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Manuel Iñarrea1*, Vı́ctor Lanchares1**,
Ana I. Pascual1***, and Antonio Elipe2****

1Universidad La Rioja, Facultad de Ciencia y Tecnoloǵıa,
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Abstract—We consider the motion of an asymmetric gyrostat under the attraction of a uniform
Newtonian field. It is supposed that the center of mass lies along one of the principal axes of
inertia, while a rotor spins around a different axis of inertia. For this problem, we obtain the
possible permanent rotations, that is, the equilibria of the system. The Lyapunov stability of
these permanent rotations is analyzed by means of the Energy–Casimir method and necessary
and sufficient conditions are derived, proving that there exist permanent stable rotations when
the gyrostat is oriented in any direction of the space. The geometry of the gyrostat and the
value of the gyrostatic momentum are relevant in order to get stable permanent rotations.
Moreover, it seems that the necessary conditions are also sufficient, but this fact can only be
proved partially.
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1. INTRODUCTION

A gyrostat is made of a rigid body, a platform, and other bodies, the rotors, which move in
such a way that their motions do not alter the mass distribution of the gyrostat (see Fig. 1). Since
the rotor may be spinning along any axis, it is in general assumed that there are three rotors,
each one along the three axes of the reference frame, usually the principal axes of inertia. This
model is important in the field of mechanical systems because the rotors allow the spin vector to
be stabilized. In particular, in spacecraft dynamics where the rotors, or spinning wheels, are used
to control the attitude [23].

One of the key questions is the analysis of the stability of the permanent rotations or,
equivalently, the equilibria of the system. When no external forces act upon the gyrostat, we
have an extension of the problem of the motion of a free rigid body. This is an integrable
problem and the stability and bifurcations of the permanent rotations have been studied in detail
by many authors from different points of view, especially in the context of spacecraft attitude
dynamics [5, 13, 15, 17, 18, 21]. These studies help in the analysis of the motion of the gyrostat
under small perturbations, giving rise to chaotic behaviors which can be controlled by the action
of the rotors [4, 24, 28, 29].
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The problem becomes more difficult when we consider more realistic approximations, as it is
the motion of the gyrostat under the action of external torques, in particular, a uniform gravity
field. When the rotors are at rest, we are left with the classical problem of the dynamics of a
heavy rigid body or a heavy top. For this special case, there are many results concerning the
stability of particular solutions under some specific assumptions, such as the stability of permanent
rotations [26, 38], pendulum-like motions [6–8], planar motions [9, 10] or regular precessions [31, 32]
(see also the book of Leimanis [30]). In the general case, when the action of the rotors is considered,
some particular cases have been studied. For instance, the motion of a heavy symmetric gyrostat
with a variable gyrostatic torque, with two rotors along orthogonal axes [37] or the families
of isoconic motions of a heavy nonautonomous gyrostat with a fixed point [40]. On the other
hand, other authors have considered the stability problem of particular solutions, especially those
interesting for their practical applications [14, 20, 36, 39].

In this paper we consider the attitude of a gyrostat with a fixed point under a uniform Newtonian
gravity field. In particular, we will focus on the stability of permanent or Staude’s rotations,
that is, rotations around the vertical axis, along which the gravity force acts. For this case, both
necessary and sufficient conditions of stability have been obtained by means of different methods.
In this sense, by building appropriate Lyapunov functions, Rumiantsev [35] and Anchev [1, 2] gave
sufficient conditions of stability. In the particular case in which the center of mass lies on one
principal axis and the gyrostatic momentum is directed along the same axis, Kovalev [27] derived
sufficient conditions that matched those of Rumiantsev. He also applied KAM theory to study the
stability when the associated quadratic form of the perturbed Hamiltonian is not sign definite,
but the necessary conditions are satisfied. These results can also be obtained and improved by
using the Energy – Casimir method [33, 34], provided the problem is a Lie – Poison system. Indeed,
the Energy –Casimir method has been successfully used in rigid body dynamics [11, 22] and more
recently applied to study the stability of permanent rotations of a heavy gyrostat in the same
situation considered by Kovalev [12, 25]. The results obtained in [25] complemented those given by
de Bustos et al. [12], adding new sufficient conditions for all the permanent rotations and proving
also that, in some configurations of the moments of inertia, they are also necessary conditions.
This case is very general as a wide class of stable permanent rotations can be achieved, with the
gyrostat revolving around the vertical axis and oriented any which way. However, the action of
a different rotor can also produce stable rotations, but losing some freedom in the parameters
defining such stable rotations. This is the aim of this paper, where we will consider the stability of
Staude’s permanent rotations produced by the action of a spinning rotor that is not aligned with
the principal axis where the center of mass lies.

This case presents rich dynamics and also some important differences with respect to the case
previously studied in [12, 25, 27]. Indeed, the number of equilibria, or permanent rotations, is
different, as are the stability conditions, the proof of the results being more complex. However, the
most interesting fact is that, with this configuration, it is also possible to obtain stable permanent
rotations in such a way that the gyrostat is oriented in any direction of the space. Even more, in
the limiting case in which the center of mass coincides with the fixed point, we recover the classical
stability conditions for a gyrostat in free motion.

