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a b s t r a c t

The problem of the dynamics of a charged particle orbiting around a rotating magnetic planet is revisited,
the goal being twofold. On the one hand the model takes into account, apart from the magnetic and
the electric field, the gravitational potential of the planet where the effect of the planetary oblateness
is also incorporated. The techniques used in this analysis include averaging with respect to the mean
anomaly, reduction to the simplest possible reduced space, study of the possible relative equilibria with
the occurring parametric bifurcations and the stability analysis of these equilibria using normal forms.
Also, we prove the existence of KAM 3-tori of the original system from the relative equilibria that are
elliptic points in the fully-reduced space.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

For many years, physicists and astronomers have paid much
attention to the study of the motion of charged dust in planetary
magnetospheres. Today, it is still an issue of interest, mainly from
the point of view of planetary mission design [1]. Needless to say,
many of the studies of recent years have been motivated by the
Cassini mission, which performed detailed in situ measurements
of charged dust grains orbiting around Saturn.

From the theoretical point of view, since the pioneering works
of Störmer (see the papers [2] and the monograph [3]), where
the motion of a light charge in a pure magnetic dipole field
(the Störmer model) is considered, to more complex models for
heavier particles where the gravity is also considered (see [4,5]
and references therein), this interest has resulted in a plethora of
papers where different models and approaches have been used
in order to describe the single-particle dynamics of charged dust
orbiting magnetic planets. In particular, Horányi, Howard and
coworkers [6–8], using a model that includes Keplerian gravity,
a magnetic dipole aligned along the axis of rotation of the planet
and a corotational electric field, showed that the dynamics of the
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charged dust grain is governed by a two-dimensional effective
potential. From this potential the above-mentioned authors obtain
the global stability conditions of the grain [7] and they predict the
existence of non-equatorial halo orbits [8,9] for the grain.

The model proposed by the aforementioned authors is a
nice candidate to which to apply the modern analytic tools of
nonlinear dynamics. Then, in [4,10] we performed on that model
a perturbative analytical study of the Keplerian regime of the
problem. Among other things, we studied the flow of the resulting
(averaged) system in themost reduced phase space, describing the
existing relative equilibria, their stability and bifurcations. Finally,
we connected the analysis of the flow on these reduced phase
spaces with that of the original system.

In the present work we go one step further by considering the
influence of the planetary oblateness. Our aim is to perform a
qualitative analysis of the three-degree-of-freedom Hamiltonian
system. The dynamics depends on three external parameters: δ
(the ratio between the magnetic and the Keplerian interactions),
β (the ratio between the electrostatic and Keplerian interactions)
and J2 (the planet’s oblateness) and on one internal parameter:
the third component of the angular momentum vector. We will
analyse the influence in the dynamics of the introduction in the
model of the planet’s oblateness and we will compare the results
with those obtained in [4]. This is the first main contribution of the
paper.

http://dx.doi.org/10.1016/j.physd.2012.02.017
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
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The scheme of our procedure is as follows. We normalise
(average) theHamiltonianwith respect to themean anomaly of the
motion of the particle, and reduce the Hamiltonian function by the
symmetry related to the (approximate) integral introduced by the
averaging. We reduce again by the (exact) axial symmetry of the
problem, which allows us to pass to a new Hamiltonian function
defining a dynamical systemof one degree of freedom. The discrete
symmetries of the original Hamiltonian allows us to further
reduce the Hamiltonian, introducing the appropriate invariants
that defined the fully-reduced space, without decreasing the
number of degrees of freedom of the system. Once the system is
completely reduced, we analyse the relative equilibria, their linear
and nonlinear stability and the bifurcations of the fully-reduced
equations using techniques based on the discussion of roots of
polynomials and appropriate normal forms around equilibria.
The final step entails extracting the corresponding consequences
on the flow of the original Hamiltonian using reconstruction
techniques, which is our second main contribution.

The paper is organised into seven sections. The model
Hamiltonian of the problem is presented in Section 2. As we
restrict our model to the Keplerian regime, a normalisation of
Delaunay of the equations of motion is made in Section 3. In
Section 4 we perform the reductions related to the symmetries of
the problem.We startwith theKeplerian reduction originated after
normalising over the mean anomaly and truncating the higher-
order terms.Without decreasing the number of degrees of freedom
of the system, the discrete symmetries of the original Hamiltonian
allow us to further reduce the averaged Hamiltonian to a fully-
reduced phase space. Section 5 is devoted to the analysis of the
fully-reduced Hamiltonian, discussing the relative equilibria, their
stability and the occurring bifurcations. In Section 6 the flow
corresponding with the Hamiltonian that defines a system of three
degrees of freedom is reconstructed from the analysis carried out
in the reduced space. We end up with the existence of invariant 2-
tori that bifurcate according to the bifurcation lines (a bit distorted)
discussed in Section 5. We also show the existence of KAM 3-tori.
The conclusions are drawn in Section 7.

2. The problem

We consider a particle of mass m and electric charge q orbiting
around a non-spherical rotating magnetic planet of mass M and
equatorial radius Rp. The general Hamiltonian of this particle in
Gaussian units can be expressed as

H =
1

2m


P −

q
c
A
2

+ U(x), (1)

where c is the speed of light, x = (x, y, z) is the particle position
in Cartesian coordinates and P = (Px, Py, Pz) are their conjugate
momenta. The vector potential A describes the magnetic forces
and the scalar potential U(x) accounts for the electrostatic and
gravitational interactions. We consider that the magnetic field B is
created by a perfect magnetic dipole of strength µ aligned along
the north–south poles of the planet (the z-axis). Therefore, the
vectors A and B are given by

A =
µ

r3
(−y, x, 0), B = ∇ × A, (2)

where r = (x2 + y2 + z2)1/2 is the distance of the charged particle
to the centre of mass of the planet.

By assuming that the magnetosphere surrounding the planet is
a rigid conducting plasma which rotates with the same angular
velocity ω as the planet, the charged particle is subject to a
corotational static electric field E of the form

E = −
1
c

(� × x) × B = −
µ ω

c
∇ Ψ

where Ψ =
x2 + y2

r3
, � = (0, 0, ω).
Due to the non-sphericity of the planet, besides the pure
Keplerian term UK = −M m/r , the gravitational potential of our
model includes the so called J2 term [11]

UJ2 =
M mR2

p J2
2 r3


3 z2

r2
− 1


.

The dimensionless parameter J2 accounts for the non-sphericity
of the planet. This parameter is positive for an oblate planet, and
negative for a prolate one.

Therefore, the combined action of the gravitational and
electrostatic interactions is given by the scalar potential U(x)

U(x) = UK + UJ2 + Ue

= −
M m
r

+
M mR2

p J2
2 r3


3 z2

r2
− 1


+

qµ ω

c
Ψ , (3)

whereUe = qµ ω Ψ /c is the electrostatic potential. By introducing
the expressions (2) and (3) into (1) the resultingHamiltonian yields

H =
1

2m


P2
x + P2

y + P2
z


−

M m
r

+
M mR2

p J2
2 r3


3 z2

r2
− 1


+

qµ ω

c
Ψ +

µ q
m c r3


µ q
2 c

x2 + y2

r3
− Pφ


,

where Pφ = x Py − y Px is the z-component of the angular momen-
tum.

Since the above Hamiltonian H is invariant under rotations
around the z-axis, cylindrical variables (ρ, z, φ, Pρ, Pz, Pφ) arise in
a natural way and in these coordinates the Hamiltonian reads as

H =
1

2m


P2

ρ + P2
z +

P2
φ

ρ2


−

M m
r

+
M mR2

p J2
2 r3


3 z2

r2
− 1



+
mω ωc R3

p

c
ρ2

r3
+

ωc R3
p

r3


mωc R3

p

2
ρ2

r3
− Pφ


.

The parameter ωc = (q Bo)/(mc) is the cyclotron frequency,
where Bo = µ/(R3

p c) designates the magnetic field strength at the
planetary equator.

If we scale positions as x′
= x/Rp and time as t ′ = ωK t ,

where ωK = (M/R3
p)

1/2 is the Keplerian frequency, we arrive at
the dimensionless Hamiltonian

H ′
=

H

mR2
p ω2

K

=
1
2


P2

ρ + P2
z +

P2
φ

ρ2


+ UK + UJ2 + Ue + Um

=
1
2


P2

ρ + P2
z +

P2
φ

ρ2


−

1
r

+
J2
2 r3


3 z2

r2
− 1



+ δ β
ρ2

r3
+

δ

r3


δ ρ2

2 r3
− Pφ


. (4)

In the previous Hamiltonian we have dropped the primes and
two new parameters have been defined: δ = ωc/ωK and β = ω/

ωK > 0. The parameter δ indicates the ratio between themagnetic
and the Keplerian interactions (i.e. the charge–mass ratio q/m of
the particle), andβ refers to the ratio between the electrostatic and
Keplerian interactions.
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Fig. 1. Variation of the potentials UK ,Ue,Um,UJ2 in the equatorial plane (z = 0)
as a function of the distance r for the case of Saturn and a charged particle with
δ = 0.01 and Pφ = 2.

For a given planet, the parametersβ and J2 take constant values,
hence the problem depends on three parameters. On the one hand,
it depends on two internal parameters: Pφ and the energy E = H ′.
On the other hand, the problemdepends on the external parameter
δ, which can be positive or negative depending on the charge of the
particle.

The goal of this paper is to study the dynamics of the system
when the main effect on the particle is assumed to be the
pure Keplerian gravity. Therefore, we assume that the Keplerian
potential UK is only slightly affected by the other potential terms,
Ue,Um,UJ2 . That is, UK ≫ Ue,Um,UJ2 .

For example, in the case of Saturn, the most oblate planet of
the Solar System, the values of the constant parameters are β =

0.40649 and J2 = 0.016298, see [11,12]. In order to keep the poten-
tials Ue and Um as perturbations of the Keplerian potential UK , we
shall specify that the external parameter δ varies in [−0.01, 0.01].
For more details on the ranges of validity of δ, see [13]. Wewill use
these numerical values in some computations.

