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Formation of RbCs dimers using an elliptically polarized laser pulse
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We consider the formation of RbCs by an elliptically polarized laser pulse. By varying the ellipticity of the
laser for sufficiently large laser intensity, we see that the formation probability presents a strong dependence,
especially around ellipticity 1/

√
2. We show that the analysis can be reduced to the investigation of the long-

range interaction between the two atoms. The formation is mainly due to a small momentum shifts induced
by the laser pulse. We analyze these results using the Silberstein expressions of the polarizabilities and show
that the ellipticity of the field acts as a control knob for the formation probability, allowing significant variations
of the dimer formation probability at a fixed laser intensity, especially in the region around an ellipticity of 1/

√
2.

DOI: 10.1103/PhysRevA.99.023402

I. INTRODUCTION

The interaction of matter with laser light is of fundamental
importance in atomic and molecular physics and in current
modern technology. Indeed, an atom subjected to intense laser
fields is a good example of how the complex interplay be-
tween the electron-core Coulomb force and the force exerted
by the electric field leads to single, double, and, in general,
multiple ionization processes (see, e.g., Refs. [1,2] and refer-
ences therein). On the other hand, by means of strong laser
fields, a feasible control of the alignment and orientation of
molecules is possible [3–10]. This issue is of great relevance
in chemical reactions because, in many situations, the reaction
rate is very sensitive to the relative orientation between the
reactants [11]. In this sense, sophisticated experimental con-
trol schemes using ultrashort laser pulses have made possible:
(1) to select and manipulate particular reaction channels [12];
(2) to design specific femtosecond pulses to maximize the
yield of the single ionization channel of a organometallic
molecule, while the competing fragmentation channel was
hindered [13]; (3) to used few-cycle subfemtosecond pulses
to break an specific hydrogen bond in the deprotonation of a
symmetric hydrocarbon [14]; (4) to control the fragmentation
angular distribution of photodissociation processes by means
of an intense near-infrared laser light [15].

In all cases, the intense laser pulses induce drastic changes
in the configuration of the targets by allowing chemical reac-
tions to occur in a certain way. The energy brought in by the
laser field is channeled along the various degrees of freedom
of the target to trigger these changes in a very complex
way. Thence, the precise understanding of the laser-driven
processes is a prerequisite to the control of the outcomes of the
reactions. By changing the parameters of the laser field, the
products of the laser-matter interactions are changing since
the energy brought in by the laser flows differently along
the different degrees of freedom of the target. Besides the
intensity and the frequency of the laser, when using elliptically
polarized laser light, the ellipticity of the laser appears as a
convenient additional parameter because it can be changed

continuously without an increase of the energy brought in to
the system. Examples where elliptically polarized laser fields
have been used can be found in molecular alignment [3]. More
recently, intense few cycle elliptically polarized laser pulses
are playing an important role in high harmonic generation
experiments [16,17].

From the point of view of classical dynamics, the nonlinear
nature of the matter-light interaction makes these systems
very interesting for classical studies. The use of nonlinear
dynamics to study the quantal world of atoms and molecules
has a long history. For example, the response of atomic and
molecular systems to diverse external field configurations has
been widely studied by using classical dynamics (see, e.g.,
Refs. [2,18–27]). In many cases, those classical approaches
were unrivaled to provide an intuitive explanation of the
quantum mechanical results (see, e.g., Refs. [2,18,28–31]).

Following a similar scheme to the one we used recently in
Ref. [32], in this paper we use classical dynamics to study the
formation of cold RbCs dimers driven by a strong elliptically
polarized laser pulse. In this way, the formation yield of RbCs
molecules is explored as a function of the laser parameters,
namely, the ellipticity and the strength electric field. Besides
the kinetic terms and the potential energy between the Rb
and Cs atoms, the rovibrational Hamiltonian of the system
includes the interaction between the molecular polarizability
and the laser pulse. Furthermore, the Hamiltonian depends
explicitly on time because the laser pulse envelope is made
of a ramp-up, a plateau, and a ramp-down. Hence, the system
depends explicitly on time, and the corresponding Hamilto-
nian has 3 + 1/2 degrees of freedom. For an ensemble of
initial conditions, the yield of the driven reaction is explored
by computing the formation probability as a function of the
strength and the ellipticity of the laser field. From these
numerical calculations, we find that there is a complex and
strong dependence of the formation probability with respect
to the ellipticity and the electric field strength. Indeed, for
increasing ellipticity and for low and intermediate laser field
strengths, there is a smooth variation in the formation prob-
ability, such that at at around an ellipticity value of 1/

√
2,
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it abruptly increases. For high laser field amplitudes, the
formation probability is very small for laser ellipticity below
1/

√
2, presenting a peak at that value, such that, for larger

values of ε, the formation probability saturates. We notice
that the duration of the pulse plays only a minor role since
it can be absorbed in the field strength (as a renormalized
field strength). By assuming that the very small changes in the
radial and the angular momenta of the dimer induced by the
laser pulse are the main ones responsible for the formation,
we use the long-range terms of the potential energy curve
and the molecular polarizabilities to build a simplified two-
dimensional Hamiltonian. This reduced Hamiltonian allows
us to obtain an analytic approximate expression for the final
energy of the dimer after the laser pulse. We use this approxi-
mate expression to explain the observed complex behavior of
the formation probability.

The paper is organized as follows: In Sec. II we estab-
lish the classical rovibrational Hamiltonian governing the
dynamics of the RbCs dimer in the presence of an elliptically
polarized laser field. A thorough study of the critical points
of the potential energy surface of the system is also presented
in that section. Section III is devoted to the analysis of the
phase space structures in the neighborhood of the dissociation
threshold. In Sec. IV we compute numerically the formation
probabilities as functions of the laser parameters, and the

results are analyzed by using a static approximation. Finally,
the conclusions are provided in Sec. V.

II. HAMILTONIAN MODELS

We use the Born-Oppenheimer approximation to study the
dynamics of the RbCs molecule in its 1�+ electronic ground
state subjected to a strong elliptically polarized laser pulse.
For the description of the problem we use an inertial reference
frame r̂ = (x̂, ŷ, ẑ) with the origin at the center of mass of
the molecule. In the absence of the laser pulse, the two atoms
of the molecule interact through the potential E (R), and its
Hamiltonian reads

H0(R, PR, θ, Pθ , φ, Pφ ) = P2
R

2μ
+ P2

θ

2μR2
+ P2

φ

2μR2 sin2 θ
+E (R).