2. EQUATIONS OF MOTION

Let us consider an asymmetric heavy gyrostat in a uniform gravity field. The gyrostat is
composed of a rigid asymmetric platform and three axisymmetric wheels or rotors that can be
in a relative rotation motion with respect to the platform. The rotation axis of each of the rotors
coincides with one of the principal axes of the platform. We assume that the relative motion of
the rotors does not modify the mass distribution of the gyrostat. We also consider that the whole
gyrostat rotates with a fixed point O. Note that this fixed point O may not be located at the center
of mass G of the gyrostat.

In order to study the permanent rotations of the gyrostat, we use two orthonormal reference
frames centered at the fixed point O (see Fig. 1). On the one hand, the space or inertial reference
frame F{O,X, Y,Z} fixed in the space, with the direction of the Z axis opposite to the acceleration g
of the gravity field. On the other hand, the body frame B{O,x, y, z} fixed with the gyrostat, so that
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Fig. 1. Asymmetric gyrostat and reference frames.

the axes coincide with the principal axes of inertia of the gyrostat. The relative attitude between
these two reference frames results from three consecutive rotations involving three angles such us
the Euler angles [30]. Note that, as we study the permanent rotations of the gyrostat, we only need
two of these angles to define the orientation of the rotating gyrostat in the inertial fixed frame F .

Furthermore, the inertia tensor I of the gyrostat is determined by its mass distribution. In the
body frame B (we recall that it was chosen to be the principal axis of inertia), the expression of
this inertia tensor is diagonal, I = diag(I1, I2, I3) with I1 �= I2 �= I3, as we assume an asymmetric
gyrostat.

Let π = (π1, π2, π3) denote the angular momentum of the gyrostat considered as a rigid body,
l = (l1, l2, l3) the angular momentum of the rotors, and k̂ = (k1, k2, k3) the unitary vector in the
direction of the fixed Z axis, the three vectors being expressed in the body frame B. The total
angular momentum of the gyrostat is H = π + l (for details see, e. g., [15, 17]). Besides, let
(x0, y0, z0) denote the coordinates of the center of mass G in the same frame.

In addition, if we denote by ω = (ω1, ω2, ω3) the angular velocity of the gyrostat expressed in
the body frame, we have the following relation:

π = Iω. (2.1)

Because of the gravity field, the gyrostat is under the action of a gravitational torque N about
the fixed point O, given by

N = rG × mg = −mg rG × k̂,

where rG is the position vector of the center of mass G of the gyrostat and m the mass of the
gyrostat. Under all these assumptions, and by the angular momentum theorem about the fixed
point O,

dH

dt
= N ,

whereas the evolution on the space frame of the vector k̂ is given by

dk̂

dt
= −ω × k̂ = −

(
π1

I1
,
π2

I2
,
π3

I3

)
× (k1, k2, k3).

In this way [25], the complete set of equations that governs the rotation dynamics of the gyrostat
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can be written as
dπ1

dt
=

(
I2 − I3

I2I3

)
π2π3 +

l2π3

I3
− l3π2

I2
+ (z0k2 − y0k3)mg,

dπ2

dt
=

(
I3 − I1

I1I3

)
π1π3 +

l3π1

I1
− l1π3

I3
+ (x0k3 − z0k1)mg,

dπ3

dt
=

(
I1 − I2

I1I2

)
π1π2 +

l1π2

I2
− l2π1

I1
+ (y0k1 − x0k2)mg,

dk1

dt
=

k2π3

I3
− k3π2

I2
,

dk2

dt
=

k3π1

I1
− k1π3

I3
,

dk3

dt
=

k1π2

I2
− k2π1

I1
.

(2.2)

The first three equations in (2.2) are the well-known Euler equations, while the last three equations
are the Poisson equations.

On the other hand, the system can be regarded as a Lie –Poisson system, so that the equations
of motion (2.2) can be derived from the following Hamiltonian function [25]:

H =
1
2

(
π2

1

I1
+

π2
2

I2
+

π2
3

I3

)
+ (x0k1 + y0k2 + z0k3)mg. (2.3)

We are interested in the stability of the permanent rotations of the gyrostat. These permanent
rotations correspond to the equilibrium solutions of the equations of motion (2.2). Therefore, as the
problem at hand is a Lie – Poisson system, we can study the stability of the permanent rotations
by means of the so called Energy – Casimir method [3, 22, 33, 34]. In this sense, the system has two
conserved quantities that can be used as Casimir functions in the stability analysis

C1 ≡ k2
1 + k2

2 + k2
3 = 1, (2.4)

C2 ≡ (π + l) · k̂ = (π1 + l1)k1 + (π2 + l2)k2 + (π3 + l3)k3, (2.5)

the last one, the projection of the total angular momentum of the gyrostat, π + l, on the Z axis of
the fixed inertial frame F .