Fig. 1 shows the variation on a double logarithmic scale of the
potentials UK ,Ue,Um,UJ2 as a function of the distance r for the
case of Saturn in the equatorial plane (z = 0) for a charged par-
ticle with δ = 0.01 and Pφ = 2. From this figure it is clear that,
for those parameter values, the main interaction is the pure Keple-
rian gravitational potential, so that the remaining potential terms
can be regarded as perturbations because they are several orders of
magnitude lower. It is also clear that for this planet it is important
to include in the study the UJ2 term in the gravitational potential
because it is of similarmagnitude to the electromagnetic perturba-
tions. A similar comparison about the influence of the forces acting
on the particles appears in [14].

From now on we will take the small parameter to be of the size
of δ while J2 will be supposed to be another small parameter of the
same order as δ.

3. Delaunay normalisation through first-order averaging

We start by introducing two sets of coordinates that are
suitable for working with Keplerian systems. The first set is
given by the polar-nodal coordinates (r, ϑ, h, R,G,H), where r
stands for the radial distance from the centre of the planet
to the particle, ϑ represents the argument of the latitude, h
accounts for the right ascension of the node while R,G and
H are the conjugate momenta of r, ϑ and h respectively, see
more details in [15]. Also, the action G represents the modulus
of the angular momentum vector, i.e. G = |G| = |x × P|

and H = x Py − y Px stands for the third component of the angular
momentum, that is, H = Pφ . We notice that 0 ≤ |H| ≤ G.
The inclination of the orbital plane with respect to the equatorial
plane is defined by the angle I such that cos I = H/G, where I is
defined on [0, π]. These coordinates are singular for r = 0,G = 0
and G = |H|. The condition |H| < G ensures that I is defined
properly in (0, π) and that G is not parallel to the z axis, so h is well
defined. Thus, polar-nodal coordinates are not valid for rectilinear
and equatorial trajectories.

The second set of coordinates is the so called Delaunay coor-
dinates and are given by (ℓ, g, h, L,G,H). The angle ℓ refers to
the mean anomaly, g is the argument of the pericentre and L the
square of the semimajor axis, hence 0 ≤ |H| ≤ G ≤ L. The condi-
tion G < L ensures that the ellipse does not degenerate to a circle,
thus g and ℓ are well defined and |H| < G ensures that h is well
defined. Thus, Delaunay coordinates present singularities for rec-
tilinear, circular and equatorial trajectories, see details in [15,16].
However, circular and equatorial singularities can be handled by
an appropriate combination of Delaunay elements [17], as will be
done to study these particular types of motion later.

Both polar-nodal and Delaunay coordinates are symplectic.
Typically, the Hamiltonian H ′ is expressed as a combination of
polar-nodal and Delaunay elements. We denote the resulting
Hamiltonian by the same expression H ′. According to the
discussion made in Section 2 we consider the potentials Ue,Um
and UJ2 to be of the same order and much smaller than UK . Thus
we treat the problem as a perturbed Kepler Hamiltonian, splitting
H ′ as the sum of the pure Kepler problem H ′

0 plus the first-
order perturbation that takes into account the potential related to
the electrostatic and magnetic fields as well as the gravitational
contribution of the oblateness of the planet.

Now, the method of averaging, which in the context of Kepler
system is called the normalisation of Delaunay, may be interpreted
as a change of coordinates that allows us to pass from H ′ to a new
Hamiltonian K averaging (normalising) over the mean anomaly.
Proceeding only to first order, we make

H ′

0 =
1
2


P2

ρ + P2
z +

P2
φ

ρ2


−

1
r

= −
1
2L2

, H ′

1 = H ′
− H ′

0.

Next, we identify K0 with H ′

0 and try to solve the homological
equation

1
L3

∂W1

∂ℓ
+ K1 = H ′

1.

The solution of this is the pair (K1, W1), where K1 corresponds
with the average with respect to the mean anomaly

K1 = (2π)−1
 2π

0
H ′

1 dℓ,

whereas W1 is the associated generated function. It is a periodic
function of ℓ, g and h and is explicitly calculated through the
integral

W1 = L3


H ′

1 dℓ − K1 ℓ


.

This averaging process is performed in the framework of Lie
transformations [18]. After performing the computationswe arrive
at the Hamiltonian

K = K0 + K1, (5)
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with

K0 = −
1

2 L2
,

K1 =
δ

16 L5 G7 (L + G)


2 (L + G)


4β L3 G7

+ 4β L3 G5 H2

− δ G4
− 8 L2 G4 H − δ G2 H2

+ 3 δ L2 G2
+ 3 δ L2 H2

+ (L − G) (G2
− H2)


8β L3 G5

+ δ G2
+ 2 δ L G

+ δ L2

cos (2 g)


+

J2 (G2
− 3H2)

4 L3 G5
.

The associated generating function is given by W1 with

W1 =
δ

48 L2 G7 (L2 − G2) r2


6 (L2 − G2) r3


−8 L2 G4 H ϕ r

− δ G4 ϕ r − δ G2 H2 ϕ r + 3 δ L2 G2 ϕ r + 3 δ L2 H2 ϕ r
+ δ L2 G5 R + δ L2 G3 H2 R − 8 L2 G5 H r R
+ 3 δ L2 G3 r R + 3 δ L2 GH2 r R + 4β L2 G7 r2 R
+ 4β L2 G5 H2 r2 R


+ (G2

− H2) r

−48β L4 G6 ϕ r3

+ 3 δ G4 ϕ r3 − 6 δ L2 G2 ϕ r3 + 3 δ L4 ϕ r3 + 6 δ L4 G7 R
− 2 δ L4 G5 r R − 3 δ L2 G5 r2 R + δ L4 G3 r2 R
+ 48β L4 G7 r3 R − 5 δ L2 G3 r3 R + 3 δ L4 G r3 R
+ 24β L2 G7 r4 R + 24β L4 G5 r4 R


cos (2 g)

+ 2 L4 G6 (G2
− H2)


3 δ G2

− 4 δ r + 24β G2 r3

− 24β r4 log (G2/r)

sin (2 g)


+

J2
4G5 (L2 − G2) r3

×


(L2 − G2) (G2

− 3H2)ϕ r3

+G (L2 − G2) (G2
− 3H2) r3 R

+G3 (G2
− H2) (r2 − L2 r − 2 L2 G2) r R cos (2 g)

+ L2 G4 (G2
− H2) (3 r − 2G2) sin (2 g)


,

where ϕ = f − ℓ, f is the angle called the true anomaly and ϕ is
the angle called the equation of the centre, see for instance [16].
In the computations we have avoided using Fourier expansions in
the angular variables and power expansions in the eccentricity of
the trajectories, as is the usual procedure in celestialmechanics. So,
by combining polar-nodal with Delaunay coordinates and making
use of the angle ϕ we get compact expressions that are valid for
any type of elliptic motion.

It can be proved that the generating function W1 is well defined
for circularmotions forwhich e = 0 (equivalentlyG = L), although
it is not obvious. This can be achieved by expressing the variables
that depend upon G in terms of it, that is, the variables r, R and ϕ,
and showing that the limit of W1 when G tends to L is bounded.

The normalisation of Delaunay is symplectic, thus the resulting
Hamiltonian K is given in the transformed (new) coordinates, but
we use the same names for all the coordinates in order to simplify
notation. Moreover, the generating function is used to express the
new coordinates in terms of the old ones or vice versa. For instance,
the old action L is given in terms of the new variables by means of
L − ∂ W1/∂ℓ + higher-order terms.

Finally, we note that the formulae of K1 and W1 coincide with
those of the paper [4, p. 248] after setting J2 = 0.

4. Reductions and reduced phase spaces

4.1. Reductions by continuous symmetries

Once the higher-order terms are dropped, the action L > 0
is an integral of motion that can be fixed. Thus, the normalised
Hamiltonian K defines a system of two degrees of freedom
on a four-dimensional phase space. This space, called the first-
reduced phase space, has been studied by many authors, see for
instance [19,20]. It is the product of the two-spheres

S2L × S2L =


(a, b) ∈ R6

| a21 + a22 + a23 = L2, b21 + b22 + b23 = L2

,

where (a, b) ≡ (G+ LAL, G− LAL) and AL is the Laplace–Runge–
Lenz vector defined by

AL = P × G −
x

∥x∥
.

Now we need to put Hamiltonian (5) in terms of a and b. Since
K0 is constant, we drop it and work with K1, writing it in terms
of the coordinates of S2L × S2L . The result is a Hamiltonian called
the first-reduced Hamiltonian and it is a rational function of a
and b. The condition G = 0 viewed in terms of a and b means
that b = −a. It implies that the first-reduced Hamiltonian has a
pole when b = −a. However, equatorial (G = |H|) and circular
(G = L) trajectories, which are not defined in Delaunay variables,
are contained in S2L × S2L and can be analysed properly. This follows
from the fact that the process of normalisation carried out in a
different set of variables, free of singularities, gives rise to the
same system [21], and the singularities disappearwhen changed to
appropriate variables. Also, if a certainHamiltonian independent of
ℓ is well defined for G = 0, its related reduced Hamiltonian is well
defined on S2L × S2L .

The fact that Pφ is an integral of motion of Hamiltonian H is
inherited through the averaging process, thus H is an integral of
K . We can reduce the first-reduced Hamiltonian by the symmetry
introduced by H . If we denote τ = (τ1, τ2, τ3), we can define the
mapping

πH : S2L × S2L −→ {H} × R3

( a, b ) → (H, τ1, τ2, τ3 ) ≡ (H, τ ),

where

τ1 =
1
2

(a3 − b3), τ2 = a1 b2 − a2 b1,

τ3 = a1 b1 + a2 b2.
(6)

After fixing both L and H , the corresponding phase space, called
the twice-reduced phase space and denoted by TL,H , is defined as
the image of the product S2L × S2L by πH , that is,

TL,H = πH(S2L × S2L )

=


τ ∈ R3

| τ 2
2 + τ 2

3 =


(L + τ1)

2
− H2


×


(L − τ1)

2
− H2


, (7)

for 0 ≤ |H| ≤ L and L > 0. Note that τ2 and τ3 always belong to the
interval [H2

−L2, L2 −H2
], whereas τ1 belongs to [|H|−L, L−|H|].

