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Abstract—We consider the problem of stability of equilibrium points in Hamiltonian systems
of two degrees of freedom under low order resonances. For resonances of order bigger than two
there are several results giving stability conditions, in particular one based on the geometry of
the phase flow and a set of invariants. In this paper we show that this geometric criterion is still
valid for low order resonances, that is, resonances of order two and resonances of order one. This
approach provides necessary stability conditions for both the semisimple and non-semisimple
cases, with an appropriate choice of invariants.
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1. INTRODUCTION

The problem of determining the stability of the equilibria of dynamical systems is crucial, since
the flow evolution strongly depends on it. We could say that this is the first task one have to carry
out when studying a system. The question is trivial for one degree of freedom Hamiltonian systems
but it turns to be intricate for more degrees of freedom. Much is known for periodic Hamiltonian
systems with one degree of freedom and two degrees of freedom autonomous Hamiltonian systems.
In fact, there is a strong link between these two cases, as the stability conditions match in both of
them. In this work, we will focus on autonomous two degrees of freedom Hamiltonian systems and
on necessary conditions of stability for low order resonances, from a geometric point of view.

Without loss of generality we will assume that the origin is an isolated equilibrium of the system.
Moreover, we will assume that the Hamiltonian function H is analytic in a small neighborhood of
the origin, so it can be expanded in the form

H = H2 + H3 + · · · ,

where each Hk is a homogeneous polynomial of degree k in coordinates and momenta.
The first term in the expansion, H2, gives information about linear stability. Indeed, the

eigenvalues of the linear system associated to H2 completely decide the linear stability properties
of the origin. In some cases, these properties can be extended to establish nonlinear stability
conditions. In this sense, if the eigenvalues have non zero real part, then the origin is both linear
and nonlinear unstable. Unfortunately, there is not a similar result when all the eigenvalues have
zero real part. This situation belongs to the critical case in the terminology of Lyapunov, when
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higher order terms in the power expansion of H are necessary to solve the question of stability in
rigorous way.

Being ±iω1 and ±iω2 the eigenvalues of the corresponding linear system several results of
stability have been established. If H2 is a definite quadratic form, a theorem of Dirichlet [6] ensures
the stability of the origin for the whole Hamiltonian (see [17]). However, if H2 is not sign-defined
there are several methods based on KAM theory to determine the global stability. Thus, we are
left with the case of a not sign definite quadratic form H2.

The way this situation is treated strongly depends on whether ω1 and ω2 satisfy a resonant
condition or not. We say that ω1 and ω2 satisfy a resonant condition of order s, if there exist m
and n, coprime integers, such that

mω1 − nω2 = 0

and m + n = s.
If ω1 and ω2 do not satisfy a resonant condition, Arnold’s theorem [3] ensures the stability

of the origin if certain non-degeneracy condition is fulfilled [3, 14]. However, if ω1 and ω2 satisfy
a resonant condition of order s a case study must be applied. In this way, Markeev [11] and
Alfriend [1, 2] provided appropriate results for resonances of third and four order. Later on, Sokolski
gave conditions of stability for first and second order resonances [18, 19]. Nevertheless, although the
stability conditions for second order resonance were right, the proof had a flaw and was properly
demonstrated by Lerman and Markova [10]. These previous results almost cover the totality of
situations one can face in the stability question. Only strong degenerate situations are left to
be studied, as it was done by Markeev for a degenerate case in the presence of a fourth order
resonance [12, 13].