3. EQUILIBRIUM SOLUTIONS
Hereinafter, we will consider the following situation for the gyrostat. The center of mass, G, is

located at the z axis of the body frame B, that is, x0 = y0 = 0. Besides, the direction of the gyrostatic
momentum l of the rotors is parallel to the x axis of the body frame B, that is, l2 = l3 = 0. Taking
into account all these premises, the equations of motion (2.2) reduce to

dπ1

dt
=

(
I2 − I3

I2I3

)
π2π3 + mgz0k2,

dπ2

dt
=

(
I3 − I1

I1I3

)
π1π3 −

l1π3

I3
− mgz0k1,

dπ3

dt
=

(
I1 − I2

I1I2

)
π1π2 +

l1π2

I2
,

dk1

dt
=

k2π3

I3
− k3π2

I2
,

dk2

dt
=

k3π1

I1
− k1π3

I3
,

dk3

dt
=

k1π2

I2
− k2π1

I1
.

(3.1)
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Under these assumptions, we will focus on Staude’s permanent rotations, when the angular velocity
is aligned with the Z axis of the inertial frame, that is, ω = ωk̂, ω being the norm of the angular
velocity vector. In this way, we have the following result.

Theorem 1. There are two families of equilibrium points. The first is given by points of the form

E0 ≡ (I1ω sin ϕ, 0, I3ω cos ϕ, sin ϕ, 0, cos ϕ),

where ϕ ∈ [0, 2π) and ω ∈ R such that

(I1 − I3)ω2 sin ϕ cos ϕ + ωl1 cos ϕ + gmz0 sin ϕ = 0. (3.2)

The second is defined by points of the form

E1 ≡ (I1ω sin ϕ sin θ, I2ω cos θ, I3ω cos ϕ sin θ, sin ϕ sin θ, cos θ, cos ϕ sin θ),

where ϕ ∈ [0, 2π), θ ∈ [0, π/2) ∪ (π/2, π] and ω ∈ R such that

l1 + (I1 − I2)ω sinϕ sin θ = 0, (I2 − I3)ω2 cos ϕ sin θ + gmz0 = 0. (3.3)

It is worth noting here that the angles ϕ and θ give us the orientation of the gyrostat with
respect to the fixed frame F (see Fig. 1). Also note that the equilibrium solutions correspond to
rotations of the gyrostat around the vertical axis in the inertial frame F .

Proof. Taking into account that k̂ is a unitary vector, we introduce angles θ ∈ [0, π] and ϕ ∈ [0, 2π)
in such a way that

k1 = sinϕ sin θ, k2 = cos θ, k3 = cos ϕ sin θ. (3.4)

Analogously, for the components of the angular momentum, from (2.1), we have

π1 = ωI1 sin ϕ sin θ, π2 = ωI2 cos θ, π3 = ωI3 cos ϕ sin θ. (3.5)

It is easy to verify that, under this parameterization, the last three equations of system (3.1) vanish.
Thus, to obtain the equilibrium solutions, we have to see the conditions under which the three first
equations vanish. We rewrite them as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(gmz0 + (I2 − I3)ω2 cos ϕ sin θ) cos θ = 0,

(gmz0 sin ϕ + (l1 + (I1 − I3)ω sin ϕ sin θ)ω cos ϕ) sin θ = 0,

(l1 + (I1 − I2)ω sin ϕ sin θ)ω cos θ = 0.

(3.6)

Discarding the case ω = 0, we divide the solutions into two groups: those satisfying cos θ = 0 and
those which do not.

If cos θ = 0, the first and third equations of (3.6) vanish. Taking into account that θ ∈ [0, π],
sin θ = 1, and then the second equation vanishes if

(I1 − I3)ω2 sin ϕ cos ϕ + ωl1 cos ϕ + gmz0 sin ϕ = 0.

If cos θ �= 0, from the third equation of (3.6) we see that equilibrium solutions satisfy

l1 + (I1 − I2)ω sin ϕ sin θ = 0.

By eliminating l1, the first two equations become⎧⎪⎨
⎪⎩

(gmz0 + (I2 − I3)ω2 cos ϕ sin θ) cos θ = 0,

(gmz0 + (I2 − I3)ω2 cos ϕ sin θ) sinϕ sin θ = 0,

which vanish at the same time if the condition
gmz0 + (I2 − I3)ω2 cos ϕ sin θ = 0

holds. �
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Remark 1. Note that the first family is a limiting case of the second when θ = π/2. However, the
two conditions

l1 + (I1 − I2)ω sin ϕ sin θ = 0, gmz0 + (I2 − I3)ω2 cos ϕ sin θ = 0

do not need to be satisfied at the same time, but only a linear combination of them.

Remark 2. If ω = 0, there are also equilibrium solutions where the angular momentum is equal
to zero. One of these solutions takes place when the fixed point is precisely the center of mass, that
is, z0 = 0. The other one occurs if θ = π/2 and ϕ = 0 or ϕ = π. In this case, the gyrostat is upright
or hanging from the fixed point and the center of mass along the direction of the gravity field.

4. STABILITY ANALYSIS

In this section we will focus on the Lyapunov stability analysis of the equilibrium solutions given
in Theorem 1. Taking into account that we are considering a Poisson system, to establish sufficient
stability conditions we can use the classical Energy –Casimir method [3, 22] and a generalized
version given by Ortega and Ratiu [34], which reads:

Theorem 2 (Generalized Energy – Casimir method). Let (M, {., .}, h) be a Poisson system,
and m ∈ M be an equilibrium of the Hamiltonian vector field Xh. If there is a set of conserved
quantities C1, . . . , Cn ∈ C∞(M) for which

d(h + C1 + · · · + Cn)(m) = 0,

and

d2(h + C1 + · · · + Cn)(m)
∣∣∣
W×W

is definite for W defined by

W = kerdC1(m) ∩ · · · ∩ ker dCn(m),

then m is stable. If W = {0}, m is always stable.