In Refs. [20,22] it is proved that if 0 < |H| < L, TL,H is diffeo-
morphic to the two-sphere S2 and therefore the reduction is reg-
ular in that region of the phase space. However, when H = 0 the
surface TL,0 is a topological two-sphere with two singular points:
the vertices at (±L, 0, 0), giving rise to the concept of singular re-
duction. The reason for the existence of these two points is that the
S1-action related to the axial symmetry reduction has two fixed
points: L (±1, 0, 0, ∓1, 0, 0) and consequently this action is not
free. Finally, when |H| = L the phase space TL,±L gets reduced to a
point.
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It is not difficult to prove that Delaunay variables not involving
the angles ℓ and h can be expressed in terms of τ . In particular we
get

G2
=

1
2

(L2 + H2
− τ 2

1 + τ3),

cos g =
−τ2

(L2 − H2)2 − (τ 2
1 − τ3)2

,

sin g = τ1


2 (L2 + H2 − τ 2

1 + τ3)

(L2 − H2)2 − (τ 2
1 − τ3)2

.

(8)

Using these relations it is possible to express the quantities
sin I, cos I, sin g, cos g and G in terms of τ , L and H . Also, the
eccentricity e can be put in terms of the integrals L and H through
the variable G, see [23].

Circular type solutions are concentrated on a unique point of
TL,H with coordinates (0, 0, L2 − H2) – or on a unique point of
TL,0 with coordinates (0, 0, L2) – whereas equatorial trajectories
in this twice-reduced phase space are represented in the negative
extremepoint ofTL,H with coordinates (0, 0,H2

−L2) (respectively,
at the point (0, 0, −L2) of TL,0). Thus, both types of motion can be
properly treated on the space TL,H . Rectilinear trajectories could be
handled aswell if a particularHamiltonian inDelaunay coordinates
independent of ℓ and h were well defined for G = 0, but it is not
the case for the Hamiltonian we tackle in this paper.

We can write the corresponding Hamiltonian (the so called
twice-reduced Hamiltonian) in terms of the τi, using the formulae
given in (8). After dropping constant terms, we end up with a
rational function of τ and the parameters δ, β, J2, L and H . It
defines a one-degree-of-freedom system, with L and H as two
independent integrals, given by the expression

M =
δ

4
√
2 L5 τ 7

4 (τ4 +
√
2 L)2


− δ (τ4 +

√
2 L)2


τ 2
4 (3 τ 2

4

+ 4 τ 2
1 − 14 L2) + 2H2 (τ 2

4 − 10 L2)

+ 8 L2 τ 4

4


−2H (τ4

+
√
2 L)2 + β L τ 2

4


L τ 2

4 −
√
2 τ4 (τ 2

1 − L2 − H2)

+ 2 L H2
+

J2 (2 τ 2
4 − 3H2)

16
√
2 L3 τ 5

4

,

where τ4 =


L2 + H2 − τ 2

1 + τ3.

4.2. Fully-reduced phase spaces and fully-reduced Hamiltonian

Now we consider the discrete symmetries of the departure
system. The generators of the group of discrete symmetries of H
are

R1 : ( x, y, z, Px, Py, Pz ) −→ ( x, −y, −z, −Px, Py, Pz ),

R2 : ( x, y, z, Px, Py, Pz ) −→ ( x, −y, z, −Px, Py, −Pz ).

These symmetries are anti-symplectic reflections and time-
reversing symmetries, so if (x(t), y(t), z(t), Px(t), Py(t), Pz(t)) is a
solution, then so are (x(−t), −y(−t), ±z(−t), −Px(−t), Py(−t),
Pz(−t)). The fixed-points sets of these two symmetries are
Lagrangian subplanes, i.e.

L1 =

(x, 0, 0, 0, Py, Pz)


, L2 =


(x, 0, z, 0, Py, 0)


are fixed by the symmetries R1 and R2, see also [24].

The symmetries R1 and R2 are conserved through the two
previous reductions. In particular the twice-reduced Hamiltonian
depends explicitly on τ 2
1 and on τ3 but it is independent of τ2,

enjoying the discrete symmetries

R1 : ( τ1, τ2, τ3 ) −→ ( −τ1, τ2, τ3 ),

R2 : ( τ1, τ2, τ3 ) −→ ( τ1, −τ2, τ3 ).

In this way, if the phase flow is known for τ1 ≥ 0 and τ2 ≥ 0 it
can be extended, by virtue of discrete symmetries R1 and R2, to
thewhole twice-reduced phase space. Taking this into account, we
can introduce a fully-reduced system in the orbit space generated
by the action of the two symmetries. Similarly to Cushman and
Sadovskií [25] we define the orbit map R3

→ R2
: (τ1, τ2, τ3) →

(σ1, σ2), where

σ1 = (L − |H|)2 − τ 2
1 , σ2 =


L2 + H2 − τ 2

1 + τ3
√
2

. (9)

The variable σ1 is related to the argument of pericentre g and σ2
is the modulus of the angular momentum vector, i.e. σ2 = G. We
have that the constraints between the new variables are deduced
from the constraint of (7):
(i) |H| > 0: the fully-reduced phase spaceUL,H is bounded by the

curves

σ1 σ 2
2 = (σ 2

2 − L |H|)2, σ1 = (L − |H|)2, (10)

(ii) H = 0: the fully-reduced phase space UL,0 is bounded by

σ1 = σ 2
2 , σ2 = 0, σ1 = L2. (11)

More details on the spaces UL,H and the reduction procedure
appears in [4,10].

Next, the averaged Hamiltonian K (or the twice-reduced
HamiltonianM) needs to be expressed in terms of σ1 and σ2. Using
the inverse of (9), which puts τ 2

1 and τ3 in terms of σ1 and σ2 and
dropping constant terms,M is transformed into the so called fully-
reduced Hamiltonian that results in

V =
δ

16 L5 σ 7
2 (σ2 + L)2


− δ (σ2 + L)2


3 σ 4

2 − (2 σ1

+ 5 L2 + 4 L |H| − 3H2) σ 2
2 − 5 L2 H2


+ 16 L2 σ 4

2


β L2 σ 4

2 + β L (σ1 + 2 L |H|) σ 3
2

+H (β L2 H − 1) σ 2
2 − 2 L H σ2 − L2 H



+
J2 (σ 2

2 − 3H2)

4 L3 σ 5
2

. (12)

The Hamiltonian V is well defined on UL,H for |H| > 0 as then
σ2 ≥ |H| cannot reach the value zero. However, when H = 0, V is
not bounded forσ2 frombelow. Thus, in this casewe fix aminimum
value ofσ2, sayG∗, such thatσ2 is bounded in [G∗, L].Wenote that it
is not possible to get rid of the singularity at σ2 = 0 (when H = 0)
as it is inherited from the singularity at r = 0 that appears in (4)
and that cannot be removed using regularisation or an equivalent
approach. Physically we are discarding collisions of the particle
with the planet. Nevertheless our approach is global in the sense
that we consider all possible realistic types of motions, excepting
collisions.

5. Relative equilibria and bifurcations

5.1. Equilibrium points

Equilibrium points in the twice-reduced phase space TL,H can
be obtained by zeroing the corresponding equations of motion or
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taking into account that the flow is generated by the intersection
of the family of surfaces defined by M and TL,H . Due to the
symmetries R1 and R2, if E ≡ (τ1, τ2, τ3) is an equilibrium point,
also are equilibrium points

(−τ1, τ2, τ3), (τ1, −τ2, τ3), (−τ1, −τ2, τ3).

In this sense, if we study the equilibria of the fully-reduced system,
in the orbit space UL,H , we avoid this multiplicity, in such a way
that a critical point in the interior of UL,H corresponds to four
critical points in TL,H , a critical point in the boundary of UL,H
corresponds to two critical points in UL,H and only the points

((L − |H|)2, |H|), ((L − |H|)2, L),

correspond to a single critical point in TL,H , namely (0, 0, L2 −

H2) and (0, 0,H2
− L2), which represent the class of equatorial

and circular motions respectively, provided H ≠ 0. Moreover, the
equilibria of V can be obtained through the relative and absolute
extrema of V on UL,H . As V is a rational function of σ1 and σ2, the
problem of finding the equilibrium points can be reduced to that
of finding roots of a polynomial.

In the same way as in [4] we neglect those terms in δ2 in (12)
because their contribution is small compared with the rest of the
terms. Thus, we are concerned with the equilibrium points of the
Hamiltonian

Z =

δ

β L σ 2

2


σ1 σ2 + L (σ2 + |H|)2


− H (L + σ2)

2


L3 σ 3
2 (σ2 + L)2

+
J2 (σ 2

2 − 3H2)

4 L3 σ 5
2

. (13)

We note that Z is a scalar function depending on two variables,
σ1 and σ2, defined on a bounded subset of R2, which is continuous
in UL,H when |H| > 0 whereas for H = 0 it is continuous pro-
vided that we fix G∗ > 0 such that G∗

≤ σ2 ≤ L. Thus we assure
continuity of Z if we remove the part of the space UL,0 such that
0 ≤ σ2 < G∗.

The situation is a bitmore complex than the one in [4] because δ
is not a common factor inZ andmust be taken into account, aswell
as the rest of the parameters. Hence, two extra parameters appear
in contrast to the case discussed in [4]: δ, the charge–mass ratio of
the particle, and J2, the oblateness of the planet. The relative size
of them will lead to different situations, which gives an idea of the
complex dynamics of the problem.