(1)

In the above Hamiltonian (1), the variables (R, θ, φ) are the
interatomic distance between the two atoms, the polar angle
of the dimer defined from the direction ẑ, and the azimuthal
angle, respectively. (PR, Pθ , Pφ ) are the corresponding canon-
ically conjugate momenta. We assume that the polarization
plane of the laser field is perpendicular to ẑ, such that its
electric field is

E(t ) = F√
1 + ε2

√
f (t )[x̂ cos(ωt + φ) + ŷε sin(ωt + φ)], (2)

where f (t ) is the intensity envelope and 0 � ε � 1 is the ellipticity of the field. The limit values ε = 0 and ε = 1 correspond
to a linearly polarized laser field along the x̂ direction and to a circularly polarized laser field, respectively. The envelope f (t ) is
given by [33]

f (t ) =

⎧⎪⎪⎨⎪⎪⎩
sin2

(
πt

2Tru

)
if 0 � t < Tru

1 if Tru � t < Tru + Tp

sin2
[π (t−Tru−Tp−Trd )

2Trd

]
if Tru + Tp � t < Tru + Tp + Trd

0 elsewhere

, (3)

where Tru, Tp, and Trd are the duration of the ramp-up, the plateau, and the ramp-down of the pulse, respectively. The field
envelope (3) describes well experimental laser pulses [10]. The interaction potential Vint between the molecule and the electric
field of the laser pulse writes

Vint (r) = −D(r) · E(t ) − 1
2 E(t ) · α̂(r) · E(t ), (4)

where D(r) is the dipole moment function and α̂(r) is the polarizability tensor of the dimer. In the nonresonant case [5,34], it is
possible to average the dynamics over the short temporal scale of the laser, i.e., 2π/ω, such that we end up with the following
expression for the interaction potential (4):

Vint (R, θ, φ, t ) = − f (t )
F 2

4(1 + ε2)
{[α‖(R) − α⊥(R)] sin2 θ (cos2 φ + ε2 sin2 φ) + (1 + ε2)α⊥(R)}. (5)

The functions α‖,⊥(R) are, respectively, the parallel and the perpendicular components of the molecular polarizability of the
RbCs molecule [35]. Thence, we write the total Hamiltonian H of the system as the sum H = H0 + Vint,

H (R, PR, θ, Pθ , φ, Pφ, t ) = P2
R

2μ
+ P2

θ

2μR2
+ P2

φ

2μR2 sin2 θ
+ E (R) + Vint (R, θ, φ, t ). (6)

Hamiltonian (6) has 3 + 1/2 degrees of freedom (the 1/2 degree of freedom is due to the explicit time dependence through
the envelope of the laser pulse). Moreover, Hamiltonian (6) presents the following invariant manifold M:

M = {R, PR, θ = π/2, Pθ = 0, φ, Pφ}, (7)

where the dynamics of the dimer is limited to planar motions confined to the polarization xy plane of the laser field. We reduce
our study to the invariant manifold M such that the degree of freedom associated with the motion outside the polarization
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plane is frozen, i.e., we consider θ = π/2. The corresponding reduced Hamiltonian in the manifold M has 2 + 1/2 degrees of
freedom, and it reads

HM(R, PR, φ, Pφ, t ) = P2
R

2μ
+ P2

φ

2μR2
+ VM(R, φ, t ), (8)

where VM is the total potential energy surface on the manifold M,

VM(R, φ, t ) = E (R) − f (t )
F 2

4(1 + ε2)
{[α‖(R) − α⊥(R)](cos2 φ + ε2 sin2 φ) + (1 + ε2)α⊥(R)}. (9)

When the laser pulse is circularly polarized, ε = 1, the
Hamiltonian HM has 1 + 1/2 degrees of freedom because
the angle φ is cyclic and the corresponding momentum Pφ

is a constant of the motion. In particular, during the plateau
of the pulse, f (t ) = 1, and for ε = 1, the system becomes
integrable. In what follows, we consider electric fields of
intensity between 0 and 7×1012 W · cm−2, which roughly
correspond to electric field strengths up to F ≈ 10−2 a.u. It
is practical for classical calculations to have an analytical
representation for the potential energy surface VM(R, φ, t ).
Therefore, we have fitted the available data for E (R) [36] and
α‖,⊥(R) [35] to three appropriate functional forms which are
used in our computations. A detailed description of the fitting
procedure of E (R) and α‖,⊥(R) can be found in the Appendix.
The fitting of E (R) includes its long-range behavior described
by

ELR(R) = − b6

R6
− b8

R8
− b10

R10
. (10)

For the 1�+ RbCs, the bi coefficients in Eq. (10) can be found
in Ref. [37]. In the medium and long range, the behavior of
the polarizabilities α‖,⊥(R) is well described by the Silberstein
expressions [38,39]

αLR
‖ (R) = αRbCs + 4αRbαCs/R3

1 − 4αRbαCs/R6
,

αLR
⊥ (R) = αRbCs − 2αRbαCs/R3

1 − αRbαCs/R6
, (11)

where αRb ≈ 313 a.u. and αCs ≈ 394 a.u. are the atomic
polarizabilities of the two species and αRbCs = αRb + αCs.
In order to avoid the divergences of the Silberstein expres-
sions (11) when R → (4αRbαCs)1/6 ≈ 8.8889 a.u. and R →
(αRbαCs)1/6 ≈ 7.0552 a.u., in the analytical fitting of the po-
larizabilities, we model the medium-long behavior of α‖,⊥(R)
using the asymptotic limits of Eqs. (11) given by

αLR
‖ (R) ≈ αRbCs + 4αRbαCs

R3
, (12)

αLR
⊥ (R) ≈ αRbCs − 2αRbαCs

R3
. (13)

A. Analysis of the potential energy surface

The landscape of the potential energy surface VM(R, φ, t )
during the plateau [i.e., where f (t ) = 1] is mainly determined
by its critical points. We notice that these critical points are
fixed points of the dynamics if PR = Pφ = 0. It is straightfor-
ward to see that they appear along the directions φ = 0 and

π/2 (mod π ), as is depicted in Fig. 1, for F = 1.5×10−3 a.u.
In the short-range domain, there are two minima P1 at φ = 0
and π , and two saddle points P2 at φ = π/2 and 3π/2. In
the long-range domain, there are two maxima P3 at φ = π/2
and 3π/2. Thence, when the energy of the system is below
the energy of the saddle points P2, the (classical) dimer is
confined to move into one of the potential wells created by
the minima P1. However, when the energy of the system is
above the energy of the saddle points P2, the molecule can
describe complete rotations. Due to the energy hills around the
maxima P3 created by the polarizability, the largest values of
the intermolecular distance R are obtained along the directions
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FIG. 1. Equipotential curves of the potential energy surface
VM(R, φ, t ) during the plateau [i.e., with f (t ) = 1] for a laser field
strength F = 1.5×10−3 a.u. and ellipticity ε = 0.5.
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FIG. 2. Evolution of the position and energy of the maxima P3 [upper panels (a) and (b)], the saddle points P2 [blue lines in the upper
panels (a) and (b)], and the minima P1 [red lines in the upper panels (a) and (b)] of the potential energy surface VM(R, φ, t ) during the plateau
[i.e., with f (t ) = 1] as a function of the amplitude of the electric field F . All figures for the same ellipticity value ε = 0.5.