This result is more convenient, as the definiteness of the Hessian, given by the second derivative of
the augmented Hamiltonian h + C1 + · · · + Cn, is checked in the reduced space W × W and not in
the whole space TmM × TmM .

In this case, M = R
6 and h,C1 and C2 are given, respectively, by (2.3), (2.4) and (2.5). Besides,

it is well known that each equilibrium point of the problem is a critical point of the augmented
Hamiltonian function

HA =
1
2

(
π2

1

I1
+

π2
2

I2
+

π2
3

I3

)
+ mgz0k3 +

(
(π1 + l1)k1 + π2k2 + π3k3

)
λ + (k2

1 + k2
2 + k2

3)μ,

λ and μ being parameters to be determined with this condition. On the one hand, permanent
rotations E0 and E1 are critical points of HA if they satisfy

d(HA)(E0) = 0 ⇒ λ = −ω, μ = 1
2(I3ω

2 − gmz0 sec ϕ),

d(HA)(E1) = 0 ⇒ λ = −ω, μ = 1
2I2ω

2.

On the other hand, let us now determine the space

W = kerdC1 ∩ kerdC2.

Taking into account the parameterization (3.4), (3.5), we obtain

dC1 = 2 sin ϕ sin θdk1 + 2cos θdk2 + 2cos ϕ sin θdk3,

dC2 = sin ϕ sin θdπ1 + cos θdπ2 + cos ϕ sin θdπ3

+ (l1 + ωI1 sin ϕ sin θ)dk1 + ωI2 cos θdk2 + ωI3 cos ϕ sin θdk3.
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Solving the system dC1 = dC2 = 0, we get

π3 = −
(
l1k1 + ((I2 − I3)k2ω + π2) cos θ

)
csc θ sec ϕ −

(
(I1 − I3)k1ω + π1

)
tan ϕ,

k3 = −k1 tan ϕ − k2 cot θ secϕ.

Thus, when cos ϕ �= 0 and sin θ �= 0, W is generated by the following four vectors:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v1 = cos ϕ sin θ ê1 − sin ϕ sin θ ê3,

v2 = cos ϕ sin θ ê2 − cos θ ê3,

v3 =
(
− l1 − (I1 − I3)ω sin ϕ sin θ

)
ê3 + cos ϕ sin θ ê4 − sin ϕ sin θ ê6,

v4 = (I3 − I2)ω cos θ ê3 + cos ϕ sin θ ê5 − cos θ ê6,

{êi}1�i�6 being the canonic basis of R
6.

Let us now consider a vector v in W , which is expressed as
v = x1v1 + x2v2 + x3v3 + x4v4,

where xi ∈ R, i = 1, . . . , 4. The quadratic form in the variables xi given by

vT · Hess(HA) · v

leads us to Hess(HA)
∣∣∣
W×W

. In this way we obtain

Hess(HA)
∣∣∣
W×W

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 h13 h14

h12 h22 h23 h24

h13 h23 h33 h34

h14 h24 h34 h44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (4.1)

where

h11 =
1

I1I3
(I1 sin2 ϕ + I3 cos2 ϕ) sin2 θ,

h12 =
1

2I3
sinϕ sin 2θ,

h13 =
1
I3

[
l1 sinϕ + I3λ cos2 ϕ sin θ +

[
I3λ + (I1 − I3)ω

]
sin2 ϕ sin θ

]
sin θ,

h14 =
I3λ + (I2 − I3)ω

2I3
sinϕ sin 2θ,

h22 =
1

I2I3
(I2 cos2 θ + I3 cos2 ϕ sin2 θ),

h23 =
1
I3

[
l1 +

[
I3λ + (I1 − I3)ω

]
sin ϕ sin θ

]
cos θ,

h24 =
1
I3

[[
I3λ + (I2 − I3)ω

]
cos2 θ + I3λ cos2 ϕ sin2 θ

]
,

h33 =
1
I3

[l1 + (I1 − I3)ω sinϕ sin θ]2

+ 2
[
l1 + (I1 − I3)ω sin ϕ sin θ

]
λ sin ϕ sin θ + μ sin2 θ,

h34 =
cos θ

I3

[
(I2 − I3)[l1 + (I1 − I3)ω sinϕ sin θ]ω

+ [l1 + (I1 + I2 − 2I3)ω sin ϕ sin θ]I3λ + 2I3μ sin ϕ sin θ
]
,

h44 =
1
I3

[
(I2 − I3)2ω2 cos2 θ + 2(I2 − I3)I3λω cos2 θ + 2(cos2 θ + cos2 ϕ sin2 θ)I3μ

]
.
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4.1. Stability of Family E1

Once we have introduced the tools we need to analyze the stability, to begin with, we state the
first stability result, concerning the equilibrium solutions E1.
Theorem 3. The equilibrium E1 is stable if the following conditions are satisfied:

I2 − I1 > 0, (I2 − I3)
(
I2 + 3(I2 − I3) cos2 ϕ sin2 θ

)
> 0.

