Runtime Verification of Real-Time Properties of JamaicaVM

> Clemens Ballarin aicas GmbH

Background

$\mathsf{JamaicaVM}$

- Java platform for embedded systems
- Realtime-capable garbage collection
- Implements the Realtime Specification for Java (RTSJ)
- Available on Linux, QNX, VxWorks, Windows CE, ...

Scheduler

- Decides, which threads get executed
- Priority-based (fixed-priority scheduling)
- Co-operates with the scheduler of the OS

Systematic tests of JamaicaVM

- Implementation of the scheduler
- Implementation of the RTSJ
- Analysis of event sequences emitted by JamaicaVM

Development tool for JamaicaVM

Detect insufficient synchronisation in application code

520us	560us	600us	640us	680us
288ms	288ms	288ms	288ms	288ms

Runtime Verification

Formal Methods

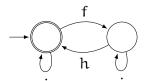
Static analysis

- Examines the model of a system
- Can prove the absence of errors in the model
- Cannot ensure the correctness of the actual system

Runtime verification

- Examines the actual system
- Cannot prove the absence of errors
- Can reliably identify errors when they occur

(Complex Event Processing is very much related.)


Modelling an Activity

Event sequences are words

 $\cdot f \cdot h \cdots f \cdot h \cdot \cdot$

Properties can be decided with automata Every "Fire" is followed by a "Handle"

Observable Properties

Problem statement

 "Every 'Fire' is followed by a 'Handle'" cannot be decided through observation:

 $\cdots f \cdots h \cdots \sqrt{$

Safety

- "no error occurs"
- observable

Liveness

- "something happens eventually"
- not observable

Slicing

Slicing

Splits the event sequence in subsequences

- So activities can be examined separately
- So various simple monitors can be used

Monitors are based on

- Regular languages
- Linear temporal logic (LTL)
- Statistical methods (for example, jitter analysis)

▶ ...

Usually Events Contain Data

Java Collections

While an iterator is in use, the underlying data structure may not be modified.

c(D, I) iterator I created for data structure D
m(D) data structure D modified
s(I) iterator I steps to next element

JavaMOP

Base algorithm A [Roşu and Chen, 2007]

- Separates event sequence based on contained data
- Allocates a suitable monitor for each slice
- Optimised variants exist (B, C, C+, D)

Extension [Ballarin 2014]

- Combination of events with unrelated data into a slice
- Previously believed to be an inherent limitation
- Essential for applying slicing to scheduling problems

Events Related, but not through Data

Priority-based scheduling

When activities X and Y are fired, the higher-priority activity shall be handled first.

f(X), f(Y) activity X or Y fired h(X), h(Y) activity X or Y handled

JavaMOP

Base algorithm A [Roşu and Chen, 2007]

- Separates event sequence based on contained data
- Allocates a suitable monitor for each slice
- Optimised variants exist (B, C, C+, D)

Extension [Ballarin 2014]

- Combination of events with unrelated data into a slice
- Previously believed to be an inherent limitation
- Essential for applying slicing to scheduling problems

Implementation

Monitor for JamaicaVM

- Implements extended version of Algorithm A
- Monitors based on finite automata
- Several defects in JamaicaVM's scheduler for multicore systems identified

JavaMOP / RV

- Comprehensive library of safety properties
- Runtime overhead for the DaCapo 9.12 benchmark suite: JavaMOP 360%, RV 140%
- http://fsl.cs.illinois.edu/index.php/JavaMOP4

Summary

Runtime verification

- Systematic tests of actual systems
- Based on formal methods
- Particularly suitable for safety properties

Slicing

- Computes subsequences of event traces based on data
- Can be extended to problems where slices are not evident from the data — for example, scheduling

www.aicas.com