φ = 0, π/2, and π . Obviously, the location and energy of
the critical points depend on the values of the parameters
F and ε. In this way, as we can observe in Figs. 2(a) and
2(b), as the electric field strength F increases, the maxima P3

approaches the saddle points P2 and their energy decreases. In
the same way, as F increases, the depth of the potential wells
determined by P1 and P2 increases, while their position shows

a slight increase [see Figs. 2(c) and 2(d)]. The influence of
the parameter ε is shown in Fig. 3: As ellipticity is increased,
the maximum P3 quickly moves off the saddle points P2, and
its energy decreases. At a critical ellipticity ε � 1/

√
2, this

maximum disappears [see Figs. 3(a) and 3(b)]. On the other
side, as the ellipticity ε increases, the depth of the potential
wells determined by P1 and P2 decreases, such that for ε = 1,

FIG. 3. Evolution of the position and energy of the maxima P3 [upper panels (a) and (b)], the saddle points P2 [blue lines in the upper
panels (a) and (b)], and the minima P1 [red lines in the upper panels (a) and (b)] of the potential energy surface VM(R, φ, t ) during the plateau
[ f (t ) = 1] as a function of the ellipticity ε. All figures for the same electric field value F = 1.5×10−3 a.u.
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they come into coincidence and they disappear. In this way,
in the integrable case of ε = 1, the equipotential curves of
VM are straight lines of constant R value. This is the expected
landscape for a potential energy surface which depends only
on the interatomic distance R.

The described evolution of the critical points can be seen
analytically by looking at the short-range behavior near the
bottom of the well created by the potential E (R): We assume
that in this region the effect of the interaction with the laser
field is a small perturbation of the unperturbed Hamiltonian,
and we obtain the following expressions for the positions of
P1 and P2:

R(P1) ≈ Rmin + F 2

4(1 + ε2)E ′′ (Rmin)
[α′

‖(Rmin)+ε2α′
⊥(Rmin)],

R(P2) ≈ Rmin + F 2

4(1 + ε2)E ′′ (Rmin)
[α′

⊥(Rmin)+ε2α′
‖(Rmin)],

where α′
‖,⊥ = dα‖,⊥/dR and Rmin is the location of the mini-

mum of the potential E (R). From these expressions, we notice
that these positions increases like F 2 as F increases, with a
higher increase for the position of P1 since α′

‖(Rmin) is larger
than α′

⊥(Rmin). In addition, we notice that the position of
P1 (respectively P2) decreases (respectively increases) with
increasing ellipticity, and the positions of P1 and P2 coincide
for ε = 1. Actually, when ε = 1 all the points with R =
R(P1) = R(P2) are fixed points, irrespective of the value of
the angle φ, due to symmetry. The energy of these points are
given by

VM(P1) ≈ E (Rmin) − F 2

4(1 + ε2)
[α‖(Rmin) + ε2α⊥(Rmin)],

VM(P2) ≈ E (Rmin) − F 2

4(1 + ε2)
[α⊥(Rmin) + ε2α‖(Rmin)].

These energies decrease like F 2 as F increases, and VM(P1)
decreases faster than VM(P2) since α‖(Rmin) > α⊥(Rmin).
From these expressions, one can show that the energy of P2

(respectively P1) decreases (respectively increases) when ε

increases. As expected, their values are equal when ε = 1.
Using the long-range expressions for the potentials, an

approximate expression of the location of P3 can be derived:

R(P3) ≈
[

4b6(1 + ε2)

F 2(1 − 2ε2)αRbαCs

]1/3

,

from which we clearly see the singularity at ε = 1/
√

2 and
its decrease as F−2/3 as F increases. The associated energy
varies as

VM(P3) ≈ −F 2

4
αRbCs + F 4(1 − 2ε2)α2

Rbα
2
Cs

16b6(1 + ε2)2
.

Given the value of the parameters for RbCs, the second term
is much smaller than the first one. Therefore the energy
decreases like −F 2 as F increases, and there is a very weak
dependence of the energy with respect to the ellipticities in the
domain where P3 exists. In the limit R −→ ∞, the potential
curve E (R) tends to zero, while α‖(R) and α⊥(R) tend to
αRbCs. Using the potential energy surface VM(R, φ, t ) during
the plateau ( f (t ) = 1) the dissociation threshold Ed is thus

given by

Ed ≈ −F 2

4
αRbCs. (14)

It is worth noticing that the dissociation threshold does not
depend on the ellipticity ε.

III. PHASE SPACE STRUCTURE

Because during the plateau Hamiltonian (8) has two de-
grees of freedom, Poincaré sections constitute a very con-
venient tool for visualizing its phase space structures. In
order to get information from the orbits populating the sur-
faces of section, we consider the long-term dynamics of the
trajectories such that they are calculated for a time much
larger than the duration of the pulse, typically up to 2×104

ps. A convenient Poincaré map is PR = 0 with ṖR > 0, such
that the trajectories are mapped onto the plane (φ, Pφ ). In
particular, we are interested in investigating the changes of
these Poincaré sections as the external parameters F and
ε are varied and when the energy E of the dimer is near
the dissociation threshold given by Eq. (14). For F = 2×
10−3 a.u., the dissociation energy is given by Ed ≈ −7.07×
10−4 a.u. For an energy of E = −7.08×10−4 a.u., i.e., slightly
lower than Ed , and for ε = 0.25, 0.5, 0.75, and 0.95, the
corresponding Poincaré sections are shown in Fig. 4. In the
four sections depicted in Fig. 4 we find the same generic
structure that resembles a chaotic pendulum. Indeed, we find
regular rotational and vibrational trajectories and a rotational
chaotic layer around the hyperbolic fixed point at φ = π/2.
There also appears a chaotic region of vibrational orbits that
seems to be disconnected from the rotational chaotic region.
As expected, for increasing ellipticity, the size of the vibra-
tional region as well as the width of the chaotic layer decrease
because, as the ellipticity tends to unity, ε → 1, the system
approaches its aforementioned integrable limit where the an-
gle φ is cyclic (and where the momentum Pφ is conserved),
such that the phase space is populated only with rotational
orbits.

Now, starting from the configuration depicted in the
Poincaré map of Fig. 4(b) for ε = 0.5, E = −7.08×
10−4 a.u., and F = 2×10−3 a.u., we change the electric
field strength in order to study its effect on the phase space
structure. When F is slightly smaller, e.g., F = 1.75×10−3

a.u., the phase portrait undergoes significant changes. Except
for a tiny chaotic region around the unstable fixed point
located at (π, 0), the Poincaré map of Fig. 5(a) for F = 1.75×
10−3 a.u. is equivalent to that of a pendulum, with a phase
space structure made of regular rotational and vibrational
orbits. The reason of this quick change from a mixed regular-
chaotic behavior to a fairly regular behavior is that the disso-
ciation threshold Ed given by Eq. (14) quadratically increases
with F . Then even an slight decrease of F leaves the system
well below its dissociation threshold, which in general moves
nonlinear systems to more regular behaviors. When the elec-
tric field increases from the starting value F = 2×10−3 a.u.,
the dissociation threshold Ed given by Eq. (14) decreases,
and its effect on the dynamics is even more dramatic be-
cause most of the chaotic trajectories in the Poincaré map of
Fig. 4(b) rapidly become dissociation orbits. For example, for
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FIG. 4. Poincaré sections (PR = 0, ṖR > 0) of Hamiltonian (8) with F = 2×10−3 a.u., an energy E = −7.08×10−4 a.u. and for ε = 0.25,
0.5, 0.75, and 0.95.

the slightly larger value F = 2.01×10−3 a.u., we have that
Ed ≈ −7.14×10−4 a.u., and the Poincaré section of Fig. 5(b)
presents a large central empty region which corresponds to
dissociation trajectories. In the situation depicted in Fig. 5(b),
only the rotational orbits with Pφ value large enough remain
isolated from the dissociation channels along the directions
φ = π/2 and 3π/2.

