
Runtime Verification of Real-Time
Properties of JamaicaVM

Clemens Ballarin
aicas GmbH



Background

JamaicaVM
I Java platform for embedded systems
I Realtime-capable garbage collection
I Implements the Realtime Specification for Java (RTSJ)
I Available on Linux, QNX, VxWorks, Windows CE, . . .

Scheduler
I Decides, which threads get executed
I Priority-based (fixed-priority scheduling)
I Co-operates with the scheduler of the OS



Goals

Systematic tests of JamaicaVM

I Implementation of the scheduler
I Implementation of the RTSJ
I Analysis of event sequences emitted by JamaicaVM

Development tool for JamaicaVM

I Detect insufficient synchronisation in application code





Runtime Verification



Formal Methods

Static analysis

I Examines the model of a system
I Can prove the absence of errors in the model
I Cannot ensure the correctness of the actual system

Runtime verification
I Examines the actual system
I Cannot prove the absence of errors
I Can reliably identify errors when they occur

(Complex Event Processing is very much related.)



Modelling an Activity

Event sequences are words

· f · h · · · f · · h · ·

Properties can be decided with automata
Every “Fire” is followed by a “Handle”

f

h
· ·



Observable Properties
Problem statement

I “Every ‘Fire’ is followed by a ‘Handle’ ” cannot be decided
through observation:

· · · · · · f · · · · · ·h · · · ·
√

· · · · · · f · · · · · · · · · · · · ?

Safety

I “no error occurs” • • • • • • • • • • • · · ·
I observable

Liveness
I “something happens eventually” • • • • • • • • • • • · · ·
I not observable



Slicing



Slicing

Splits the event sequence in subsequences

I So activities can be examined separately
I So various simple monitors can be used

Monitors are based on
I Regular languages
I Linear temporal logic (LTL)
I Statistical methods (for example, jitter analysis)
I . . .



Usually Events Contain Data

Java Collections
While an iterator is in use, the underlying data structure may
not be modified.

c(D, I) iterator I created for data structure D

m(D) data structure D modified
s(I) iterator I steps to next element

Example
c(l1, i1) c(l2, i2) m(l1) c(l1, i3) s(i1) s(i2)

c(l1, i1) m(l1) s(i1) D 7→ l1, I 7→ i1
m(l1) c(l1, i3) D 7→ l1, I 7→ i3

c(l2, i2) s(i2) D 7→ l2, I 7→ i2



JavaMOP

Base algorithm A [Roşu and Chen, 2007]

I Separates event sequence based on contained data
I Allocates a suitable monitor for each slice
I Optimised variants exist (B, C, C+, D)

Extension [Ballarin 2014]

I Combination of events with unrelated data into a slice
I Previously believed to be an inherent limitation
I Essential for applying slicing to scheduling problems



Events Related, but not through Data

Priority-based scheduling
When activities X and Y are fired, the higher-priority activity
shall be handled first.
f(X), f(Y) activity X or Y fired
h(X), h(Y) activity X or Y handled

Example
f(1) f(3) f(2) h(3) h(2) h(1)

Priority of 3 > 2 > 1

f(1) f(2) h(2) h(1) X 7→ 2, Y 7→ 1

f(1) f(3) h(3) h(1) X 7→ 3, Y 7→ 1

f(3) f(2) h(3) h(2) X 7→ 3, Y 7→ 2



JavaMOP

Base algorithm A [Roşu and Chen, 2007]

I Separates event sequence based on contained data
I Allocates a suitable monitor for each slice
I Optimised variants exist (B, C, C+, D)

Extension [Ballarin 2014]

I Combination of events with unrelated data into a slice
I Previously believed to be an inherent limitation
I Essential for applying slicing to scheduling problems



Implementation

Monitor for JamaicaVM
I Implements extended version of Algorithm A
I Monitors based on finite automata
I Several defects in JamaicaVM’s scheduler for multicore

systems identified

JavaMOP / RV

I Comprehensive library of safety properties
I Runtime overhead for the DaCapo 9.12 benchmark suite:

JavaMOP 360%, RV 140%
I http://fsl.cs.illinois.edu/index.php/JavaMOP4

http://fsl.cs.illinois.edu/index.php/JavaMOP4


Summary

Runtime verification
I Systematic tests of actual systems
I Based on formal methods
I Particularly suitable for safety properties

Slicing

I Computes subsequences of event traces based on data
I Can be extended to problems where slices are not evident

from the data — for example, scheduling



www.aicas.com


	Runtime Verification
	Slicing