Equilibria are determined by the extremum points of (13) on
the reduced spaceUL,H . To begin with, we note that the extremum
points on the boundary of the fully-reduced phase space,

E1 ≡

(L − |H|)2, |H|


and E2 ≡


(L − |H|)2, L


,

are always equilibria provided that |H| > 0, as Z is a continuous
function in UL,H for |H| > 0. This conclusion can also be extracted
by going back to the formulation of the system in TL,H . The point E1
accounts for the set of equatorial motions whereas E2 corresponds
to the circular solutions. When H = 0, the point E1 is not in
the region of UL,H where Z is continuous but E2 remains as an
equilibrium point.

To account for the remaining equilibria we compute the partial
derivatives ∂Z/∂σ1 and ∂Z/∂σ2. The expression for ∂Z/∂σ1,

∂Z

∂σ1
=

δ β

L2 (σ2 + L)2
,

does not depend on J2 and the situation is similar to that discussed
in [4]. In general, ∂Z/∂σ1 does not vanish and, consequently, the
function Z cannot have any critical point in the interior of UL,H .
However, if the particle is not charged (δ = 0), ∂Z/∂σ1 vanishes
identically. By computing the other partial derivative we arrive at

∂Z

∂σ2
= −

3 J2 (σ 2
2 − 5H2)

4 L3 σ 6
2

,

recovering the well known case of the critical inclination for the
main problemof an artificial satellite [20,26]. In addition to the two
equilibriumpoints E1 and E2, a nonisolated set of equilibria appears
for σ2 =

√
5 |H|, provided that

√
5 |H| ≤ L.

When the particle is charged (δ ≠ 0), ∂Z/∂σ1 does not vanish
for any value of σ2 and, consequently, the remaining possible
equilibria are located on the boundary of UL,H .

Similarly to how we proceeded in [4], in order to analyse these
equilibria, two cases must be considered:

(a) those equilibria located on the rectilinear part of the boundary
given by the curve σ1 = (L − |H|)2, under the restriction
|H| ≤ σ2 ≤ L;

(b) those equilibria located on the curved part of the boundary
defined by σ1 σ 2

2 = (σ 2
2 − L |H|)2 and |H| ≤ σ2 ≤ L.

For the bifurcationmanifolds we use the same notation as in [4]
in order to facilitate the identification of changes in the bifurcation
plane.

5.1.1. Case (a)
If σ1 = (L − |H|)2 then (13) turns into the single real-valued

function

Z(σ2) =
δ

β L (L σ 3

2 + H2 σ 2
2 ) − H (σ2 + L)


L3 σ 3

2 (σ2 + L)

+
J2 (σ 2

2 − 3H2)

4 L3 σ 5
2

, (14)

where |H| ≤ σ2 ≤ L.
The extremum values are reached at σ2 = |H|, σ2 = L (which

are always equilibria, as we already know) and at those points
satisfying

dZ(σ2)

dσ2
=

δ

3H (L + σ2)

2
− β L σ 2

2 (L σ 2
2 + 2H2 σ2 + L H2)


L3 σ 4

2 (σ2 + L)2

−
3 J2 (σ 2

2 − 5H2)

4 L3 σ 6
2

= 0.

In this case σ2 must be a root of the polynomial

P (σ2) = 4 σ 2
2 δ

3H (σ2 + L)2 − β L σ 2

2 (L σ 2
2 + 2H2 σ2 + L H2)


− 3 J2 (σ 2

2 − 5H2) (σ2 + L)2

in the interval (|H|, L).
Polynomial P (σ2) is of degree six in σ2, thus it is not possible

to derive explicitly the coordinates of the equilibria. Nevertheless,
we satisfy ourselves by studying the changes in the number of
roots. They will determine the bifurcation manifolds in the space
of parameters. The changes in the number of roots will come from
three facts:

(i) There is a root of P (σ2): σ ∗

2 ∈ (|H|, L), that reaches the value
L. Then, the following equation must be satisfied:

Γ1 ≡ δ L2 (β L4 + 3β L2 H2
− 12H) + 3 J2 (L2 − 5H2) = 0.

(ii) There is a root of P (σ2): σ ∗

2 ∈ (|H|, L), that reaches the value
|H|. Then, the following equation must be satisfied

Γ2 ≡ −δ H

2β L H3

− 3 (L + |H|)


+ 3 J2 (L + |H|) = 0.
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(iii) There is a value of σ2: σ ∗

2 ∈ (|H|, L), such that it is a
multiple root of P (σ2). This situation takes place when
the discriminant of P (σ2) is zero. The discriminant is a
polynomial in H, L, J2, δ, β , which we do not write down here
for simplicity, and gives rise to a bifurcation manifold that we
denote by Γ0.

It isworth noting that if δ > 0 along themanifoldΓ0 no collision
takes place between roots of P (σ2) in the interval [|H|, L].

5.1.2. Case (b)
If σ1 σ 2

2 = (σ 2
2 − L |H|)2, Hamiltonian (13) turns into the single

real valued function

Z(σ2) =
δ

β L σ2 (σ 3

2 + L H2) − H (σ2 + L)


L3 σ 3
2 (σ2 + L)

+
J2 (σ 2

2 − 3H2)

4 L3 σ 5
2

, (15)

with |H| ≤ σ2 ≤ L.
As in the previous case, σ2 = |H| and σ2 = L are extremum

values and the rest are obtained from

dZ(σ2)

dσ2
=

δ

3H (σ2 + L)2 + β L2 σ2 (σ 3

2 − 2 L H2
− 3H2 σ2)


L3 σ 4

2 (σ2 + L)2

−
3 J2 (σ 2

2 − 5H2)

4 L3 σ 6
2

= 0.

This equation is satisfied if σ2 is a root of the degree six polynomial

Q(σ2) = −4 δ σ 2
2


3H (σ2 + L)2 + β L2 σ2 (σ 3

2 − 3H2 σ2

− 2 L H2)


+ 3 J2 (σ2 + L)2 (σ 2
2 − 5H2).

The changes in the number of rootswill take place, as in the case
(a), in these situations:

(i) There is a root of Q(σ2): σ−

2 ∈ (|H|, L), that reaches the value
|H|. Then, the following equation must be satisfied:

Γ3 ≡ δ H

2β L2 H |H| − 3 (L + |H|)


− 3 J2 (L + |H|) = 0.

(ii) There is a root of Q(σ2): σ−

2 ∈ (|H|, L), that reaches the value
L. Then, the following equation must be satisfied:

Γ4 ≡ −δ L2

β L2 (L2 − 5H2) + 12H


+ 3 J2 (L2 − 5H2)

= 0.

(iii) There is a value of σ2: σ−

2 ∈ (|H|, L), such that it is a multiple
root ofQ(σ2). This situation takes placewhen thediscriminant
ofQ(σ2) is zero. The discriminant, whichwe do notwrite here
for simplicity, gives rise to a bifurcation manifold denoted
by Γ5.

We note that now, for δ < 0, the third situation described above
cannot occur and Γ5 does not appear in the bifurcation diagram. In
some sense the roles played by the critical points in the straight and
curved parts of the boundary of UL,H for δ > 0 are interchanged
when δ < 0.

5.2. Bifurcation diagram

From the previous discussion it follows that, for a given planet,
β and J2 fixed, the surfacesΓ0, . . . , Γ5, togetherwith the constraint
|H| ≤ L, divide the parameter space (H, L, δ) into different regions
where the number of equilibrium points changes. In other words,
the number of equilibrium solutions depends on the charge of the
particle as well as on the inclination and eccentricity of the orbit.
Fig. 2. The bifurcation plane (H, L) for δ = 0, β = 0.40649 and J2 = 0.016298.

We analyse here the particular case β = 0.40649 and J2 =

0.016298, which are the ones corresponding to Saturn, by taking
different slices of the surfaces of bifurcation for several values of
δ. The starting point is the slice for δ = 0 (see Fig. 2), the case
of the main problem of an artificial satellite. Only one bifurcation
appears, when the lines defined by

L =
√
5 |H| (16)

are crossed. The class of circular solutions bifurcates, giving rise to
a set of nonisolated equilibria.

In fact, all the curves Γ0, Γ1, Γ4 and Γ5 reduce to (16) for
δ = 0. In this way, we expect that these lines evolve smoothly
with δ, splitting away from the initial configuration. However,
the evolution is not symmetric and different scenarios appear
for positive and negative charge. This can be deduced from a
remarkable fact, that the curves Γj (1 ≤ j ≤ 4) meet in two points,
which we denote by P and Q and are defined by

P ≡


(H, L) : L = H > 0, δ β L4 − 3 δ L − 3 J2 = 0


,

Q ≡


(H, L) : L = −H > 0, δ β L4 + 3 δ L − 3 J2 = 0


.

It is clear that, for δ < 0, the point Q cannot exist, as all the
coefficients in the polynomial equation δ β L4 + 3 δ L − 3 J2 = 0
have the same sign and there is no positive root. On the other hand,
if δ > 0 the point Q always exists and corresponds to a retrograde
circular equatorial solution. Moreover, as δ increases, the radius of
the orbit tends to zero and, for values of δ greater than 0.0143532,
the orbit becomes meaningless, provided its radius becomes less
than one.

The point P can be present for both positive and negative
charged particles. Nevertheless, while it is always present for
positive charged particles, if δ < 0 it must be δ < −0.0177175
in order that the point P exists and δ < −0.0188524, to give rise
to an orbit with radius greater than one. Moreover, as the absolute
value of δ increases, the point P tends to a limit position given by

3


3
β

, 3


3
β


.
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Fig. 3. The bifurcation plane (H, L) for δ = 0.0001 (left) and δ = −0.0001 (right), β = 0.40649 and J2 = 0.016298.
Fig. 4. The bifurcation plane (H, L) for δ = 0.001 (left) and δ = 0.01 (right), β = 0.40649 and J2 = 0.016298.
We stress that these are the same coordinates for the point P
described in [4]. So, when the effect of the oblateness is negligible,
we recover the dynamics of the generalised Størmer problem
studied in [4], where a rich scenario of bifurcations around P
appeared. However, when the combined effect of δ and J2 is
considered, only if δ is large enough, will the point P play an
important role in the dynamics of the problem, as we shall show
in the following discussion.