In order to interpret the basic structures behind these
Poincaré sections, we build an effective model to measure
the size of the resonant island where the chaotic motion
is confined to. The assumption is a short-range one, and it
is based on the fact that the values of R stay close to the

minimum of the potential well. The effective Hamiltonian
becomes

Heff = P2
φ

2μR2
min

− F 2(1 − ε2)

8(1 + ε2)
[α‖(Rmin) − α⊥(Rmin)] cos 2φ.

It is the Hamiltonian of a pendulum with a stable equilibrium
at φ = 0 and an unstable equilibrium at φ = π/2 (mod π ).
The width of the resonant island is then given by

	Pφ =
√

2RminF
√

μ[α‖(Rmin) − α⊥(Rmin)]

√
1 − ε2

1 + ε2
.
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 0.25

FIG. 5. Poincaré sections (PR = 0, ṖR > 0) of Hamiltonian (8) for F = 1.75×10−3 a.u. and F = 2.01×10−3 a.u. Both sections have been
computed with ellipticity ε = 0.25 and energy E = −7.08×10−4 a.u.
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It increases linearly with F and decreases as ε approaches 1.
Inside the separatrix, the degree of freedom (R, PR) cannot be
frozen, and there is a complex interaction between the two
degrees of freedom leading to chaotic behaviors. It should be
noted that inside the separatrix, typical trajectories experience
large excursions away from the equilibrium points, so the full
potential is needed to describe the dynamics.

IV. FORMATION PROBABILITY AS A FUNCTION
OF THE ELLIPTICITY

A. Numerical results

In this section, we study the influence of the elliptically
polarized laser pulse (2) on the creation of bound RbCs
molecular states. To this end, for each ellipticity between
0 (linear polarization) and 1 (circular polarization) and for
different values of the field strength F , we take a large
ensemble of free pairs of Rb-Cs atoms. At t = 0, all the
initial conditions (R0, P0

R , φ0, P0
φ ) of the ensemble have the

same energy E0 = 3×10−9 a.u., which roughly corresponds
to T = 1 mK, the typical temperature of a sample of cold
atoms in current photoassociation experiments [40,41]. In our
calculations, the initial values of P0

φ are taken to be zero,
while the values of φ0 are chosen randomly in [0, 2π ]. The
initial interatomic distances R0 are randomly chosen (with a
uniform distribution) in the interval [Rm, RM] = [6.2329, 200]
a.u., where Rm is the inner turning point of the phase trajectory
given by the “free” Hamiltonian

E ≡ H0
M = P2

R

2μ
+ P2

φ

2μR2
+ E (R), (15)

for E = E0 = 3×10−9 a.u. and Pφ = 0. Finally, the values of
P0

R are given by

P0
R = ±

√
2μ[E0 − E (R0)].

Then, we propagate the ensemble of trajectories by inte-
grating numerically the equations of motion obtained from
Hamiltonian (8) up to the pulse duration tfinal = Tru + Tp +
Trd. For t � tfinal, the energy of each trajectory of the ensemble
remains constant and the dynamics is governed by the free
Hamiltonian (15). In order to have a bound trajectory at the
end of the pulse, the final energy Efinal of a given trajectory at
tfinal has to be lower than the height of the centrifugal barrier
of Hamiltonian (15), and the final intermolecular distance has
to be smaller than the location of the barrier. In order to get
an approximate formation criterion, we use the long-range
behavior for the potential energy:

E (R) ≈ − b6

R6
.

The effective potential in Eq. (15) is given by

Eeff (R) = P2
φ

2μR2
− b6

R6
.

The above effective potential has a maximum for R = R∗,

R∗ =
(

6μb6

P2
φ

)1/4

,

FIG. 6. Formation probabilities obtained as a function of the
ellipticity ε for F = 1×10−4 a.u. (green points), F = 2×10−3 a.u.
(red points), and F = 1×10−2 a.u. (blue points). Each point has been
calculated from the average over 10 different ensembles of initial
conditions with the same energy E0 = 3×10−9. The corresponding
error bars are also shown, and in most cases they are barely visible.
The parameters of the pulse are Tru = 15 ps, Tp = 70 ps, and Trd =
15 ps.

and the height of the corresponding potential barrier is

E∗ = 2b6

R6∗
.

Therefore, at the end of the pulse, formation occurs for
(R(tfinal ), PR(tfinal ), φ(tfinal ), Pφ (tfinal )) such that

Efinal = P2
R (tfinal )

2μ
+ P2

φ (tfinal )

2μR(tfinal )2
+ E (R(tfinal )) �

2b6

R6∗
and

R(tfinal ) � R∗. (16)

Once the ensemble has been propagated up to t = tfinal, we
consider the proportion of formed RbCs dimers, i.e., the for-
mation probability. For the total duration of the pulse we use
tfinal = 100 ps, a value easily achieved in current experiments
[10]. For the chosen values of the parameters, the values for
the formation probabilities are approximately the same if a
rough negative energy criterion is used, i.e., Efinal < 0 for
formation.

In Fig. 6 we show the the formation probability P(ε) as
a function of the ellipticity ε for a laser profile Tru = Trd =
15 ps and Tp = 70 ps. We consider three different regimes of
laser amplitudes: low, intermediate, and high laser amplitudes.
Increasing laser amplitude, we move from one regime to
the next. Here typically, we choose F = 1×10−4 a.u. (low
amplitude), F = 2×10−3 a.u. (intermediate amplitude), and
F = 1×10−2 a.u. (high amplitude). We note that each point of
Fig. 6 has been calculated from the average over 10 different
ensembles of initial conditions with the same energy E0 =
3×10−9 a.u.. The statistical errors of the formation probability
results of Fig. 6 have also been computed and displayed in
Fig. 6 by means of the corresponding error bars. We notice
that the error bars are in most cases barely visible.