It seems that resonant and non resonant cases must be studied separately. However, Cabral
and Meyer [5] gave a very general result including resonant and non resonant cases, except those
considered by Sokolski, corresponding to first and second order resonances. Their approach takes
advantage of the following fact: if ω1, ω2 �= 0 and the corresponding linear system is semisimple,
that is, the canonic Jordan matrix is diagonal, the normal form of the quadratic part H2 can be
written in Poincaré coordinates as

H2 = ω1Ψ1 − ω2Ψ2, (1.1)

independently if a resonant condition is satisfied or not. Soon after, it was proven by Elipe and
coworkers [8, 9] that this result has a nice geometric counterpart giving rise to a geometric criterion
of stability a bit more general; it is sufficient to characterize the phase flow of the normalized
Hamiltonian system, and roughly speaking, the criterion is based on how two surfaces, related with
the normal form, intersect one another.

Nevertheless, if either ω1 or ω2 are zero, or the corresponding linear system is not semisimple,
that is, in the case of first order resonance and second order resonance in the not semisimple case,
the normal form of H2 is no longer as in Eq. (1.1); the previous results are not of applicability and
Sokolski’s and Lerman’s theorems have to be taken into account. The question is whether these
theorems have the same geometric counterpart as that of Cabral and Meyer.

In this paper we will show that if we apply the simple ideas of the geometric criterion we find the
same conditions of stability that in Sokolski’s theorems. To this end, we will consider the Birkhoff
normal form [4] up to a certain order, and the corresponding set of invariants associated to the
reduction that generates the reduced phase space. Finally, we will study the phase flow on the
integral manifold where the origin lies.

2. THE GEOMETRIC CRITERION

To begin with, we recall the geometric criterion of stability for resonant cases. Let us suppose
that ω1 and ω2 satisfy a resonant condition of order greater or equal than two, and that H2 can
be written as in Eq. (1.1). Then, H can be brought into its Birkhoff’s normal form, where H2

is a formal integral. By doing so, the normal form is generated by a set of invariant quantities,
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that commute with the new formal integral. This set is easily obtained by using complex variables
(u1, u2, v1, v2) defined as

uk =
1√
2
(qk − ipk), vk =

−i√
2
(qk + ipk),

qk =
√

2Ψk sin φk, pk =
√

2Ψk cos φk,

k = 1, 2,

where (φ1, φ2,Ψ1,Ψ2) are the action-angle Poincaré variables. Indeed, if nω1 − mω2 = 0, they are

I1 = u1v1, I2 = u2v2, I3 = un
1um

2 , I4 = vn
1 vm

2 .

A counterpart of real invariants results by means of appropriate linear combinations. In this way,
we consider the set M1, M2, C and S (see [7, 9] for details) defined as

M1 =
i

2
(mI1 + nI2), M2 =

1
2
(mI1 − nI2),

C =
1
2
mn/2nm/2(I4 + in+mI3), S =

i

2
mn/2nm/2(I4 − in+mI3).

Now, the normal form up to order N is written as

H = H2 +
N∑

j=3

Hj,

where H2 = 2ωM2 (m = ωn), and

Hj =
∑

2(γ1+γ2)+(n+m)(γ3+γ4)=j

aγ1γ2γ3γ4M
γ1
1 Mγ2

2 Cγ3Sγ4 , 3 � j � N.

The invariants are not independent, but they satisfy the equation

C2 + S2 = (M1 + M2)n(M1 − M2)m, (2.1)

together with the constrain

M1 � |M2|. (2.2)

Equations (2.1) and Eq. (2.2) define the reduced phase space, which is regarded as a fibered three-
dimensional space. Each fibre is a two-dimensional space labeled by M2. Fixed a value for M2,
Eq. (2.1) is a surface of revolution with a vertex on the point M1 = |M2|, C = S = 0. In Fig. 1 we
see different surfaces of revolution for a 1 : 3 resonance and for several values of M2.

Once the reduced phase space is determined, it is possible to know the flow of the normalized
system, when it is truncated to a prescribed order. Indeed, fixed a value of M2, the flow results
as the intersection of the normalized Hamiltonian function with the surface defined by Eq. (2.1).
Based on this idea, the following stability result can be established (for more details, see [9]).