If δ is close to zero the bifurcation diagram, restricted to orbits
such that 1 < L < 5, is very similar to that presented in Fig. 2. Only
circular orbits bifurcate in the range considered, while equatorial
ones remain unchanged. In terms of the sign of the particle’s
charge, the main difference results in the way the bifurcation lines
evolve. For δ positive, the curves Γ1 and Γ4 evolve outwards, while
for δ negative, Γ1 evolves inwards, as it is shown in Fig. 3. It is
worth noting that the points P and Q do not appear in the range
considered due to the small values taken by δ. We also note the
appearance of the curveΓ0, which is tangent toΓ1 only for negative
charged particles.

As δ increases in absolute value, the bifurcation diagram
becomes more intricate for positive charged particles, as is shown
in Fig. 4. The points P andQ are present andmost of the bifurcation
lines meet there, except Γ5, which ends when it is tangent to Γ4.
The stability analysis of the circular equatorial motions (including
in particular the points P and Q ) as well as the reconstruction of
these motions to the original flow is done in [27].

We count sixteen different regions in the parameter plane,
where different flows are obtained, commanded by the equilib-
rium points and their stability character. In Fig. 5, the different re-
gions are numbered and a schemewith the critical points and their
stability on the fully-reduced space UL,H is depicted. A black dot
means a linear unstable equilibrium and a white point a linear sta-
ble one. From this scheme it can be appreciated which type of bi-
furcation takes place every time a Γk line is crossed. All the lines Γk
correspond to parametric bifurcations of pitchfork type, except Γ5
which corresponds to a saddle-centre bifurcation. This conclusion
follows from the number of equilibrium points involved in the bi-
furcation together with the Index Theorem and a theorem on the
multiplicity of a root for a vanishing resultant. We also note that
at the points where two bifurcation lines intersect, two different
points of the reduced phase space bifurcate at the same time, and
at the tangency points, the two bifurcations take place at the same
time and at the same point.

Details on some parts of the bifurcation plane given in Fig. 5 are
represented in Fig. 6.

For negative charged particles the bifurcation diagram is
simpler, at least for values of δ ≥ −0.01. In Fig. 7, two slices for
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Fig. 5. The bifurcation plane (H, L) for δ = 0.01, β = 0.40649 and J2 = 0.016298 with the sixteen different regions it is divided into. There is a tiny region between the
lines Γ1 and Γ4 , which we call R5. It can be seen more clearly in Fig. 6. Below, the critical points for each region represented in the space UL,H : a black dot means instability
(saddle), a white point means stability (centre). Points E1 and E2 appear respectively on the left and right corners of UL,H .
δ = −0.001 and δ = −0.01 show very few differences from the
previous slice in Fig. 3. The most noticeable fact is the appearance
of the closed loop forΓ1, also present for δ = −0.0001, but outside
the range of L considered.

However, if δ reaches the critical value δ = −0.0188524, the
point P appears in the lower part of the bifurcation plane and a
similar dynamics to the positive case arises. Now there are ten
different regions and the flow in each region is conducted by the
equilibriumpoints and their stability. This is shown in Fig. 8, where
the different situations are accounted for. The relative equilibria
and their stability are sketched on the fully-reduced space UL,H .
Also, it can be seen how the saddle-centre bifurcation now takes
place in the rectilinear part of the boundary of the reduced space,
whereas it was in the curved part for δ > 0.

As a consequence of the above discussion it can be said that
particles in the vicinity of the points P and Q can suffer sudden
instabilities if the charge of the particle is subject to changes due to
the ambient conditions. This can be related to the spokes of Saturn.
Spokes are dark radial features in the B ring which are thought
to be microscopic dust particles that levitate away from the ring
plane. They are shaped somewhat like an hour-glass with the
narrow centres located near the synchronous orbit radius. There
are several mechanisms proposed for the appearance of spokes,
all of them based on more complex models than those presented
here [28–31]. Recent studies of the data supplied by the Hubble
Space Telescope indicate that the spokes are formed by tiny dust
particleswith a size of about 0.6µm,with a very sharp distribution
around this value. As we will see, in the ambient conditions of
Saturn, the points P and Q are located near the synchronous
orbit precisely for submicron sized particles. Indeed, assuming a
spherical icy particle, δ is a function of the radius a of the particle
and of the surface potential Φ given by

δ = 0.00133887
Φ

a2
, (17)

see the details in [32]. As the points P and Q are functions of δ, we
can obtain the specific values of them to be located exactly at the
distance of the synchronous orbit. Thus, P is at the right position
if δ ≈ −0.18, where Q is related to the synchronous orbit for δ =

0.01. By inserting these values into (17) forΦ ∈ [−10, 5], a typical
interval for Saturn (see [33]), we obtain that the size of the particle
must be less than 0.9 µm, in agreement with the estimations for
the size of the dust particles in the spokes. How this mechanism or
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Fig. 6. Details on the bifurcation plane (H, L) of Fig. 5. The top pictures are a zoom of the left part of the plane. Bottom left picture is a zoom of the central bottom part of
the plane. Bottom right picture is a zoom of the right part of the plane.
Fig. 7. The bifurcation plane (H, L) for δ = −0.001 (left) and δ = −0.01 (right), β = 0.40649 and J2 = 0.016298.
that proposed in [5] can help in the formation of spokes deserves
further analysis.

Finally, we have studied the possible occurrence of saddle-
connection bifurcations between the points E1 and E2, as ocurred
for the problem with J2 = 0 and δ > 0 [4]. This global bifurcation
would occur if both points are saddles having the same energy and
this situation takes place for δ > 0 in the regions R12 and R16 and
for δ < 0 in the region R6.We have checked that for positive values
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Fig. 8. The bifurcation plane (H, L) for δ = −0.02, β = 0.40649 and J2 = 0.016298 with the ten different regions it is divided into. Below, the critical points for each
region: a black dot means instability (saddle), a white dot means stability (centre).
of δ the curve giving rise to a saddle-connection bifurcation does
not enter the regions R12 and R16 when using the values of the
parameters given in Fig. 5, and it is in contrast to what occurred for
J2 = 0. However, for negative values of δ, the curve arising from
making the energies of circular and equatorial motions identical,
which is given by

γ = −2 δ L2 H (β L3 H2
+ β L2 H3

− 2 L2 − 2 L H − 2H2)

+ J2 (2 L4 + 2 L3 H + 2 L2 H2
+ 3 L H3

+ 3H4),

enters the region R6 for the values of δ, β and J2 given in Fig. 8.
It means that a saddle-connection bifurcation occurs between
circular and equatorial relative equilibria and the stable/unstable
branch of one of the saddle coincides with the unstable/stable
branch of the other saddle.

It is also possible that saddle-connection bifurcations involving
circular and equatorial solutions appear for other values of the
parameters. Furthermore it is possible that saddle connections
between circular and non-circular equilibria could occur (in the
regions R9, R15 for δ > 0 and in the region R3 for δ < 0), but
we have not checked it.

5.3. Stability of the relative equilibria in one degree of freedom

We consider the reduced Hamiltonian (12) and deal with
the stability character of their equilibria, that is, the linear and
nonlinear stability of the relative equilibrium points in a system
of one degree of freedom. This is achieved by using the expression
of the Hamiltonian in Delaunay coordinates, given in (5). After
neglecting the terms factorised by δ2, we use the following scheme
for each type of equilibrium, namely:

(i) We choose an adequate set of symplectic coordinates q, p in
term of Delaunay elements in such a way that the equilibrium
expressed in these coordinates corresponds to the origin. We
put the normalised Hamiltonian (5) as a function of q and p.

(ii) In order to determine the linear stability of the equilibriumwe
expand theHamiltonian (5) in a Taylor series around the origin
up to degree two, obtaining in all the cases an expression of the
form c2,1 q2 + c2,2 p2 after dropping constant terms.

(iii) A certain relative equilibrium whose quadratic part of its
normal form is of the form c2,1 q2 + c2,2 p2 is linearly unstable,
specifically a saddle, when c2,1 c2,2 < 0, whereas it is linearly
stable, specifically a centre when c2,1 c2,2 > 0.

(iv) When adding higher-order terms, the nonlinear stability char-
acter of an equilibrium with normal form starting at c2,1 q2 +

c2,2 p2 remains the same as the linear stability provided that
c2,1 c2,2 ≠ 0. The reason is that the reduced Hamiltonian rep-
resents an analytic function and c2,1 q2 + c2,2 p2 is a Morse
function [34]. Thus, linear saddles become nonlinear saddles
while linear centres become nonlinear centres.

(v) A bifurcation occurs when c2,1 = 0 or c2,2 = 0 and the cor-
responding equilibrium becomes degenerate as at least one of
the eigenvalues of its linearisation is zero.

In Refs. [35,36] we have performed a similar analysis in the
context of perturbed Keplerian systems. In both papers we have
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defined similar variables to the ones we use here, so the reader can
consult detailed computations there.

The case when one of the coefficients c2,1 or c2,2 vanishes
has been excluded from our stability analysis. Note that the two
coefficients cannot vanish at the same time as only pitchfork
and saddle-centre bifurcations occur in the problem. In these
degenerate situations one should perform the corresponding
analysis, taking into account the 4-jets, i.e., including terms of
degree four in q and p. We do not perform this analysis in the
paper, as a similar study has been done for the pitchfork bifurcation
in [36]. We present the results for δ positive, as the case δ < 0 is
treated in the same way, the only difference being that the regions
Rj change.