The low, intermediate, and high laser amplitudes display
different behaviors. For low and intermediate amplitudes,
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the formation probability varies very weakly with increasing
ellipticity, then rather abruptly increases around ε ≈ 0.7. At
high amplitudes, the formation probability shows a different
behavior: P(ε) is very small for laser ellipticities below ε �
0.7, and then it presents a peak of formation around that
value ε ≈ 0.7, such that, for larger values of ε, the formation
probability P(ε) almost saturates. It is worth noticing that
the location of this peak does not change significantly by
changing the duration of the pulse. As we will show in the
next section, the behavior of the formation probability, and
in particular its significant increase around ε ≈ 0.7, can be
explained as only a function of the long-range parameters of
the polarizabilities of the dimer and the ellipticity ε of the
laser.

B. Results from a static approximation

We assume that the pulse is sufficiently short and the
mass sufficiently large, so that the atoms have no time to
move. Nonetheless, they acquire a momentum shift induced
by the laser pulse, and this is sufficient to ensure dimer
formation for selected initial conditions. In order to be a bit
more quantitative, we consider the four-dimensional case with
Hamiltonian (8). A similar reasoning can be done for the
six-dimensional case with Hamiltonian (6). The inverse of the
reduced mass is the small parameter. The spatial coordinates
are given by

R = R0 + O(μ−1),

φ = φ0 + O(μ−1).

The equations of motion for the momenta arising from Hamil-
tonian (8) can be written as

ṖR = P2
φ

μR3
− E ′(R) + f (t )

F 2

4
F (R, φ; ε), (17)

Ṗφ = f (t )
F 2

4
RG(R, φ; ε), (18)

where E ′(R) = dE (R)/dR, and the functions F and G are
given by

F (R, φ; ε) = (cos2 φ + ε2 sin2 φ)

1 + ε2
[α′

‖(R) − α′
⊥(R)] + α′

⊥(R),

G(R, φ; ε) = −α‖(R) − α⊥(R)

R

1 − ε2

1 + ε2
sin 2φ.

The integration of Eqs. (17) and (18) for the duration of the
pulse, up to order O(μ−1), leads to

PR = P0
R + 	PR + O(μ−1), (19)

Pφ = 	Pφ + O(μ−1), (20)

since P0
φ = 0, and where we assume that E ′(R) ≈ 0. Then the

laser-induced momentum shifts are given by

	PR = F 2(Tru + 2Tp + Trd )

8
F (R0, φ0; ε), (21)

	Pφ = F 2(Tru + 2Tp + Trd )

8
R0G(R0, φ0; ε), (22)

FIG. 7. Formation probability obtained with Eq. (23) as a func-
tion of ellipticity ε for F = 1×10−4 a.u. (dashed-dotted green line),
F = 2×10−3 a.u. (shaded red line), and F = 1×10−2 a.u. (solid blue
line). The probabilities have been calculated for an initial ensemble
of initial conditions with energy E0 = 3×10−9. The parameters of
the pulse are Tru = 15 ps, Tp = 70 ps, and Trd = 15 ps.

where we have used the fact that∫ Tru+Tp+Trd

0
f (t )dt = Tru

2
+ Tp + Trd

2
.

We observe that the parameters of the laser field F , Tru, Tp,
and Trd are involved in the momentum transfer quantities (21)
and (22) with a single parameter f of the form

f = F 2(Tru + 2Tp + Trd )

8
.

Using Eqs. (19)–(22) and the free Hamiltonian (15), the final
energy is approximately given by

E f = E0 + 1

μ
P0

R	PR + 1

2μ
(	PR)2 + 1

2μR2
0

(	Pφ )2. (23)

All the terms in the above equation are of order 1/μ, and the
neglected terms are of order 1/μ2. We use this equation to
determine an approximate formation probability. We consider
a set of initial conditions in the same way as in Fig. 6, and
we look at the subset which holds the criterion (16) or an
approximate negative energy criterion. In Fig. 7 we represent
the resulting formation probabilities as a function of ellipticity
for laser intensities F = 1×10−4 a.u., F = 2×10−3 a.u., and
F = 1×10−2 a.u. We notice that for intermediate and large
field intensities F = 2×10−3 a.u. and F = 1×10−2 a.u., they
display the same behavior as in Fig. 6, with a pronounced
increasing of formation around ε ≈ 0.7. However, for low
field strength F = 1×10−4 a.u., the approximate expression
(23) does not provide good results. We will go back to
this disagreement for low field intensities. At this point, we
analyze the different regimes displayed by the formation
probability curves in the long-range approximation using the
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FIG. 8. Evolution of the parameter f (red solid line) and f2

(blue dashed line) as a function of the field strength F in inter-
val F ∈ [10−4, 10−2]. The parameters of the pulse are Tru = 15 ps,
Tp = 70 ps, and Trd = 15 ps, such that f = f2 at F ≈ 10−3 a.u.

following formulas:

F (R, φ; ε) = −3αRbαCs

R4

(
1 + 3

1 − ε2

1 + ε2
cos 2φ

)
,

G(R, φ; ε) = −6αRbαCs

R4

1 − ε2

1 + ε2
sin 2φ,

obtained using Eqs. (12)–(13). A good approximation for
the formation probability criterium is that the final energy
is negative. Therefore formation occurs for initial conditions
(R0, φ0) satisfying

E f = E0 − 3fP0
R

αRbαCs

μR4
0

g1(φ0, ε) + 9f2 α2
Rbα

2
Cs

2μR8
0

g2(φ0, ε) < 0,

(24)

where the functions g1,2(φ, ε) are

g1(φ0, ε) = 1 + 3
1 − ε2

1 + ε2
cos 2φ0, (25)

g2(φ0, ε) =
(

1 + 3
1 − ε2

1 + ε2
cos 2φ0

)2

+ 4

(
1 − ε2

1 + ε2

)2

sin2 2φ0. (26)

In Eq. (24) there are three terms: one independent of f, one
linear in f, and one proportional to f2. The linear term is the
only one which can be negative, so its contribution is essential
for formation. The subtle balance between these three terms
explains at least qualitatively the different behaviors observed
in the formation probability curves as the parameters are
varied. Depending on the value of the field strength F , there
are basically three regimes for most values of the ellipticity:
one where f is so small that the f2 term can be neglected,
one where the quadratic term in f is of the same order as
the linear term, and one where the quadratic term is mostly
dominant. These three regimes are clearly identified in Fig. 8
where f and f2 are plotted as a function of F . Furthermore,

FIG. 9. Formation probabilities for the (large) laser intensities
F = 5×10−3 a.u., F = 7.5×10−3 a.u., and F = 1×10−2 a.u. com-
puted numerically (label N) and with the approximate expression
(24) (label A). In all cases the probabilities have been computed for
an initial ensemble of initial conditions with energy E0 = 3×10−9.
The parameters of the pulse are Tru = 15 ps, Tp = 70 ps, and
Trd = 15 ps.

these regimes are expected to be very sensitive to the value
of the field strength because f and f2 are quadratic and
quartic functions in F , with F � 1 a.u. We analyze below the
formation probability in these three regimes.