Theorem 1. Let us assume that the Hamiltonian is normalized up to a certain order N � s, being
HN the first term does not vanish for M2 = 0. Let us consider the two surfaces

G1 = {(C,S,M1) ∈ R
3; HN (C,S,M1, 0) = 0},

and

G2 = {(C,S,M1) ∈ R
3; C2 + S2 = M s

1}.
If the origin is an isolated point of intersection, then it is stable. In other case, and the two surfaces
are not tangent, the origin is unstable.

The proof considers the flow on the fibre where the origin lies. If there is a neighborhood of the
origin filled with closed orbits, then the origin is stable. On the contrary if there are asymptotic
orbits the origin is unstable. It is clear that these conditions are necessary, but what matters is that
they are also sufficient. We remark that the simple ideas underlying the geometric criterion lead
straightforwardly to stability and instability conditions for equilibrium positions. These conditions
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Fig. 1. The reduced phase space in 1:3 resonance for different values of M2.

are deduced from the flow of a truncated system up to a suitable prescribed order. However, these
are necessary conditions and a rigorous proof that they are also sufficient conditions is needed. In
this sense, while instability conditions are easily extended to the full system, stability ones need of
KAM methods. Moreover, the characterization of the flow in all the fibers of phase space helps to
the reconstruction of periodic orbits and invariant tori.

Theorem 1 does not apply for the cases treated by Sokolski and Lerman for first and second
order resonances. A natural question is to check if the geometric criterion matches with stability
conditions established for these cases. In this way we will show how necessary conditions derived
from the geometric criterion are those given in the results of Sokolski and Lerman.

3. LOW ORDER RESONANCES: RESONANCE OF ORDER 2

In this case we focus on the non semisimple case because the semisimple one is solved by the
results given in Section 2. To begin with, let us reproduce the Sokolski–Lerman theorem [10, 18]
for the non semisimple case.

Theorem 2. Let us consider a Hamiltonian system under a 1:1 resonance whose normal form up
to order 4 is written in terms of the cartesian variables as

H =
d

2
(x2 + y2) + ω(xY − yX) + (X2 + Y 2)[A(X2 + Y 2) + B(xY − yX) + C(x2 + y2)] + H,

where d = ±1 and H = O(x,X, y, Y, 6). If dA > 0, then the origin is stable. If dA < 0, then the
equilibrium is unstable.

Now, we will show, from a geometric point of view, that necessary stability conditions are
precisely those established in theorem 2. To do this, we follow the work of Palacián and Yanguas [15]
about the reduction of polynomial planar Hamiltonians with quadratic unperturbed part. Firstly,
we introduce the semisimple part of H2, namely xY − yX, as a formal integral. Thus, after a
normalization procedure, the Hamiltonian is reduced to another one with only one degree of
freedom. The corresponding normal form is generated by four linearly independent invariants
I1, I2, I3, I4, that in terms of Cartesian variables can be written as

I1 = x2 + y2, I2 = X2 + Y 2, I3 = xX + yY, I4 = xY − yX. (3.1)

REGULAR AND CHAOTIC DYNAMICS Vol. 17 Nos. 3–4 2012



DETERMINATION OF NONLINEAR STABILITY 311

Let us remark that the above invariants are not independent but they verify the relation

I1I2 = I2
3 + I2

4 , (3.2)

together with the restriction,

I1, I2 � 0. (3.3)

Being I4 a formal integral, Eqs. (3.2) and (3.3) define the reduced phase space as a family of elliptic
hyperboloids labeled by I4 (see Fig. 2). The origin belongs to the elliptic hyperboloid associated to
I4 = 0.

Fig. 2. Three fibres of the reduced phase space I1I2 = I2
3 + I2

4 for I4 = 0, I4 = 0.5 and I4 = 1.

In terms of the invariants, the Hamiltonian normal form, up to order 4, is written as

H =
d

2
I1 + ωI4 + AI2

2 + BI2I4 + CI1I2 + H.