Proof. The quadratic form

d2(h + C1 + C2)(E1)
∣∣∣
W×W

is positive definite if Hess(HA)
∣∣∣
W×W

satisfies Sylvester’s criterion. Taking into account that, for

E1,

λ = −ω, μ =
I2ω

2

2
, l1 + (I1 − I2)ω sin ϕ sin θ = 0,

we obtain for the leading principal minors:

D1 =
(I3 cos2 ϕ + I1 sin2 ϕ) sin2 θ

I1I3
,

D2 =
(

cos2 θ

I1I3
+

cos2 ϕ sin2 θ

I1I2
+

sin2 ϕ sin2 θ

I2I3

)
cos2 ϕ sin2 θ,

D3 =
(
(2I1 + I2 − 3I3)(I2 − I3) cos2 ϕ sin2 ϕ sin2 θ + (I1 − I3)I2 sin2 ϕ

+(I2 − I1)(I2 + (I3 − I2) sin2 θ)
) ω2 cos2 ϕ sin4 θ

I1I2I3
,

D4 = (I2 − I1)(I2 − I3)
(
I2 + 3(I2 − I3) cos2 ϕ sin2 θ

)ω4 cos4 ϕ cos2 θ sin4 θ

I1I2I3
.

On the one hand, it is clear that D1 and D2 are always positive, provided we suppose
cos ϕ sin θ �= 0.

On the other hand, D3 and D4 are positive if

Δ1 ≡ (2I1 + I2 − 3I3)(I2 − I3) cos2 ϕ sin2 ϕ sin2 θ

+ I2(I1 − I3) sin2 ϕ + (I2 − I1)
(
I2 + (I3 − I2) sin2 θ

)
> 0,

and
(I2 − I1)(I2 − I3)Δ2 > 0,

where
Δ2 = I2 + 3(I2 − I3) cos2 ϕ sin2 θ.

We will divide our analysis into two cases: I2 − I3 > 0 and I2 − I3 < 0.

Case I2 − I3 > 0.

In this case, Δ2 > 0 and, to obtain sufficient stability conditions, it is necessary that I2 − I1 > 0.
We are going to show that then also D3 > 0. To this end, let us introduce the change of variables

sin2 θ = x, sin2 ϕ = y, x, y ∈ [0, 1]. (4.2)

Then Δ1 can be written as

Δ1(x, y) = (I2 − I1)(I2 − I2x + I3x) + I2(I1 − I3)y

+ (2I1 + I2 − 3I3)(I2 − I3)(1 − y)xy,
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which is a linear function in x. If, for every y, Δ1(0, y) > 0 and Δ1(1, y) > 0, we can ensure that
Δ1(x, y) > 0 for every x, y ∈ [0, 1].

On the one hand, we have

Δ1(0, y) =
(
(I2 − I1) + (I1 − I3)y

)
I2 > 0,

provided that I2 − I1 > 0 and I2 − I3 > 0. On the other hand,

Δ1(1, y) = (I2 − I1)I3 + (I1 − I3)I2y + (2I1 + I2 − 3I3)(I2 − I3)(1 − y)y.

Here, we distinguish two situations, depending on the sign of the coefficient of (1 − y)y. If this
coefficient is positive, the second-degree polynomial in y has a maximum and, taking into account
that

Δ1(1, 0) = (I2 − I1)I3 > 0, Δ1(1, 1) = (I2 − I3)I1 > 0, (4.3)

it follows that, in this case, Δ1(1, y) > 0 for every y ∈ [0, 1]. If, on the contrary, the coefficient of
(1 − y)y is negative, we obtain immediately that

I1 − I3 < 0. (4.4)

Moreover, there is a minimum at the point

ym =
(I3 − I1)I2 + (2I1 + I2 − 3I3)(I3 − I2)

2(2I1 + I2 − 3I3)(I3 − I2)
.

However, ym > 1. Indeed, ym > 1 implies

(I3 − I1)I2 − (2I1 + I2 − 3I3)(I3 − I2) = I2
2 + (I2 − 2I3)I1 − 3I2I3 + 3I2

3 > 0.

Now, if (I2 − 2I3) > 0, it follows

I2
2 + (I2 − 2I3)I1 − 3I2I3 + 3I2

3 > I2
2 − 3I2I3 + 3I2

3 > 0,

because the quadratic form I2
2 − 3I2I3 + 3I2

3 has a negative discriminant. If (I2 − 2I3) < 0, from (4.4)
we obtain

I2
2 + (I2 − 2I3)I1 − 3I2I3 + 3I2

3 > I2
2 + (I2 − 2I3)I3 − 3I2I3 + 3I2

3 = (I2 − I3)2 � 0.

Thus, regardless of the sign of (I2 − 2I3), ym > 1 and, by (4.3), Δ1(1, y) > 0 for every y ∈ [0, 1].

Case I2 − I3 < 0.

To analyze the sign of D3 and D4 we observe that

Δ1(I1 = I2) ≡ (I2 − I3)Δ2 sin2 ϕ.