Now we have to consider different cases in accordance with
the types of trajectories that are studied. In particular, the case
of circular equatorial solutions cannot be analysed in the spaces
TL,H or UL,H , as these spaces get reduced to points for this type
of motion. Indeed these solutions need to be studied in the
first-reduced space, that is, on S2L × S2L , and we have done it in
the companion paper [27]. Thus, we deal with three possible
situations:

(a) near-circular solutions;
(b) near-equatorial solutions;
(c) non-near-circular non-near-equatorial solutions.

We stress that in case (a) the solutions are not near-equatorial
whereas in case (b) they are not near-circular.

(a) Equilibria associated with the near-circular solutions.
Circular-type solutions correspond with the point (0, 0, L2 −

H2) in the reduced phase space TL,H and with E2 on the fully-
reducedphase spaceUL,H . As circular orbits cannot be definedwith
Delaunay variables, we use a combination of them, say,

q =


2 (L − G) cos g, p =


2 (L − G) sin g.

Expressed in these variables, circular motions have coordinates
(0, 0), as in this case G = L. We put the Hamiltonian (5) in these
coordinates and perform a Taylor expansion up to degree two
around the origin. The result after dropping constant terms is the
function c2,1 q2 + c2,2 p2, where

c2,1 =
1

8 L9


δ L2 (3β L2 H2

+ β L4 − 12H)

+ 3 J2 (L2 − 5H2)

,

c2,2 =
1

8 L9


δ L2 (5β L2 H2

− β L4 − 12H)

+ 3 J2 (L2 − 5H2)

.

(18)

The sign of the coefficients of the quadratic terms determines
the linear stability of the relative equilibrium, i.e. of the circular-
type motions. The coefficient of q2 vanishes precisely on the curve
Γ1, whereas the coefficient of p2 is zero on the curve Γ4. So,
circular solutions change stability when crossing these curves in
the parameter plane. In Fig. 5 a scheme of the fully-reduced phase
space is represented in all the regions of the parameter plane. Each
dot represents an equilibrium on UL,H .

When neither c2,1 nor c2,2 vanish c2,1 q2+c2,2 p2 is aMorse func-
tion, thus the stability character of the circular motions remains
when incorporating higher-order terms. In other words, we get
nonlinear centres in the regions R2, R3, R4, R6, R7, R10, R11 and
R14 and nonlinear saddles in the remaining regions.

(b) Equilibria associated with the near-equatorial solutions.
Equatorialmotions correspond to the point (0, 0,H2

−L2) in the
reduced phase space TL,H andwith the point E1 in the fully-reduced
phase space UL,H . Delaunay variables are not properly defined
for equatorial motions, so we use another adequate combination
of them in order to analyse the stability of these solutions. In
particular we take the symplectic coordinates

q =


2 (G − |H|) sin g, p =


2 (G − |H|) cos g.

Expressed in these coordinates, equatorial motions have
coordinates (0, 0). We apply the change of variables to the
Hamiltonian (5) and perform a Taylor expansion up to degree two
in q and p around the origin. After dropping constant terms we get
c2,1 q2 + c2,2 p2, where

c2,1 =
3 (δ H + J2)

2 L3 H4
−

β δ

L |H| (L + |H|)
,

c2,2 =
3 (δ H + J2)

2 L3 H4
−

β δ

L2 (L + |H|)
.

(19)

The sign of the coefficients of the quadratic terms determines the
linear stability of the equilibrium. The coefficient of q2 vanishes
precisely on the curve Γ3, whereas the coefficient of p2 is zero
on the curve Γ2. So, equatorial solutions change their stability
when crossing these curves in the parameter plane, see Fig. 5. The
equilibrium is elliptic (a linear centre) if c2,1 c2,2 > 0 and a saddle
if c2,1 c2,2 < 0.

When adding the terms of degree three and higher in q and
p we deal with the nonlinear stability of the equatorial motions.
Provided that c2,1 c2,2 ≠ 0 the stability behaviour is the same as
the linear one. That is, the linear centres become nonlinear centres,
this occurs in regions R1, R2, R4, R5, R6, R7, R8, R9, R10, R13, R14
and R15, whereas the linear saddles are nonlinear saddles in the
remainder of the plane of parameters.

(c) Equilibria associated with the non-near-circular non-near-
equatorial solutions.

For this kind of solutions Delaunay coordinates are well defined
and we can use them to carry out the computations. Thus, we
introduce q and p by means of

q = g − g0, p = G − G0,

where (g0,G0) corresponds to the value of (g,G) at the equilib-
rium. In accord with the discussion of the relative equilibria of
non-circular non-equatorial type made previously, we have two
possibilities: (i) either g0 = 0 and G0 satisfies the degree six equa-
tion

− 4β δ L2 G6
0 − 8β δ L H2 G5

0

−


4 δ H (β L2 H − 3) − 3 J2


G4
0 + 6 L (4 δ H − J2)G3

0

+ 3

4 δ L2 H − J2 (L2 − 5H2)


G2
0

+ 30 J2 L H2 G0 + 15 J2 L2 H2
= 0 (20)

or (ii) g0 = π/2 whereas G0 satisfies

4β δ L2 G6
0 − 3


4 δ H (β L2 H − 1) + J2


G4
0

− 2 L

4 δ H (β L2 H − 3) + 3 J2


G3
0

+ 3

4 δ L2 H − J2 (L2 − 5H2)


G2
0

+ 30 J2 L H2 G0 + 15 J2 L2 H2
= 0. (21)

In case (i), we have an equilibrium on the rectilinear part of the
boundary of UL,H given by σ1 = (L − |H|)2 under the restriction
|H| < σ1 < L, while σ2 is one of the valid roots of the polynomial
P , indeed, the polynomialP is the same as the polynomial given in
(20). In case (ii), we have an equilibrium on the curved part of the
boundary ofUL,H given by σ1 σ 2

2 = (σ 2
2 −L |H|)2 and |H| < σ2 < L,
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where σ2 corresponds to one of the valid roots ofQ, in otherwords,
a root of the polynomial given in (21).

We apply the change of coordinates to the Hamiltonian (5),
perform a Taylor expansion up to degree two in q and p around the
origin, drop constant terms and get c2,1 q2 + c2,2 p2. In particular,
in case (i) c2,1 and c2,2 are

c2,1 = −
β δ (L − G0) (G2

0 − H2)

L2 G2
0 (L + G0)

,

c2,2 = 4β δ L2 G7
0 + 12β δ L H2 G6

0

+ 6

2 δ H (β L2 H − 2) + J2


G5
0

+ 2 L

2 δ H (β L2 H − 18) + 9 J2


G4
0

− 9

8 δ L2 H − J2 (2 L2 − 5H2)


G3
0

− 3 L

8 δ L2 H − J2 (2 L2 − 45H2)


G2
0

− 135 J2 L2 H2 G0 − 45 J2 L3 H2,

(22)

while in case (ii) we get

c2,1 =
β δ (L − G0) (G2

0 − H2)

L2 G2
0 (L + G0)

,

c2,2 = −4β δ L2 G7
0 + 6


4 δ H (β L2 H − 1) + J2


G5
0

+ 2 L

4 δ H (4β L2 H − 9) + 9 J2


G4
0

+ 3

4 δ L2 H (β L2 H − 6) + 3 J2 (2 L2 − 5H2)


G3
0

− 3 L

8 δ L2 H − J2 (2 L2 − 45H2)


G2
0

− 135 J2 L2 H2 G0 − 45 J2 L3 H2.

(23)

In case (i) the coefficients c2,1 and c2,2 do not vanish for the
equilibria on the rectilinear part of the boundary ofUL,H , thus their
stability character is the samewherever they exist in the parameter
plane (H, L) and for any value of δ. More specifically, they are
always linear centres. We notice that G0 has to be chosen as a valid
root of the polynomial (20).

For the equilibria on the curved part of the boundary of UL,H
(case (ii)), the coefficient c2,1 does not vanish,whereas c2,2 vanishes
just at the curve Γ5. So, the stability of these equilibria changes
when the curve Γ5 is crossed in the parameter plane (H, L). Here
G0 is an allowed root of (21). We have verified that c2,1 c2,2 > 0 for
the centres and c2,1 c2,2 < 0 for the saddles. Furthermore, c2,2 = 0
when the parameters are taken on the curve Γ5.

Finally, the linear centres remain nonlinear centres and the lin-
ear saddles remain nonlinear saddles when adding the nonlinear
terms, since c2,1 q2 + c2,2 p2 is a Morse function provided that
c2,1 c2,2 ≠ 0 for all combinations of the parameters. Hence, the lin-
ear centres of regions R1, R3, R4, R5, R8, R9, R10, R11, R12, R13,
R15, R16 are also nonlinear centres while the linear saddles of re-
gions R4, R9, R10, R15 are nonlinear saddles.

6. Reconstruction of the flow

We analyse the existence of invariant 2-tori related with the
relative equilibria of the fully-reduced Hamiltonian and of KAM
3-tori surrounding the 2-tori when they correspond with centres.
We also reconstruct the occurring bifurcations of the 2-tori from
the different bifurcations that take place in the fully-reduced phase
space.
6.1. Invariant 2-tori and their bifurcations

After normalising the Hamiltonian H we have truncated the
higher-order terms only once. This has allowed us to compute
the first-reduced Hamiltonian on the first-reduced phase space
S2L × S2L . The second reduction has been performed due to the fact
that H is an integral related to a continuous symmetry (the axial
symmetry) of the Hamiltonian H that is inherited by the averaged
and reduced Hamiltonians. However, in contrast to L, the action
H is an exact integral and no averaging and truncation have been
needed to perform the second reduction. Thus, we can apply the
techniques of [37] and those appearing in [38], and associate one
or two invariant 2-tori (indeed families of 2-tori) to each non-
degenerate relative equilibrium, i.e. to each equilibrium for which
c2,1 c2,2 ≠ 0, and these tori do exist as solutions of the Hamiltonian
system defined by (1).

