05 0.36
200 0.25 0.32 2.25
400 2.01 2.35 17.17
800 15.96 18.57 131.73

1 200 62.33 70.45 453.57
1 600 139.70 152.41 1097.41
2 000 284.28 287.44 2295.30

Table : Elapsed time (in seconds) to compute the rref of randomly generated
Zn×n

2 matrices using iarrays
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Gauss-Jordan Judgement Day

Judgement Day

Some relevant facts

I Both in SML and GHC we have serialised Z2 to bool

I Compilation in GHC is performed using compilation optimisations
such as -o3 (https://wiki.haskell.org/Performance/GHC)
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Gauss-Jordan Judgement Day

Judgement Day

Size (n) Poly/ML Haskell
10 0.01 0.01
20 0.02 0.03
40 0.21 0.24
60 1.16 1.09
80 3.77 3.53

100 9.75 9.03

Table : Elapsed time (in seconds) to compute the rref of randomly generated
Qn×n matrices.
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Gauss-Jordan Judgement Day

Judgment Day

Some relevant facts

I In SML we have serialised Q to quotients of IntInf.int

I In GHC we have serialised Q to Rational

I Both Poly/ML and GHC internally use GMP
(https://gmplib.org/) to enhance performance

I We have optimised SML code by using some particular serialisations
(computing the Isabelle divmod is done in Poly/ML by means of
IntInf.quotrem)
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Gauss-Jordan Judgement Day

Judgment Day

Size (n) Poly/ML Haskell
100 0.03 0.38
200 0.25 2.62
300 0.81 8.47
400 1.85 19.51
500 3.51 37.13
600 6.03 64.13
700 9.57 100.59
800 13.99 148.20

Table : Time to compute the rref of randomly generated R matrices.
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Gauss-Jordan Judgement Day

Judgment Day

Some relevant facts

I In SML we have serialised R to Real.real

I In GHC we have serialised R to Prelude.Double (see for instance
http://www.isa-afp.org/browser_info/current/AFP/Gauss_

Jordan/Code_Real_Approx_By_Float_Haskell.html)

I WARNING: use the obtained code at your own risk
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Gauss-Jordan Judgement Day

C++ vs Verified version

Matrix sizes C++ version Verified version
600× 600 01.33s. 06.16s.
1 000× 1 000 05.94s. 32.08s.
1 200× 1 200 10.28s. 62.33s.
1 400× 1 400 16.62s. 97.16s.

Table : C++ vs verified version of the Gauss-Jordan algorithm.

Both programs show a cubic performance, even if the verified version is
using immutable arrays
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QR Decomposition
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Gauss-Jordan
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QR Decomposition Mathematics

Theorem (Second Part of the Fundamental Theorem of Linear
Algebra)

Given a matrix A ∈ M(m,n)(R)

I In Rn, N(A) = C(AT )⊥ that is, the nullspace is the orthogonal
complement of the row space

I In Rm, N(AT ) = C(A)⊥, that is, the left nullspace is the orthogonal
complement of the column space
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QR Decomposition Mathematics

Rn

row space

{x . x = AT y}

C(AT )

nullspace

{x .Ax = 0}
N(A)

Rm

column space

{y . y = Ax}

C(A)

left nullspace

{y .AT y = 0}

N(AT )

A ∈ M(m,n)(R)

Figure : Orthogonality of the Four Fundamental subspaces
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QR Decomposition Mathematics

Second Part of the Fundamental Theorem of Linear Algebra

I theorem null-space-orthogonal-complement-row-space:
fixes A :: realˆ ′colsˆ ′rows
shows null-space A = orthogonal-complement (row-space A)

I theorem left-null-space-orthogonal-complement-col-space:
fixes A :: realˆ ′colsˆ ′rows
shows left-null-space A = orthogonal-complement (col-space A)

From Mathematical results to algorithms

The Gram-Schmidt process allows us to compute the mentioned
orthogonal bases
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From Mathematical results to algorithms

The Gram-Schmidt process allows us to compute the mentioned
orthogonal bases
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QR Decomposition QR Decomposition

QR decomposition

Definition (QR decomposition)

The QR decomposition of a full column rank matrix A ∈ Mn×m(R) is a
pair of matrices (Q,R) such that

1. A = QR

2. Q ∈ Mn×m(R) is a matrix whose columns are orthonormal vectors

3. R ∈ Mm×m(R) is upper triangular and invertible

Algorithm

1. Q = Apply Gram-Schmidt to the columns of A, normalise the vectors

2. Compute R as R = QTA
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QR Decomposition QR Decomposition

QR Decomposition

I We have formalised the previous algorithm in Isabelle, and refined it
to immutable arrays

I Computations can be carried out using either floats or (for suitable
inputs) symbolically

René Thiemann. Implementing field extensions of the form Q[
√
b].