This allows us introduce a real parameter ε in such a way that I1 = I2 + ε. By doing so, we obtain

Δ1 = (I2 − I3)Δ2 sin2 ϕ + εΔ3, (4.5)

where
Δ3 = −I2 + (I2 − I3) sin2 θ + (I2 + 2(I2 − I3) cos2 ϕ sin2 θ) sin2 ϕ < 0.

Indeed, by introducing the change of variables (4.2), Δ3 becomes

Δ3 = −(1 − y)I2 + (I2 − I3)(1 + 2y − 2y2)x,

which is a linear function in x. However,

Δ3(x = 0) = −(1 − y)I2 < 0,

whereas the slope is also negative, provided

I2 − I3 < 0, 1 + 2y − 2y2 > 0, y ∈ [0, 1].

Thus, Δ3 < 0.
Now we note that D4 > 0 if (I2 − I1)Δ2 < 0. There are two different situations. On the one

hand, if Δ2 < 0, then I2 − I1 > 0. In this case, it follows from (4.5) that Δ1 > 0 as ε < 0, and
thus D3 > 0. On the other hand, if Δ2 > 0, a similar reasoning yields Δ1 < 0 and, consequently,
D3 < 0. �
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Remark 3. It can be proved that, in the cases cos ϕ = 0 and sin θ = 0, the above theorem is also
valid, and the stability conditions are those obtained in the limit, that is, I2 is the largest moment
of inertia.

It is worth noting that the sufficient conditions given in Theorem 3 match the necessary
conditions in the case I2 > I1. Indeed, we have the following result:
Theorem 4. A necessary condition for the equilibrium E1 to be stable is

(I2 − I1)(I2 − I3)[I2 + 3(I2 − I3) cos2 ϕ sin2 θ] > 0.

Proof. It is known that spectral stability is a necessary condition for stability, that is to say, all the
eigenvalues of the Jacobian matrix associated to the equilibrium must have zero real part. Making
use of (3.3), the Jacobian matrix at E1 reads⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
(I2−I3)ωc1s2

I2

(I2−I3)ωc2
I3

0 (I3−I2)ω2c1s2 0

(I3−I1)ωc1s2

I1
0

(I3−I2)ωs1s2

I3
(I2−I3)ω2c1s2 0 0

(I1−I2)ωc2
I1

0 0 0 0 0

0 − c1s2
I2

c2
I3

0 ωc1s2 −ωc2

c1s2
I1

0 − s1s2
I3

−ωc1s2 0 ωs1s2

− c2
I1

s1s2
I2

0 ωc2 −ωs1s2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where c1, s1, c2, s2 stand for cos ϕ, sin ϕ, cos θ and sin θ, respectively. The characteristic polynomial
can be written as

p(λ) =
λ2

I1I2I3
(aλ4 + bλ2 + c),

where

a = I1I2I3,

b =
(
I2(I2

2 − I1I2 + 2I1I3 − I2I3) cos2 θ

+ I3

[
I1(3I2 − 2I3) cos2 ϕ + (I2 − I3)2 cos2 ϕ + I1I2 sin2 ϕ

]
sin2 θ

)
ω2,

c = (I2 − I1)(I2 − I3)
(
I2 + 3(I2 − I3) cos2 ϕ sin2 θ

)
ω4 cos2 θ.

All the eigenvalues have zero real part if a, b and c are positive and, at the same time, b2 − 4ac > 0.
Thus, a necessary condition is c > 0 and the statement of the theorem follows. �

Remark 4. Taking into account (3.4), the sufficient and necessary condition for stability, when
I2 > I1, can be written as

(I2 − I1)(I2 − I3)[I2 + 3(I2 − I3)k2
3 ] > 0.

From this remark, we can establish positions suitable for stable permanent rotations. Indeed, if I2
is the largest moment of inertia, it is possible to have stable permanent rotations, whatever the
orientation of the gyrostat. On the contrary, if I2 < I3 < 4/3I2, there are no stable permanent
rotations, due to the fact that D4 < 0. However, as soon as I3 > 4/3I2, we find stable permanent
rotations in two symmetric spherical caps, along the z axis, whose size increases with I3, in such
a way that, as I3 → ∞, all the orientations are possible (see Fig. 2). The meridian y = 0 must be
excluded from our analysis as the points on this curve are those of the family E0 to be analyzed
further.
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Fig. 2. The orientation of stable permanent rotations as a function of I3 when I2 > I1. Green areas stand for
stable rotations, while red areas stand for unstable ones.

4.2. Stability of Family E0

Let us now analyze the E0 family of equilibrium points. For this family we have the following
result:

Theorem 5. The equilibrium E0 is stable if the following conditions are satisfied:

−B1 cos ϕ > 0, B0B1 > 0,

where

B0 = gmz0 + (I2 − I3)ω2 cos ϕ,

B1 = 4(I1 − I3)I3ω
4 cos3 ϕ +

[
3I1 + I3 − (I1 − I3)(2 cos 2ϕ + cos 4ϕ)

]
gmz0ω

2

− 4g2m2z2
0 cos ϕ sin2 ϕ.