1. For large values of f

In Fig. 8 we observe that when F � 5×10−3 a.u., there
appears a regime where 1 < f � f2. In this regime, the for-
mation is very unlikely since the positive quadratic term in f
is dominant for most of the values of (R0, φ0), such that if f
increases, the formation probability decreases. However, there
exist some particular values of (R0, φ0) where this term can be
made relatively small in comparison with the negative linear
term in f. In this way, the minima of the quadratic term are
obtained for φ0 = π/2 mod π , and its value is proportional to

minφ0 g2(φ0, ε) = 4

(
1 − 2ε2

1 + ε2

)2

.

Therefore, for φ0 close to π/2 and for R0 large enough, the
quadratic term in f is the smallest one. We notice that it is
even smaller for ellipticities close to 1/

√
2. As a consequence,

it is expected a higher formation probability for ellipticities
close to 1/

√
2, which explains the bump observed in the

formation probability in Fig. 6. In Fig. 9 we compare the
evolution of the formation probability P(ε) for the (large)
laser intensities F = 5×10−3 a.u., F = 7.5×10−3 a.u. and
F = 1×10−2 a.u. computed numerically and by using the
approximate expression (24). We notice that in all cases the
approximate formation probabilities display the same be-
havior as those numerically computed, with a pronounced
increasing of formation around ε ≈ 1/

√
2.

2. For intermediate values of f

When the electric field strength is in the range 1×
10−3 a.u. � F � 5×10−3 a.u., f and f2 are of the same
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FIG. 10. Formation probabilities for the (intermediate) laser in-
tensities F = 2×10−3 a.u. and F = 4×10−3 a.u. calculated numeri-
cally (label N) and with the approximate expression (24) (label A).
In all cases the probabilities have been calculated for an initial
ensemble of initial conditions with energy E0 = 3×10−9. The pa-
rameters of the pulse are Tru = 15 ps, Tp = 70 ps, and Trd = 15 ps.

order (see Fig. 8). This regime is complex to analyze since
all the three terms in Eq. (24) compete. For a fixed value
of ε and taking into account that the effective field strength
parameter f is larger than unity for the considered field
strength values, the formation is expected to be enhanced
for decreasing values of the electric field strength F . Indeed,
this is the observed behavior in the computations of P(ε)
shown in Fig. 10 for F = 2×10−3 a.u. and F = 4×10−3 a.u.
Moreover, it is worth noticing in Fig. 10 the good qualitative
agreement between the evolution of the formation probabili-
ties P(ε) computed numerically and by using the approximate
expression Eq. (24). In order to analyze the increase of P(ε)
for increasing values of ε observed in Fig. 10, we study
the behavior of the approximate final energy E f given by
Eq. (24). Two optimal situations appear for φ0 ≈ 0 and φ0 ≈
π/2 since in the neighborhood of those directions, the induced
momentum shift 	Pφ is approximately zero, such that last

term in Eq. (23) is negligible. Moreover, together with the
conditions Pφ = 0, those directions are the invariant manifolds
of the system along the minima P1 (φ = 0) and the saddle
points P2 (φ = π/2). Along the directions of P1,2, the induced
momentum transfers 	PR are

(	PR)P1 = −6fαRbαCs

R4

(
2 − ε2

1 + ε2

)
, (27)

(	PR)P2 = −6fαRbαCs

R4

(
2ε2 − 1

1 + ε2

)
. (28)

Since (	PR)P1 is always negative, the final energy E f can
be be negative only if the initial conditions P0

R are positive.
However, (	PR)P2 is positive when ε < 1/

√
2, negative when

ε > 1/
√

2, and it takes zero value at ε = 1/
√

2. Then along
the direction P2 the final energy E f can be negative either for
negative P0

R and ε < 1/
√

2 or for positive P0
R and ε > 1/

√
2.

Along the direction P1, the final energy (24) becomes

(E f )P1 = E0 − 6fαRbαCs

R4

√
2

μ

(
E0 + b6

R6

)
β(ε)

+ 18f2α2
Rbα

2
Cs

μR8
β2(ε). (29)

where β(ε) = g1(φ0 = 0, ε) = (2 − ε2)/(1 + ε2) > 0. As we
observe in Fig. 11(a), the β(ε)-terms involving the elliptic-
ity are (positive) decreasing functions. Since the β2(ε)-term
decreases faster than the β(ε)-term such that for ε � 1/

√
2,

β(ε) � β2(ε), this qualitatively explains the increase of the
formation probability for increasing ellipticity. Furthermore,
when R −→ ∞, the function (E f )P1 tends to E0, while when
R −→ 0, (E f )P1 tends to +∞. The function (E f )P1 has two
roots R1( f , ε) and R2( f , ε) such that R1( f , ε) � R2( f , ε).
In the interatomic region between these two roots, (E f )P1 is
negative, and as a consequence, there is formation when R0 is
between R1( f , ε) and R2( f , ε). In Fig. 11(b), 	R2,1( f , ε) =
R2( f , ε) − R1( f , ε) is represented as a function of ε for three
fixed values of F . In all cases, the distance 	R2,1( f , ε)
increases with ε and decreases with F .

FIG. 11. (a) Evolution of the terms β(ε) and β2(ε). (b) Evolution of the distance 	R2,1( f , ε) = R2( f , ε) − R1( f , ε) between the two roots
of the final energy (Ef )P1 .
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FIG. 12. (a) Evolution of the terms γ (ε) and γ 2(ε). (b) Evolution of the distance 	R2,1( f , ε) = R2( f , ε) − R1( f , ε) between the two roots
of the final energy (Ef )P2 .

Along the direction P2, the final energy (24) takes the form

(E f )P2 = E0 − 6 f αRbαCs

R4

√
2

μ

(
E0 + b6

R6

)
γ (ε)

+ 18 f2 α2
Rbα

2
Cs

μR8
γ (ε)2, (30)

where γ (ε) = g1(φ0 = π/2, ε)/2 = (2ε2 − 1)/(1 + ε2). In
particular, when ε = 1/

√
2, the factor γ (ε) vanishes and

formation is not possible along the direction P2.The evolution
of the factors γ (ε) and γ 2(ε) is depicted in Fig. 12(a). In
both intervals 0 � ε < 1/

√
2 and 1/

√
2 < ε � 1, the func-

tion (E f )P2 has two roots R1( f , ε) and R2( f , ε) such that
R1( f , ε) � R2( f , ε). Therefore, we follow again the evolution
of the distance 	R2,1( f , ε) = R2( f , ε) − R1( f , ε) between
these roots as a function of the ellipticity in each of these
intervals, and the result of this study is shown in Fig. 12(b).
We observe that, in all cases, when the ellipticity approaches
the critical value 1/

√
2, the distance 	R2,1( f , ε) sharply tends

to zero because at ε = 1/
√

2, we have (E f )P2 = E0 > 0. On
the other hand, Fig. 12(b) shows that the distance between
the roots increases for increasing ellipticity in the interval 0 �
ε < 1/

√
2, while it decreases in the interval 1/

√
2 < ε � 1.