To derive a geometric criterion we focus on the phase flow on the manifold where the origin lies,
the corresponding to I4 = 0. It is obtained by the intersection of the following two surfaces

G1 = {(I1, I2, I3) ∈ R
3; H(I1, I2, I3, 0) = 0},

and
G2 = {(I1, I2, I3) ∈ R

3; I1I2 = I2
3 , I1, I2 � 0}.

In order to have stability it is necessary the orbits around the origin be closed, which implies the
origin is an isolated intersection point of G1 and G2.

The intersection of the two surfaces is given by the set of points

G1 ∩ G2 =
{

(I1, I2, I3) ∈ R
3;

d

2
I1 + AI2

2 + CI1I2 = 0, I1I2 = I2
3 , I1, I2 � 0

}
.

It is clear that a point belonging to G1 ∩ G2 must satisfy the second degree equation in I2,
d

2
I1 + AI2

2 + CI1I2 = 0, (3.4)
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for I1, I2 � 0. As expected, the origin is one of the solutions, but we are interested in checking
whether this solution is isolated or not. To solve this question let us consider the discriminant Δ
of Eq. (3.4),

Δ = I1(C2I1 − 2dA).

If A = 0, the set of points I1 = I3 = 0 belongs to G1 ∩ G2 and the two surfaces are tangent; no
information about stability is obtained. If A �= 0, we have intersection points different to the origin
if Δ � 0. Here two cases must be distinguished.

1. On the one hand, if dA < 0 it follows that Δ � 0 for whatever value of I1 � 0. Consequently,
for each value of I1 we obtain an intersection point and the origin is not isolated. Because the
two surfaces G1 and G2 are not tangent there are orbits asymptotic to the origin and thus, it
is unstable.

2. On the other hand, if dA > 0, taking into account that I1, I2 � 0, the discriminant Δ is
greater or equal than zero when C �= 0 and I1 � 2dA/C2 or when C = 0 and I1 = 0. Thus,
it is possible to find a neighborhood of the origin U such that U ∩ (G1 ∩ G2) = {(0, 0, 0)} and
the origin is an isolated intersection point. In that case, there is a family of closed orbits
around the origin and it is stable.

In Fig. 3 we see the intersection of the two surfaces G1 and G2 projected onto the plane
I3 = 0 in the four possible situations depending on the sign of dA and C. In case the origin is
an isolated intersection point, a collection of closed orbits around the origin exists, otherwise there
are asymptotic orbits, as it is reflected in Fig. 4.

Fig. 3. G1 ∩ G2 projected onto the plane I3 = 0.

4. LOW ORDER RESONANCES: RESONANCE OF ORDER 1

For a resonance of order one, two situations must be considered depending if the corresponding
linear system is semisimple or not. Both situations were studied by Sokolski [19] providing suitable
stability criteria, one for each case. Following a similar reasoning to the one in the previous
subsection we will see that necessary conditions for stability and instability can be obtained from
a geometric point of view.
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Fig. 4. Orbits around the origin in the case of stability (left) and instability (right).

4.1. Semisimple Case

For the semisimple case Sokolski established the following theorem

Theorem 3. Let us consider a Hamiltonian system under a 0:1 resonance whose normal form up
to order N is written in terms of the cartesian variables as

H(x, y,X, Y ) = H2(x, y,X, Y ) + H3(x, y,X, Y ) + · · · + HN (x, y,X, Y ) + H,

where

H2 =
d

2
ω2(y2 + Y 2), Hj =

[j/2]∑
k=0

h
(k)
j−2k(y

2 + Y 2)k, 3 � j � N,

being d = ±1 and h
(k)
j−2k a homogeneous polynomial of degree j − 2k in x,X and H = O(x,X, y,

Y,N + 1). If at least one coefficient of the polynomial h
(0)
N is nonzero and h

(0)
N is a sign–defined

function, then the origin is stable. If at least one coefficient of the polynomial h
(0)
N is a sign–variable

function, then the origin is unstable. In particular, if N is an odd number, then the origin is
unstable.