We make the reconstruction in stages, starting from the fully-
reduced space.

(i) As the reduction from TL,H to UL,H is exact, each relative
equilibrium on UL,H (with |H| ≥ 0) is straightforwardly
associated with one, two or four families of invariant 2-tori
in the original Hamiltonian. In our particular case, the points
E1 and E2 reconstruct to one single family of invariant 2-tori,
either of equatorial type (E1) or of circular type (E2). The
remaining relative equilibria reconstruct to two families of
invariant 2-tori because they are on the boundary of UL,H and
the points on this boundary (excepting E1 and E2) are related
to two points on the space TL,H due to the discrete symmetries
R1 and R2).

(ii) The reconstruction from TL,H to S2L × S2L is also immediate, as
the inverse reduction process is exact. Also, as the problematic
points of TL,0 (i.e. the two corners of the sphere) are excluded
from our study since the original problem is singular for G =

0, each equilibrium of TL,H is related to a family of periodic
solutions in S2L × S2L depending on H . The stability (linear and
orbital) of these periodic solutions is the same as the stability
of the relative equilibria in TL,H and in UL,H . The bifurcations
of the relative equilibria are translated into the bifurcations of
the same type of the periodic solutions in S2L × S2L .

(iii) The passage from S2L × S2L to R6 relies on the reconstruction
theory related to averaging theory, see [19,37], as the process
involved the truncation of the higher-order terms. Equilibria
of S2L × S2L would correspond to families of periodic solutions
in R6 and periodic solutions of S2L × S2L are related to families
of 2-tori in R6. The theorem ensuring this assertion is a
mutatis mutandis translation (a slight generalisation) of Reeb’s
theorem and can be proved using the Hamiltonian flow box
theorem (Lemma 2.1 of [38]), where in the set of coordinates
y = (y2, . . . , yn, yn+2, . . . , y2n) there are two coordinates, say
(y2, yn+2), which are a pair of action-angle variables and do
not play any essential role in the Hamiltonian (formula (1)
of [38, p. 315]). For the case considered in this paper this pair
is (H, h) whereas the essential action-angles are (L, ℓ). Thus,
to each point of the periodic solution one attaches a circle
parametrised by h and H , obtaining a 2-torus. Moreover, the
stability of the relative equilibria in UL,H and TL,H is inherited
by the corresponding periodic solutions in S2L × S2L and this
stability character is translated to the 2-tori in R6.

In all cases the tori depend on the values of L and H (with
0 ≤ |H| < L and L > 1) and are parametrised by two angles. These
angles are ℓ and h for motions that are not of circular or equatorial
type, while other combinations of the angles ℓ, g and h have to be
taken for the tori related to the points E1 and E2, see the details
in [4]. When ℓ and h are chosen to parametrise a single torus,
their frequencies are given by the partial derivatives of the normal
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form Hamiltonian with respect to L and H respectively. Thus, the
frequency related to ℓ is given by L−3 plus smaller terms of order
δ while the frequency of h starts with terms factorised by δ. Note
that the main term in the frequency of ℓ is the mean motion of the
pure Keplerian part, a known fact for perturbed Keplerian systems.

The 2-tori are in general filled in with quasiperiodic solutions.
More specifically, the quasiperiodic motions of the family of tori
related to E1 are near-equatorial but with any eccentricity 0 < e <
1, while the quasiperiodic motions related to E2 are near-circular
but with any inclination I in (0, π). The quasiperiodic solutions
related to the remaining 2-tori have eccentricities close to the
values (1 − (σ ∗

2 /L)2)1/2 or (1 − (σ−

2 /L)2)1/2 and inclinations close
to arccos (H/σ ∗) or arccos (H/σ−) for the permitted values σ ∗ and
σ−. The study of near-circular near-equatorial motions is excluded
from this analysis as the fully-reduced space is in this case a single
point and its reconstruction needs to bemade in S2L ×S2L . Indeed this
study was performed in [27], where we established the existence
of 2-tori near-circular near-equatorial quasiperiodicmotions of the
system with Hamiltonian function (1).

We could have proceeded in a different way to achieve the
existence of invariant 2-tori together with their stability character.
Indeed, following [39], first the axial symmetry of the system can
be used to reduce from R6 to a four-dimensional space that we
call BH , through a singular reduction process. The system in BH is
a two-degrees-of-freedom Hamiltonian whose invariants appear
in [39], see also [23]. Then the Keplerian symmetry should be
applied to reduce to a space of dimension 2, which coincides with
TL,H because of the commutativity of the symplectic reduction
by stages. The reduced Hamiltonian in TL,H is M. Then, the
reconstruction from TL,H to BH allows us to relate the relative
equilibria of TL,H to families of periodic solutions in BH sharing
the stability character according to the theory devised in [38]. Note
that even when TL,H is singular for H = 0 we exclude rectilinear
motions, so the results on the existence of periodic solutions and
their stability given in [38] apply here. Then the families of periodic
solutions of BH are converted into families of invariant tori in
R6 with the same stability behaviour when reconstructing to the
initial problem.

The (linear) stability of the invariant 2-tori is the same as
the parametric stability of the relative equilibria carried out
in the previous section. In the case of one-degree-of-freedom
Hamiltonians parametric stability is equivalent to linear stability,
see [38], Theorem 2.2 and Corollaries 2.2 and 2.3. Thus, when the
relative equilibria are not degenerate, the corresponding invariant
tori have the same stability character as their counterparts in the
fully-reduced phase space. It means that the invariant 2-tori are
elliptic if the related equilibrium point is a centre or hyperbolic if
the equilibrium is a saddle.

In the case of degeneracy, either c2,1 or c2,2 is zero and the
analysis becomes delicate. Indeed these degeneracies occur when
the relative equilibria bifurcate, either through a pitchfork or
a saddle-centre bifurcation. However, we can ensure that the
occurrence of the different bifurcations of relative equilibria on
the fully-reduced space translates to the same occurrence of
bifurcations of invariant 2-tori in the six-dimensional space where
H is defined. Also, the discussion of the bifurcations depends on
the internal parameters L and H and the physical parameters δ, β
and J2, although the bifurcation lines Γi appear a bit distorted due
to the truncation process. Properly speaking we should say that
the bifurcations depend on H and on L∗, which is obtained as L∗

=

L−∂ W1/∂ ℓ, that is, L∗ is the backward (inverse) transformation of
L (an integral of K) once we have dropped the higher-order terms.
We stress that L∗ is an approximate integral of H , up to first-order
terms.

As occurs with the saddle-centre bifurcation of periodic
solutions [39,40], the families of invariant 2-tori that depend
on L and H become degenerate for specific values of L∗ and H
(corresponding to a point on a bifurcation curve of the bifurcation
plane). This critical value divides the family into a subfamily
of elliptic 2-tori and a subfamily of hyperbolic 2-tori, exactly
as happens with the saddle-centre and pitchfork bifurcation of
equilibria. The linear stability of the degenerate tori is the same
as the degenerate relative equilibria that they come from, that is,
they are parabolic (unstable) invariant 2-tori.

We gather the above paragraphs in the following theorem.

Theorem 6.1. The Hamiltonian of the generalised Størmer problem
given through (1) has families of invariant 2-tori filled in with quasi-
periodic solutions that are either of near-circular, near-equatorial
and non-near-circular non-near-equatorial character. Also, one of the
frequencies of the tori is L−3 plus higher-order termswhereas the other
one is always much smaller. The (linear) stability character of these
2-tori is the same as the stability of the relative equilibria they are
related to. The bifurcation diagram that occurs for the fully-reduced
Hamiltonian is mimicked by a bifurcation diagram of invariant 2-tori
with the lines Γi slightly distorted, thus saddle-centre and pitchfork
bifurcations among 2-tori take place for the Hamiltonian (1). The
description of these bifurcations in terms of the appearance and
disappearance of the tori, their stability and degeneracy is the same
as the description of the saddle-centre and pitchfork bifurcations of
equilibrium points.

We add that although the terms of δ2 have not been included in
the analysis of the reduced Hamiltonian, it does not mean that the
conclusions about the existence, stability and bifurcations of the
2-tori of Hamiltonian (1) are strongly altered.

Finally, the saddle connection between the relative equilibria
E1 and E2 obtained in Section 5 leads to saddle connections
between families of 2-tori with quasiperiodic solutions near
circular trajectories with quasiperiodic solutions being equatorial.
Then, the three-dimensional stablemanifold of a single torus (after
fixing L and H) gets connected to the three-dimensional unstable
manifold of another single torus. However, this should be proved
rigorously, but as it is not an easy task we have not pursued this
issue further.

6.2. KAM 3-Tori associated with the relative equilibria

Related with the centres studied in the previous section we can
deduce the existence of KAM 3-tori of the system defined through
the Hamilton function H ′ (and H), using a local analysis in the
vicinity of each relative equilibria of elliptic character. Specifically,
the KAM3-tori thatwe are discussing surround the invariant 2-tori
established in the last subsection.

Proceeding similarly towhatwe did in [27] for the near-circular
near-equatorial trajectories, we need to introduce a fictitious small
parameter of the size of the small parameter of the problem.
We distinguish among the 3-tori related with near-circular, near-
equatorial or non-near-circular non-near-equatorial motions.