(4.6)

Proof. The proof follows directly from the application of Theorem 2. Indeed, E0 is a critical point
of HA if

λ = −ω, μ =
1
2
(I3ω

2 − gmz0 sec ϕ).

Taking into account that θ = π/2 for the family E0 and

l1 =
(I3 − I1)ω2 sinϕ cos ϕ − gmz0 sinϕ

ω cos ϕ
,

we apply the Sylvester criterion to the reduced Hessian matrix Hess(HA)
∣∣∣
W×W

, obtaining for the

leading principal minors

D1 =
cos2 ϕ

I1
+

sin2 ϕ

I3
, D2 =

I1 cos2 ϕ sin2 ϕ + I3 cos4 ϕ

I1I2I3
,

D3 = − cos ϕ

4I1I2I3ω2
B1, D4 =

cos2 ϕ

4I1I2I3ω2
B0B1,
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where B0 and B1 are the expressions given in the statement of the theorem, and the conclusion
follows immediately as D1 and D2 are positive. �

It is worth noting that the sufficient conditions given by Theorem 5 are, in some cases, necessary
conditions too, as it can be deduced from a linear stability analysis. In fact, we have this result:

Theorem 6. If the equilibrium E0 is stable, then B0B1 > 0, where B0 and B1 are given by (4.6).

Proof. The Jacobian matrix at E0 is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 (I2−I3)
I2

ω cos ϕ 0 0 gmz0 0

(I3−I1)
I1

ω cos ϕ 0 gmz0

I3ω tan ϕ −gmz0 0 0

0 (I3−I2)ω2 sin2 ϕ−gmz0 tan ϕ
I2ω 0 0 0 0

0 − 1
I2

cos ϕ 0 0 ω cos ϕ 0

1
I1

cos ϕ 0 − 1
I3

sinϕ −ω cos ϕ 0 ω sinϕ

0 1
I2

sin ϕ 0 0 −ω sin ϕ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The spectral stability is a necessary condition for the Lyapunov stability. However, the
characteristic polynomial has the form

p(λ) =
λ2

I1I2I3ω2
(aλ4 + bλ2 + c),

where

a = I1I2I3ω
2,

b =
(
I1I2 + (I1 − I2)(I2 − I3) cos2 ϕ

)
I3ω

4+

+
(
I1(I2 − I3) − I2(I1 + I3) cos ϕ

)
gmz0ω

2 secϕ + g2m2z2
0 tan2 ϕ,

c =
B0B1

4 cos2 ϕ
.

Spectral stability takes place if a, b and c all have the same sign and, at the same time, b2 − 4ac > 0.
Thus, provided a > 0, a necessary condition is c > 0 and the statement of the theorem follows. �

Theorems 5 and 6 establish sufficient and necessary conditions of stability for E0. Nevertheless,
these conditions need to be analyzed in practice. That is to say, we will try to see if, with fixed ϕ
and mass distribution of the gyrostat, there exist stable permanent rotations. We will focus on the
sufficient stability conditions given in Theorem 5, and in doing so, we state the following result.

Theorem 7. There are stable permanent rotations of the family of equilibrium points E0 if

1. z0 cos ϕ < 0 or

2. z0 cos ϕ > 0 and, at the same time, I3 is the largest moment of inertia.

Otherwise, the sufficient conditions of stability are not satisfied.
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Proof. We recall that, from Theorem 5, the sufficient stability conditions are

− cos ϕB1 > 0, B0B1 > 0,

where B0 and B1 are given by (4.6). First of all, we note that these expressions are invariant under
the transformations

ϕ −→ −ϕ,

(ϕ, z0) −→ (π + ϕ,−z0),

(ϕ, z0) −→ (π − ϕ,−z0).

From the last two transformations we deduce that all results obtained for cos ϕ < 0 can be extended
to the case cos ϕ > 0 by changing z0 by −z0. Thus, taking this into account we consider the case
cos ϕ < 0. Then the two stability conditions are satisfied if both B0 and B1 are greater than zero.
Let us consider B0, given by

B0 = gmz0 + (I2 − I3)ω2 cos ϕ.

It is made by the sum of two terms, and the sign of B0 depends on the signs of these two terms.
We divide our analysis into four cases, depending on the signs of (I2 − I3) and z0.

Case 1. (I2 − I3) > 0 and z0 < 0.

In this case the two terms in B0 are negative (recall cos ϕ < 0) and then B0 < 0 for all ω. Then the
sufficient stability conditions cannot be satisfied.

Case 2. (I2 − I3) > 0 and z0 > 0.

We note that, in this case, B0 > 0 if ω is small enough provided that

B0(ω = 0) = gmz0 > 0.

On the other hand,

B1(ω = 0) = −4g2m2z2
0 sin2 ϕ cos ϕ > 0, (4.7)

because cos ϕ < 0. Thus, for ω small enough, both B0 and B1 are positive and the sufficient stability
conditions are satisfied. Once ω is fixed to satisfy the two stability conditions, l1 is determined from
the equilibrium relation (3.2) to complete the parameters for the stable permanent rotation.

Case 3. (I2 − I3) < 0 and z0 > 0.