First of all, note that N is not explicitly specified in the theorem, so it is supposed to be the
first term in the normal form that is not the null function. Now, we are in conditions to derive
the stability conditions of the theorem from the geometric approach. To begin with, we carry out
a normalization procedure by reducing the number of degrees of freedom by means of a formal
integral. Following [15], we take y2 + Y 2 as the formal integral. Besides, a set of three independent
invariants J1, J2, J3 is obtained, that in terms of Cartesian variables can be written as

J1 = x, J2 = X, J3 = y2 + Y 2. (4.1)

In this case, the quadratic term H2 becomes

H2 =
d

2
ω2J3,

and it is nothing more than a multiple of the formal integral. Moreover, the reduced phase space is
defined by J3 = c, with c a constant, and it is regarded to a family of parallel planes, one for each
constant value of J3.
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As in the previous section we focus on the phase flow in the plane where the origin lies, that is
on the plane J3 = 0. The flow is obtained by the intersection of the two surfaces

G1 = {(J1, J2, J3) ∈ R
3; H(J1, J2, J3) = 0}, (4.2)

and

G2 = {(J1, J2, J3) ∈ R
3; J3 = 0}. (4.3)

As J3 = 0, it follows that y = Y = 0 and therefore, H(J1, J2, 0) = h
(0)
N (J1, J2). In this way, the

intersection of G1 and G2 can be described by the set

G1 ∩ G2 =
{

(J1, J2, J3) ∈ R
3; h

(0)
N (J1, J2) = 0, J3 = 0

}
.

Since h
(0)
N is a homogeneous polynomial of degree N in J1, J2, it can be written as

h
(0)
N (J1, J2) = aN,0J

N
1 + aN−1,1J

N−1
1 J2 + · · · + a0,NJN

2 .

It is clear that the origin, J1 = J2 = J3 = 0, belongs to G1 ∩ G2. Even more, if we fix the value
J1 = 0, it must be J2 = J3 = 0, unless a0,N = 0. If a0,N = 0 and at least one coefficient in h

(0)
N

is not zero, G1 and G2 intersect transversely along the line J1 = J3 = 0. Therefore, there is an
asymptotic orbit to the origin and it is unstable.

Now, we are interested in intersection points such that J1 �= 0. In this way, we introduce a
new variable z such that J2 = zJ1 (z �= 0). Dividing by JN

1 the function h
(0)
N (J1, J2) we obtain the

polynomial

pN (z) = aN,0 + aN−1,1z + · · · + a0,NzN .

We note that if pN (z) = 0 has a real root, z0, then the straight line defined by J3 = 0, J2 = z0J1,
belongs to G1 ∩ G2. As a consequence, there are asymptotic lines to the origin and it is unstable.
On the contrary, if pN (z) = 0 has no real roots, the origin is the unique intersection point and a
family of closed orbits exists around it. Then it is stable.

However, the existence of real roots of pN (z) = 0 depends on how h
(0)
N (J1, J2) is. In particular,

if h
(0)
N (J1, J2) is sign defined, pN (z) has no real roots and the origin is stable. On the other hand,

if h
(0)
N (J1, J2) changes the sign, pN (z) has at least one real root and the origin is unstable. We note

that if N is an odd number, the polynomial pN (z) has at least one real root, and therefore the
origin is unstable.