In the three cases we define q and p in terms of the Delaunay
coordinates in the samemanner aswe have done for the stability of
the relative equilibria, pushing the computations terms of degree
two in q and p. We introduce action-angle coordinates around each
equilibrium, indeed we define

q =
√

δ

2Φ/ω sinφ, p =

√
δ
√
2Φ ω cosφ,

with ω chosen adequately so that c2,1 q2 + c2,2 p2 becomes a
multiple of Φ . The transformation is symplectic with multiplier δ,
thus we need to divide the averaged Hamiltonian, including the
Kepler term, by δ. Also we make the scaling J2 → δ J̃2 in order to
emphasize that J2 is a small parameter of the same size as δ.
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Immediately, we recover the initial scaling of the system by
doing Φ → δ−1 Φ , and multiplying the whole Hamiltonian by δ.
The resulting Hamiltonian is of the form

K = −
1

2 L2
+ δ K

(1)
1 (L,H, Φ) + O(δ2)

where K
(1)
1 is the normal form of degree two in q and p that

come from K1 after making all the changes described above.
This Hamiltonian depends on the three actions L,H and Φ , but
it does not depend on the three respective angles ℓ, h and φ, as
these angles appear at higher orders, starting at terms of order
δ2. Focusing on K

(1)
1 , it is given by 2 (c̃2,1 c̃2,2)1/2 Φ + F(L,H) and

c̃2,1, c̃2,2 are obtained respectively from c2,1, c2,2 defined in (18),
(19), (22) or (23), after replacing J2 by J̃2 and setting δ = 1.

The explicit expression of the Hamiltonian F(L,H) is one of the
following functions

Fc(L,H) =
2β L6 + 2β L4 H2

+ (J̃2 − 4H) − 3 J̃2 H
4 L8

,

Fe(L,H) = −
(2H + J̃2) (L + |H|)

2 L3 H2 (L |H| + H2)
+

β

L2
,

Fg=0(L,H) =
β L2 G3

0 + L H (β H G2
0 − 1) − H G0

L3 (L + G0)G3
0

+
J̃2 (G2

0 − 3H2)

4 L3 G5
0

,

Fg=π/2(L,H) =
β L G4

0 − (β L2 H − 1)H G0

L3 (L + G0)G3
0

+
J̃2 (G2

0 − 3H2)

4 L3 G5
0

,

where Fc refers to the case of circular motions, Fe to equatorial
motions, and Fg=0, Fg=π/2 to non-circular and non-equatorial
motions. Also, G0 is a valid root of (20) in Fg=0 and a valid root of
(21) in Fg=π/2.

The Hamiltonian

−
1

2 L2
+ δ K

(1)
1 (L,H, Φ)

is usually called the intermediate Hamiltonian.
Now, since the unperturbed part of the Hamiltonian depends

only on the action L and ∂K0/∂ℓ = L−3
≠ 0, the Hamiltonian

K is properly degenerate. However, if the perturbation removes
the degeneracy, then the Hamiltonian system has invariant tori.
We obtain these invariant tori by applying a KAM theorem for
properly-degenerate Hamiltonians (Theorem 6.17, p. 279 of [41])
for the three types of motion we have classified. Hence, if for a
certain equilibrium of the fully-reduced space the determinant of
the matrix

∂2K
(1)
1

∂H2

∂2K
(1)
1

∂H ∂Φ

∂2K
(1)
1

∂Φ ∂H
∂2K

(1)
1

∂Φ2


is not zero then the perturbation removes the degeneracy.

In the case of circular-typemotions this determinant is given by
the quotient Dc = n2

c/dc with

nc = β2 L10 H + 15β2 L8 H3
− 12β L6 H (6H − J̃2)

+ 6 L4

12H − J̃2 (20β H3

+ 3)


+ 45 J̃2 L2 H (6H − J̃2) + 225 J̃22 H3,

dc = 4 L18

β L4 (L2 − 5H2) + 3 L2 (4H − J̃2) + 15 J̃2 H2


×


β L4 (L2 + 3H2) − 3 L2 (4H − J̃2) − 15 J̃2 H2


,

which is generically awell defined function that does not vanish for
the allowed values of the parameters, moreover it is bounded from
below by a function that does not tend to zero when δ → 0. Thus,
the perturbation removes the degeneracy and there are KAM3-tori
associated with solutions of circular type, in such a way that the
3-tori surround the invariant 2-tori containing the near-circular
solutions.

For the case of equatorial motions we obtain the determinant
as the quotient De = n2

e/(L
6 H10 (L + |H|)4 de) where

ne = β L4 H2
|H| (2β H4

− 12H − 15 J̃2)
+ 3 L3 (2β2 H8

− 12β H5
− 15β J̃2 H4

+ 9H2
+ 21 J̃2 H + 12 J̃22 ) − 9 L2 |H| (4β H5

+ 5β J̃2 H4
− 9H2

− 21 J̃2 H − 12 J̃22 )
− 3 L H2 (4β H5

+ 5β J̃2 H4
− 27 H2

− 63 J̃2 H
− 36 J̃22 ) + 9H2

|H| (H + J̃2) (3H + 4 J̃2),

de = −2β L3 H2
|H| (2β H4

− 3H − 3 J̃2)
+ 3 L (L + 2 |H|) (4β H4

− 3H − 3 J̃2) (H + J̃2)
+ 9H2 (H + J̃2)2.

In general this determinant is not zero and it is bounded from
below with a function that cannot be zero when δ → 0, which
means that the KAM theorem for properly-degenerate systems
applies and there are KAM3-tori related to the near-equatorialmo-
tions, in particular surrounding the invariant 2-tori of equatorial
type.

Similarly to the cases of circular and equatorialmotionswehave
computed the determinant corresponding to the relative elliptic
equilibria that are neither of circular nor of equatorial type and we
call it Dnce. We do not give the determinant here as it is too large,
but we have checked that it is bounded from below by a function
that does not tend to zero as δ tends to zero. Thus we conclude
that there are KAM 3-tori related to the non-near-circular non-
near-equatorial solutions. More precisely, these 3-tori surround
the invariant 2-tori containing the non-near-circular non-near-
equatorial solutions.

We encapsulate the analysis made in the above paragraphs in
the following theorem.

Theorem 6.2. The Hamiltonian of the generalised Størmer problem
given through (1) has invariant KAM 3-tori surrounding the invariant
2-tori filled in with near-circular, near-equatorial and non-near-
circular non-near-equatorial solutions, which correspond to the
relative equilibria in one degree of freedom that are centres. These
KAM tori form a majority in the sense that the measure of the
complement of their union is small together with the perturbation.
Also, the KAM tori are close to the invariant tori of the intermediate
system −1/(2L2) + δK

(1)
1 . The phase curves wind around these

tori conditionally periodically with three frequencies. One frequency
corresponds to the fast phase ℓ, and the other two to the slow phases h
and φ. In particular the frequencies related to h and φ are respectively
given by δ ∂K

(1)
1 /∂H + O(δ2) and δ ∂K

(1)
1 /∂Φ + O(δ2).

The above theorem for properly-degenerate Hamiltonians
cannot be applied for a specific class of motion if its corresponding
determinant (either Dc,De or Dnce) vanishes or is not well defined.
In terms of the small parameter δ, the excluding measure of the
invariant tori is small when δ is small.

We stress that we have dropped the terms of δ2 in the analysis
of the reduced Hamiltonian, but the conclusions on the KAM tori
should differ only slightly from the analysis of this subsection, as
the terms that would be incorporated to the determinants would
not make them change drastically.
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7. Conclusions

The dynamics of a charged particle orbiting a rotating magnetic
planet is studied through a realistic model that takes into account
the magnetic and the electric field as well as the gravitational
potential of the planet, where the J2-term is also included. We
have focused on the case where the main force acting over the
particle is the pure Keplerian term, thus our Hamiltonian lies in
the setting of perturbed Keplerian systems. We have studied the
dynamical features of the system using averaging and reduction
theories, combining global with local methods conveniently.

Our main conclusions are summarised as follows:

(i) The analysis performed has been possible through a severe
simplification of the original Hamilton function to a system
of one degree of freedom, making the subsequent analysis
valid for all eccentricities in the elliptic domain. Then we have
applied reduction theory to give the averaged Hamiltonian
its simplest possible form defined on the simplest reduced
phase space. It has been achieved because we have taken
into account all the continuous and discrete symmetries of
Hamiltonian (1) andbecausewehave averagedwith respect to
the mean anomaly at first order, truncating the higher-order
terms.

(ii) This paper generalises [4] as we have included the perturba-
tion caused by the oblateness of the planet. A complete anal-
ysis of the relative equilibria and their linear and nonlinear
stability has been performed. The occurrence and type of sta-
bility of the equilibria depend on two internal parameters (the
integrals of the averaged Hamiltonian, L and H) and three ex-
ternal parameters. Also, we have determined analytically the
bifurcation lines, i.e. the relations satisfied by the parameters
so that a change in the number of equilibria and stability oc-
curs. The bifurcation diagram can have up to different sixteen
regions.

(iii) We have established the existence of families of invariant
2-tori and quasiperiodic solutions for the Hamiltonian (1)
reconstructed from the relative equilibria, sharing the same
stability character (linearly). In particular, the particles get
trapped in the stable 2-tori. Also, the bifurcation diagram on
the fully-reduced phase space translates almost identically to
a bifurcation diagram of invariant 2-tori of Hamiltonian (1)
in terms of H and the inverse transformation of the action L,
which is indeed an approximate integral of Hamiltonian (1).

(iv) We have proved the existence of invariant KAM 3-tori for
the system (1) related to the elliptic relative equilibria of
the fully-reduced Hamiltonian. It has been possible thanks
to the application of a KAM theorem for properly-degenerate
systems.

(v) Our work complements the study achieved in [27], where
the analysis of the flow on the first-reduced phase space was
made, focusing in particular on motions that are near-circular
and near-equatorial. In that paper we reconstructed the fam-
ilies of periodic solutions together with their stability charac-
ter related to the near-circular near-equatorial solutions and
the KAM 3-tori surrounding the periodic solutions. The rela-
tive equilibria of the fully-reduced Hamiltonian in the present
paper are transformed into families of periodic solutions on
S2 × S2 that depend on a fixed value of L but not on H . The
linear stability of the families of periodic solutions is the same
as the stability of the equilibria they come from. These fami-
lies of periodic solutions bifurcate in the same manner as the
relative equilibria they are related to and they are related to
the families of invariant 2-tori in R6.
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