In this case it follows immediately that B0 > 0 for all ω. Thus, taking into account (4.7), it follows
that for ω small enough there exist stable permanent rotations.

Case 4. (I2 − I3) < 0 and z0 < 0.

In this case we focus on the behavior of B0 and B1 at infinity, as B0(ω = 0) < 0 but limω→∞ B0 =
+∞. However, the leading coefficient of B1 as a polynomial in ω is given by

−4(I3 − I1)I3 cos3 ϕ > 0

if I3 > I1. Then, for ω greater enough, both B0 and B1 are positive and there exist stable permanent
rotations. Note that, in this case, I3 is the largest moment of inertia.

If, on the contrary, I3 − I1 < 0, the leading coefficient of B1 is negative. To analyze this case, we
introduce the new variable z = ω2, as both B0 and B1 are even functions of ω. After this change
of variable, B0 becomes linear in z and B1 quadratic. B0 is negative for z = 0, but B1 is positive.
However, for z going to infinity, B0 is positive, while B1 is negative. Both functions have a unique
real root in between zero and infinity. Let z0 and z1 be the roots of B0 and B1, respectively. If we
prove that z1 < z0, then B0 and B1 cannot be positive at the same time. Let us consider

z̄ =
gmz0

I2 − I3
, z̄ ∈ (0,∞).

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 7 2017



ON THE STABILITY OF A CLASS OF PERMANENT ROTATIONS 837

On the one hand, we have

B0(z̄) = (1 + cos ϕ)gmz0 � 0,

provided z0 < 0. This means that z̄ � z0. On the other hand,

B1(z̄) = a + (I1 − I3)m,

where

a = B1(z̄)I1=I3 = 4g2m2z2
0

I3 + (I3 − I2) sin2 ϕ cos ϕ

I2 − I3
< 0,

and

m = 4g2m2z2
0
I3 cos3 ϕ + (I2 − I3)(2 + cos 2ϕ) sin2 ϕ

(I2 − I3)2
< 0.

Taking into account that I1 > I3, and the above facts, it follows that B1(z̄) < 0 for all I1 > I3, and
then z1 < z̄. In summary, we have z1 < z̄ � z0, and then B0 and B1 cannot be positive at the same
time. This completes the proof. �

We remark that Theorems 5 to 7 are valid if cos ϕ �= 0. The case cos ϕ = 0 deserves a special
treatment, namely, computing the reduced Hessian matrix from the very beginning. However, for
the sake of conciseness, this time we omit the calculations and present the final results.
Theorem 8. Let us assume that, for the equilibrium E0, cos ϕ = 0, then it must be z0 = 0 and the
sufficient stability conditions are given by

ϕ = π/2, (l1 + (I1 − I2)ω)ω > 0, (l1 + (I1 − I2)ω)(l1 + (I1 − I3)ω) > 0,

ϕ = −π/2, −(l1 − (I1 − I2)ω)ω > 0, (l1 − (I1 − I2)ω)(l1 − (I1 − I3)ω) > 0.

On the other hand, a necessary stability condition is given by

ϕ = π/2,
(
l1 + (I1 − I2)ω

)(
l1 + (I1 − I3)ω

)
> 0,

ϕ = −π/2,
(
l1 − (I1 − I2)ω

)(
l1 − (I1 − I3)ω

)
> 0.

Remark 5. Note that, if cos ϕ = 0, it is always possible to have stable permanent rotations if the
absolute value of gyrostatic momentum l1 is larger enough.

Remark 6. It is worth noting that, in this case, as z0 = 0, the center of mass G of the gyrostat
coincides with the fixed point O. Therefore, although the gyrostat is under the action of a uniform
gravitational field, the weight of the system is applied in the fixed point O. Thus, the gravitational
torque N about O is zero, and then we have the case of an asymmetric gyrostat in free rotational
motion about O [16, 24, 29]. Moreover, for l1 = 0 we have the well-known problem of the free triaxial
rigid body. In this case, the sufficient and necessary stability conditions of Theorem 8 coincide with
the classical results on the rotation stability of a free asymmetric rigid body [19].

5. CONCLUSIONS
In a previous work [25], we studied, by using the Energy – Casimir method, the stability of

permanent rotations of a gyrostat with a fixed point in such a way that the center of mass is placed
on one principal axis of inertia and, moreover, the gyrostatic momentum spins about the same
axis. However, the problem becomes rather more involved when the rotor is spinning about one of
the other two principal axes, which is the case considered here. Indeed, the number of permanent
rotations is different; there are only two families. One of them, on one of the coordinate planes, is
similar to cases analyzed in [25], whereas the other family lies on the space, which makes the analysis
more complex. For this family we have proved the existence of stable permanent rotations when
the gyrostat is oriented in any direction of space, for some disposition of the moments of inertia.
This is the case if I2 is the largest moment of inertia. For the other family, we also have established
sufficient and necessary stability conditions and we have proved that in the limit situation, when
the fixed point is the center of mass of the gyrostat, we recover the classical stability conditions.
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24. Iñarrea, M. and Lanchares, V., Chaos in the Reorientation Process of a Dual-Spin Spacecraft with

Time Dependent Moments of Inertia, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2000, vol. 10, no. 5,
pp. 997–1018.
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