We use the final energies (E f )P1 and (E f )P2 to compute numer-
ically the respective formation probabilities. To do that, we
use an ensemble of initial conditions with Pφ = 0, φ = 0 for
(E f )P1 , φ = π/2 for (E f )P1 and random R(0) ∈ [6.2329, 200]
a.u. The results of these computations are shown in Fig. 13.
In Fig. 13(a) the evolution of the formation probability is
shown using the final energy given by Eq. (29). As expected,
the probability mimics the behavior of 	R2,1( f , ε) shown
in Fig. 11(b). Indeed, the formation probability increases for
increasing ellipticity, and it decreases for increasing electric
fields. The behavior of the formation probability along the
direction of the saddle point P2 given by the final energy
Eq. (30) also follows the pattern of 	R2,1( f , ε) shown in
Fig. 12(b). Note that, at the critical ellipticity ε = 1/

√
2,

the formation probability is zero. Finally, when the joint
formation probability along the directions of P1,2 is calculated
[see Fig. 13(c)], except in the neighborhood of ε = 1/

√
2,

its behavior resembles the one obtained in Fig. 7. Roughly
speaking, the global behavior of the formation probability is

made of two main contributions: one of them coming from the
direction P1 and the other one from the direction P2.

3. For small values of f

For relatively small values of the field strength below F �
1×10−3 a.u. (see Fig. 8), it is possible to assume that f 
 f2,
such that the condition (24) for formation becomes

3

√
2

μ

(
E0 + b6

R6
0

)
αRbαCs

R4
0

|g1(φ0, ε)| >
E0

f
.

We readily see that if f increases, the threshold for formation
E0/f decreases, and hence the formation probability P(ε) in-
creases for all values of the ellipticity. Furthermore, we notice
that the function |g1(φ0, ε)|, displays two distinct behaviors,
one for ε < 1/

√
2 and one for ε > 1/

√
2. For ε < 1/

√
2, the

function |g1(φ0, ε)| has a maximum at φ0 = 0 with a value
of 2(2 − ε2)/(1 + ε2), a local maximum at φ0 = π/2 with a
value of 2(1 − 2ε2)/(1 + ε2), and vanishes for an intermedi-
ate value of φ0. As ε is increased up to 1/

√
2, the maximum

and the local maximum are decreasing. For a given value of
R0, only a finite set of φ0 leads to formation. Therefore, a
decreasing of the formation probability with ε is expected.
At ε = 1/

√
2, the local maximum and the minimum merge,

such that for ε � 1/
√

2, the function |g1(φ0, ε)| presents a
maximum at φ0 = 0 with a value of 2(2 − ε2)/(1 + ε2) and
a minimum at φ0 = π/2 with a value of 2(2ε2 − 1)/(1 + ε2).
As ε increases from 1/

√
2, the maximum decreases, but the

minimum is increasing. In this range of ellipticities, for a
value of R0 sufficiently small (below a value related to the
minimum of |g1(φ0, ε)|), all values of φ0 lead to formation.
Therefore, the formation probability would tend to increase
with ellipticity.

However, as we already observed in Fig. 7, the above
described behavior of P(ε) is not the scenario observed
when P(ε) is numerically computed for small values of f.
For example, in Fig. 14, we compare the evolution of P(ε)
computed numerically with the approximate one given by
Eq. (24) for the (small) field values F = 1×10−4 a.u. and
F = 2×10−4 a.u. Indeed, while in both cases the approximate
formation probability follows the above described behavior,
the numerical formation probabilities show a monotonic in-
crease for increasing values of the ellipticity ε. In this way,
for small enough values of F , there is a clear disagreement
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FIG. 13. (a, b) Formation probability obtained, respectively, with
Eq. (29) and with Eq. (30) as a function of ellipticity ε for F = 2×
10−3 a.u. (solid red line), F = 4×10−3 a.u. (dashed green line) and
F = 8×10−3 a.u. (dashed-dotted blue line). (c) Joint probability cal-
culated with Eqs. (29)–(30). The probabilities have been calculated
for an initial ensemble of initial conditions with energy E0 = 3×10−9

a.u. The parameters of the pulse are Tru = 15 ps, Tp = 70 ps and
Trd = 15 ps.

between the numerical and the approximate results. The main
reason of this disagreement for small values of F is that,
during the pulse, the molecule-laser interaction is not strong
enough to be the dominant interaction between the two atoms.
Then the approximation dE (R)/dR ≈ 0 leading to the radial
momentum transfer 	PR given by Eq. (21) is valid only
for large values of R0, such that the static approximation
fails.

FIG. 14. Formation probabilities for the (small) laser intensities
F = 1×10−4 a.u. and F = 2×10−4 a.u. calculated numerically (label
N) and with the approximate expression (24) (label A). In all cases,
the probabilities have been calculated for an initial ensemble of initial
conditions with energy E0 = 3×10−9 a.u. The parameters of the
pulse are Tru = 15 ps, Tp = 70 ps and Trd = 15 ps.

V. CONCLUSIONS

Under the Born-Oppenheimer approximation, we analyzed
the classical rovibrational dynamics and the formation prob-
ability of the alkali polar molecule RbCs in its electronic
ground state in the presence of a relatively long elliptically
polarized laser pulse. After the average of the dynamics over
the (fast) frequency of the laser, we obtain the Hamiltonian
of the system where only the interaction between the laser
field and the molecular polarizability is left. Although the
resulting Hamiltonian has 3 + 1/2 degrees of freedom, the
system possesses an invariant manifold where the dynamics is
confined to the polarization plane of the laser field. In this way,
our investigation is restricted to that invariant manifold where
the system has 2 + 1/2 degrees of freedom. Furthermore,
besides the energy of the system, the dynamics depends on
the laser pulse parameters such as the electric field strength
F , the pulse duration and its ellipticity ε.

We construct an analytical representation of the potential
energy surface by fitting the corresponding available data for
the RbCs of the potential energy curve and of the parallel
and perpendicular components of the molecular polarizability.
In this way, the landscape of the potential energy surface of
the problem during the plateau of the pulse is analyzed by
studying the evolution of the number and the stability of its
critical points as a function of the electric field strength and
the ellipticity of the laser. When the laser pulse is linearly
polarized, ε = 0, in the short range of interatomic distances,
there are two minima and two saddle points, while in the long
range, there are two maxima. For increasing values of ε, the
maxima move away off the saddles and the minima, such that
at ε ≈ 1/

√
2 they disappear. At the same time, the depth of

the potential wells determined by the minima and the saddle
points decreases in such a way that, at ε = 1 they come into
coincidence and they disappear.
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By means of Poincaré surfaces of section, we have also
studied the evolution of the phase space structures of the prob-
lem during the plateau and for an energy value which always
remains around the dissociation threshold. By using different
field strengths F and for increasing ellipticity, we find that for
small values of ε, the phase space of the system resembles a
chaotic pendulum. As expected, when the ellipticity tends to
1, the system approaches its integrable limit, and the chaotic
regions as well as the pendulum-like phase space structure
disappear. We find that, when the considered (fixed) energy
is above the dissociation threshold, most of the chaotic orbits
rapidly dissociate.