4.2. Non Semisimple Case

For this case the result of Sokolski reads as

Theorem 4. Let us consider a Hamiltonian system under a 0:1 resonance whose normal form up
to order N is written in terms of the cartesian variables as

H(x, y,X, Y ) = H2(x, y,X, Y ) + H3(x, y,X, Y ) + · · · + HN (x, y,X, Y ) + H,

where

H2 =
d1

2
x2 +

d2

2
ω2(y2 + Y 2), Hj =

[j/2]∑
k=0

aj−2k,kX
j−2k(y2 + Y 2)k, 3 � j � N,

being d1, d2 = ±1 and H = O(x,X, y, Y,N + 1). If aN,0 �= 0, and N is an odd number, then the
origin is unstable. If aN,0 �= 0, N is an even number and d1aN,0 < 0, then the origin is unstable. If
aN,0 �= 0, N is an even number and d1aN,0 > 0, then the origin is stable.
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Note that, as in theorem 3, it is supposed that HN is the first term of the normal form that is
not the null function. Under this implicit hypothesis we proceed in the same way as in the previous
cases. As it is shown in [15], both the formal integral and the invariants are the same that in the
semisimple case, and are given by (4.1).

Now, the quadratic part of the Hamiltonian function H2 is written as

H2 =
d1

2
J2

1 +
d2

2
ω2J3,

and the reduced phase space is again a collection of parallel planes, J3 = c, with c a constant.

Since the formal integral is J3 and the origin lies on the plane J3 = 0, we pay attention to the
flow on this manifold. Thus, we consider the two surfaces

G1 = {(J1, J2, J3) ∈ R
3; H(J1, J2, J3) = 0}, (4.4)

and

G2 = {(J1, J2, J3) ∈ R
3; J3 = 0}. (4.5)

To know their intersection, it is worth to note that if J3 = 0, then y = Y = 0, and therefore
H(J1, J2, 0) = d1J

2
1 /2 + aN,0J

N
2 . In this way the intersection is the set of points

G1 ∩ G2 =
{

(J1, J2, J3) ∈ R
3;

d1

2
J2

1 + aN,0J
N
2 = 0, J3 = 0

}
.

If N is an odd number, then the origin is not an isolated point of the intersection because

G1 ∩ G2 =

{
(J1, J2, J3) ∈ R

3; J3 = 0, J2 =
(

−d1

2aN,0
J2

1

)1/N
}

.

Therefore, as the surfaces intersect transversely, the origin is unstable. In Fig. 5 we depict this set
of points projected onto the plane J3 = 0 depending on the sign of d1aN,0.

Fig. 5. G1 ∩ G2 projected onto the plane J3 = 0 for N an odd number.

If N is an even number, the intersection G1 ∩ G2 changes depending on the sign of d1aN,0. In
this way, if d1aN,0 < 0, the intersection is given by

G1 ∩ G2 =

{
(J1, J2, J3) ∈ R

3; J3 = 0, J2 =
(

−d1

2aN,0
J2

1

)1/N
}

.

Therefore, the origin is unstable. In Fig. 6 we depict this set of points projected onto the plane
J3 = 0.

If d1aN,0 > 0, the origin is an isolated point of intersection and then it is a stable.

REGULAR AND CHAOTIC DYNAMICS Vol. 17 Nos. 3–4 2012



316 LANCHARES et al.

Fig. 6. G1 ∩ G2 projected onto the plane J3 = 0 for N an even number.

5. CONCLUSIONS
For a two degrees of freedom Hamiltonian system it was known that stability criteria for

resonances of order bigger than two can be obtained from a geometric point of view [9, 16]. In
this paper the cases of low order resonances, those of order one and two, have been analyzed
from a geometric approach, and it has been shown that the criteria given by Sokolski [18, 19]
can be recovered. The idea is based on the structure of the phase flow after a normalization
procedure. In this way the normal form of the quadratic part of the Hamiltonian function plays an
important role. In fact, this is the reason why the general criterion of Cabral and Meyer [5], and
its geometric counterpart [9, 16], is not valid for low order resonances and ad hoc criteria must be
given. Nevertheless, the geometric approach is the same does not matter the order of the resonance.
In this way it is revealed as a powerful tool for studying stability properties of equilibrium positions.
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