Archive of Formal Proofs (2014)
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QR Decomposition QR Decomposition

QR Decomposition

definition A :: realˆ4ˆ4
where foo = list-of-list-to-matrix [[1,2,4,6],

[9,4,5,2],
[0,0,4,3],
[3,2,4,1]]

value matrix-to-list-of-list (show-matrix-real (fst (QR-decomposition A)))
output

[[1/91∗sqrt(91), 69/5642∗sqrt(5642), −9/15934∗sqrt(15934), 6/257∗sqrt(257)],
[9/91∗sqrt(91), −8/2821∗sqrt(5642), −3/7967∗sqrt(15934), 4/257∗sqrt(257)],
[ 0, 0, 2/257∗sqrt(15934), 3/257∗sqrt(257)],
[3/91∗sqrt(91), 25/5642∗sqrt(5642), 21/15934∗sqrt(15934),−14/257∗sqrt(257)]]
:: char list list list
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QR Decomposition QR Decomposition

QR decomposition

value matrix-to-list-of-list (show-matrix-real (snd (QR-decomposition A)))

output
[[sqrt(91), 44/91∗sqrt(91), 61/91∗sqrt(91), 27/91∗sqrt(91)],
[ 0, 2/91∗sqrt(5642), 148/2821∗sqrt(5642), 407/5642∗sqrt(5642)],
[ 0, 0, 1/31∗sqrt(15934), 327/15934∗sqrt(15934)],
[ 0, 0, 0, 39/257∗sqrt(257)]] :: char list

list list

value A == (fst (QR-decomposition A)) ∗∗ (snd (QR-decomposition A))

output True :: prop
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QR Decomposition QR Decomposition

Application: Least Squares Approximation

I Let us consider a system Ax = b without solution

I We can approximate the solution minimizing the error (least squares
approximation). That is, compute x̂ such that minimises || Ax̂ − b ||
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QR Decomposition QR Decomposition

row space = Rn

N(A) = 0

C(A) ⊆ Rm

left nullspace

b = p + e

p = Pb

e

best x̂

Ax = b

not solvable

Ax = b

Figure : The projection p = Ax̂ is the closest point to b in C(A)
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QR Decomposition QR Decomposition

Application: Least Squares Approximation

I We have formalised that x̂ = R−1QTb

I x̂ can be computed symbolically, R−1 is computed by means of the
Gauss-Jordan algorithm
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QR Decomposition Judgment Day

Judgment day (using rationals for R)

H6x = b

H6 =



1 1/2 1/3 1/4 1/5 1/6
1/2 1/3 1/4 1/5 1/6 1/7
1/3 1/4 1/5 1/6 1/7 1/8
1/4 1/5 1/6 1/7 1/8 1/9
1/5 1/6 1/7 1/8 1/9 1/10
1/6 1/7 1/8 1/9 1/10 1/11

, b =



1
0
0
0
0
5



The least squares approximation

x = [−13824, 415170, −2907240, 7754040, −8724240, 3489948]

Performance

I Poly/ML with optimisations: 0.013 s; without optimisations: 0.022 s.

I Mathematica R©: 0.017 s.
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QR Decomposition Judgment Day

Judgment Day (using iarrays and rationals for R)

Notes

I Unfortunately, using fractions to represent (a subset of) reals requires
a lot of intermediary arithmetic operations, affecting performance

I For small matrices, the verified program challenges Mathematica R©

Optimisations performed (and proved!)

I Avoid some repeated operations (defining the same variable twice)

I Optimising computations over lists (avoiding unnecesary operations
such as remdups over rows and columns indexes)

J. Aransay and J. Divasón. A formalisation in HOL of the Fundamental Theorem of Linear

Algebra and its application to the solution of the least squares problem. Journal of

Automated Reasoning. 2016
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QR Decomposition Judgment Day

Judgment Day (iarrays and floating-point numbers for R)

Comparison of the solutions to H6x = b

I 1: Least squares approximation using rationals

I 2: QR approximation using floating-point numbers

I 3: Gauss-Jordan approximation using floating-point numbers

1 : −13824 415170 −2907240 7754040 −8724240 3489948
2 : −13824.0 415170.0001 −2907240.0 7754040.001 −8724240.001 3489948.0
3 : −13808.6421 414731.7866 −2904277.468 7746340.301 −8715747.432 3486603.907
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QR Decomposition Judgment Day

Judgment Day

Size (n) Poly/ML (s.)

100 0.88
200 10.88
300 84.40
400 184.11

Table : Elapsed time (in seconds) to compute the QR decomposition of Hn with
floating-point precision

J. Aransay and J. Divasón. QR Decomposition. Archive of Formal Proofs. 2015
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Conclusions Conclusions

Conclusions

I Linear Algebra algorithms can be implemented in HMA (linked to
mathematical results)

I Algorithms are executable inside of Isabelle

I Better performance can be obtained thanks to code generation in
SML and Haskell

I The use of immutable arrays does not pose a drawback, even in
comparison to imperative programming
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Conclusions Further work

Further Work

I Explore the possibilities of optimization of rational numbers
operations in SML

I Improve the ease to produce proofs of refinements

I Explore floating-point numbers possibilities
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Conclusions Good Luck

Good Luck!!!
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