Our numerical computations showed that the formation
process of the dimer is very sensitive to the laser field param-
eters such as the electric field strength, the pulse duration, and
the ellipticity. In order to elucidate the influence of these pa-
rameters on the formation process, we use a static assumption.
In this way, we assume that during the duration of the pulse
both the interatomic distance R and the φ do not change sig-
nificantly, such that the formation is caused by small changes
in the momenta PR and Pφ . Using the asymptotic values of
the Silberstein expressions of the polarizabilities, we obtain
an approximate expression for the final energy E f of the dimer
after the pulse. This approximate expression of E f allows us to
elucidate the strong influence of the ellipticity in the formation
probability, notably with the presence of a critical ellipticity
around 1/

√
2.

It is worth noticing that, given the information provided
by the static approximation, it is difficult to get an intuitive
picture concerning the dimer formation. For example, little
can be said about typical time scales for the formation process
since the formation can be checked only after the duration of
the laser pulse.

A direct photoassociation process (see, e.g., Ref. [42])
is the quantum counterpart of the classical approach to
the driven formation of cold dimers studied in this paper.
In this way, the time-depending quantum version of our
classical nonautonomous Hamiltonian should be solved in
order to obtain the induced cross section from a given
initial continuum (unbound) state to a certain final final
(bound) rovibrational state [43,44]. Although it is beyond
the scope of our paper, our classical results would be the
guideline to accomplished this quantum study, whose results
could be compared to experiments. In this sense, we remark
that the range of electric field values we use in this paper is
available experimentally (see, e.g., Ref. [10]). Furthermore,

changing continuously the ellipticity is nowadays routine in
laser-matter interactions. In particular, our classical results in-
dicate the existence of some preferred values of the ellipticity
for which molecular formation is enhanced, which we believe,
can be tested experimentally.
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APPENDIX: FITTING OF THE POTENTIAL ENERGY
CURVE E (R) AND THE MOLECULAR

POLARIZABILITIES α‖,⊥(R)

1. Fitting of the potential energy curve E (R)

For the potential energy curve, we have fitted the available
ab initio data [36] using the following function:

E (R) = 1
2 {1 + tanh[6.0259(R1 − R)]}ESR(R)

+ 1
4 {1 − tanh[6.0259(R1 − R)]}

× {1 + tanh[7.5509(R2 − R)]}EMR(R)

+ 1
2 {1 − tanh[7.5509(R2 − R)]}ELR(R). (A1)

In Eq. (A1) the hyperbolic tangents are switch functions con-
necting at R1 = 15 a.u. and R2 = 25 a.u. the short-, medium-,
and long-range fitting functions ESR(R), EMR(R), and ELR(R),
respectively. These functions are of the form

ESR(R) = −De

[
1 +

6∑
i=1

ai

(
R − Re

R + Re

)i
]

exp−a1(R−Re ),

EMR(R) =
5∑

i=1

bi

Ri
,

ELR(R) = − b6

R6
− b8

R8
− b10

R10
.

For the short-range function ESR(R), we have used an
extended-Rydberg function, while for the long-range function
ELR(R) we use the coefficients of Ref. [37]. In the short-range
fitting function ESR(R), the parameters Re and De correspond
to the minimum of the potential energy curve and to the
dissociation energy, respectively. The values of the parameters

TABLE I. Values of the fitting parameters for the potential energy curve E (R) and for the parallel and perpendicular polarizabilities α‖,⊥(R).
All parameters are given in atomic units. The numbers in square brackets are powers of 10 multiplying the mantissa.

a1 = −9.9720[−4] a2 = −4.1277[1] a3 = 1.1307[2] a4 = 6.8980[1]
a5 = −2.4744[2] a6 = −3.2683[2] De = 1.7504[−2] Re = 8.1835
b1 = 0.1524 b2 = −1.1391[1] b3 = 3.1074[2] b4 = −3.5947[3]
b5 = 1.3789[4] b6 = 5.284[3] b8 = 7.3052[5] b10 = 1.0831[8]
c0 = −1.5495[4] c1 = 1.1235[4] c2 = −3.1346[3] c3 = 4.4072[2]
c4 = −3.2602[1] c5 = 1.2076 c6 = −0.0176 d0 = 7.6029[3]
d1 = −1.0122[3] d2 = 5.5755[1] d3 = −1.3577 d4 = 1.2303[−2]
e0 = −3.8502[3] e1 = 3.3217[3] e2 = −1.0474[2] e3 = 1.7506[2]
e4 = −1.7026[1] e5 = 0.9942 e6 = −3.4094[−2] e7 = 6.2363[−4]
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FIG. 15. (a) Available data [36] (blue dots) of the potential energy curve ε(R) of the RbCs together with the corresponding fitting function
(A1) (red solid line). (b) Available data [35] for the parallel and for the perpendicular polarizabilities α‖,⊥(R) (red dots in each curve) of the
RbCs together with the corresponding fitting functions (A2)–(A3) (green dashed line and solid blue line, respectively).

(De, Re, ai, bi ) are given in Table I and the fitted curve is
plotted in Fig. 15(a).

2. Fitting of the parallel polarizability curve α‖(R)

Following the same procedure as for the potential energy
curve E (R), we use convenient switch functions at R3 =
15 a.u. and R4 = 25 a.u., to connect the short αSR

‖ (R), medium
αMR

‖ (R), and long-range αLR
‖ (R) fitting functions, so that the

parallel polarizability α‖(R) is given by

α‖(R) = 1
2 {1 + tanh[3.6070(R3 − R)]}αSR

‖ (R)

+ 1
4 {1 − tanh[3.6070(R3 − R)]}

× {1 + tanh[7.6285(R4 − R)]}αMR
‖ (R)

+ 1
2 {1 − tanh[7.6285(R4 − R)]}αLR

‖ (R), (A2)

where

αSR
‖ (R) =

6∑
i=0

ciR
i,

[2ex]αMR
‖ (R) =

4∑
i=0

diR
i,

[2ex]αLR
‖ (R) = αRbCs + 4αRbαCs

R3
.

The function αLR
‖ (R) is the asymptotic limit given in Eq. (12).

The values of the parameters (ci, di ) are given in Table I, and
the fitted curve is plotted in Fig. 15(b).

3. Fitting of the perpendicular polarizability curve α⊥(R)

The analytical expression of the perpendicular polarizabil-
ity curve α⊥(R) is given by

α⊥(R) = 1
2 {1 + tanh[2.2981(R5 − R)]}αSR

⊥ (R)

+ 1
2 {1 − tanh[2.2981(R5 − R)]}αLR

⊥ (R), (A3)

where R5 = 18 a.u. and

αSR
⊥ (R) =

7∑
i=0

eiR
i,

αLR
⊥ (R) = αRbCs − 2αRbαCs

R3
.

The function αLR
⊥ (R) is the asymptotic limit given in Eq. (13).

The values of the parameters ei are given in Table I, and the
fitted curve is plotted in Fig. 15(b).
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