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Driving the formation of the RbCs dimer by a laser pulse: A nonlinear-dynamics approach2
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We study the formation of the RbCs molecule by an intense laser pulse using nonlinear dynamics. Under the
Born-Oppenheimer approximation, the system is modeled by a two-degree-of-freedom rovibrational Hamiltonian,
which includes the ground electronic potential energy curve of the diatomic molecule and the interaction of the
molecular polarizability with the electric field of the laser. As the laser intensity increases, we observe that the
formation probability first increases and then decreases after reaching a maximum. We show that the analysis
can be simplified to the investigation of the long-range interaction between the two atoms. We conclude that the
formation is due to a very small change in the radial momentum of the dimer induced by the laser pulse. From
this observation, we build a reduced one-dimensional model which allows us to derive an approximate expression
of the formation probability as a function of the laser intensity.
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I. INTRODUCTION18

During the past two decades, the development of sophisti-19

cated experimental techniques allowed one to use ultracold20

atoms to create two new states of matter that can be21

manipulated with high precision: the Bose-Einstein conden-22

sates (BECs) [1–3] and the degenerate Fermi gases (DFGs)23

[4–6]. Using the deep experimental background obtained24

with the investigations on BEC and on DFG, efforts have25

been dedicated to achieving a similar degree of control in26

molecular gases. Indeed, the production and manipulation27

of dense gases of cold and ultracold molecules constitute28

nowadays an active research field in atomic and molecular29

physics. In particular, starting from a gas of ultracold atoms,30

the photoassociation [7,8], the magnetoassociation [9], and the31

stimulated Raman adiabatic passage (STIRAP) [10] are among32

the usual techniques to create cold and ultracold molecules.33

These experimental techniques have been successfully applied34

to form different homonuclear and heteronuclear alkali-metal35

diatomic molecules in the rovibrational ground state, such36

as C2 [11,12], LiCs [13], KRb [14], or RbCs [15–17].37

Furthermore, a number of theoretical studies have guided and38

promoted many of the experimental achievements. Among39

other theoretical studies, we refer the reader to Refs. [18–20]40

and references therein. For a review about science, technology,41

and applications of cold and ultracold molecules, we refer to42

Ref. [21].43

All the aforementioned techniques to create molecular44

bound states are based on the external control of the inter-45

actions of atoms and molecules with electromagnetic fields.46

From a classical point of view, it is of particular interest to47

study how the mechanical forces exerted by light on atoms48

and molecules perturb their motion. Moreover, the nonlinear49

nature of these forces make these systems very appealing50

for classical studies because, by the external control of the51

strengths of the interactions, we have at hand the possibility52

of tuning the system through different classical regimes. It is53

worth noting at this point that the use of classical mechanics54

to study microscopic systems is not new: Over the past55

three decades, a plethora of studies related to the classical56

dynamics of atoms and molecules in external fields can be 57

found in the literature. Some examples of such as studies can 58

be found in Refs. [22–32]. Furthermore, classical studies in 59

microscopic systems have revealed themselves as a power tool 60

to understand quantum mechanical results in many cases (see, 61

e.g., Refs. [22,32–36] and references therein). 62

Here we use nonlinear dynamics to explore the feasibility 63

of creating cold diatomic molecules by using a strong linearly 64

polarized laser pulse. While the usual techniques to create cold 65

and ultracold diatomic molecules require the use of several 66

excited electronic states, we describe here how the nonlinear 67

mechanical force exerted by a laser field on an initially 68

unbounded pair of cold atoms in their ground electronic state 69

can lead to the formation of a bounded dimer. More precisely, 70

we focus on the influence of the laser field in the formation of 71

RbCs molecules. Besides the kinetic terms, the rovibrational 72

Hamiltonian of the system includes two fundamental terms: 73

namely, the potential energy curve between the Rb and Cs 74

atoms and the interaction between the molecular polarizability 75

and the laser field. Because the laser pulse contains an envelope 76

with ramp-up, plateau, and ramp-down, the system depends 77

explicitly on time and the corresponding Hamiltonian has 78

3 + 1/2 degrees of freedom. However, by using spherical 79

coordinates, the number of degrees of freedom can be reduced 80

to 2 + 1/2. For a convenient ensemble of initial conditions, 81

we compute the formation probability as a function of the 82

laser field strength for different values of the parameters of 83

the pulse. In all cases we find that, as the field strength 84

increases from zero, the formation probability first increases 85

before reaching a maximum and then decreases for larger 86

values of the field strength. It is worth noting that a similar 87

behavior has been found in the ionization probability of 88

atoms in the presence of an intense laser field [37,38]. From 89

a detailed exploration of the dynamics of the system after 90

the ramp-up, plateau, and ramp-down sequences of the laser 91

pulse, we infer that the study of the formation mechanism can 92

be reduced to the investigation of the long-range interaction 93

between the two atoms. Indeed, we show that the formation 94

is due to a very small change in the radial momentum of 95

the dimer induced by the laser pulse. These observations 96
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allow us to build a simplified one-dimensional Hamiltonian97

where only the long-range terms of the potential energy curve98

and the molecular polarizabilities are taken into account.99

From this simplified Hamiltonian, we obtain an analytic100

approximate expression for the formation probability as a101

function of the laser intensity. This analytic expression mimics102

very accurately the described behavior of the formation103

probability.104

The paper is organized as follows: In Sec. II we present105

the main ingredients of the Hamiltonian of the system. In106

Sec. III we compute the formation probability as a function107

of the laser field strength. In order to get some insights108

into the behavior of the formation probability, we study the109

particular role played by the ramp-up, the plateau, and the110

ramp-down of the laser pulse. The results of Sec. III allow111

us to define in Sec. IV a one-dimensional version of the full112

Hamiltonian which captures the main characteristics of the113

system. In Sec. V we define the simplified Hamiltonian with114

only the long-range terms of the potential energy curve and115

the molecular polarizabilities. We show that this asymptotic116

Hamiltonian is sufficient to describe the behavior of the117

formation probability. Furthermore, we construct an analytic118

expression for the formation probability which includes the119

parameters of the laser pulse and the long-range parameters of120

the potential energy curve and the molecular polarizabilities.121

II. THE HAMILTONIAN OF THE SYSTEM122

Within the Born-Oppenheimer approximation, we describe123

the dynamics of the RbCs molecule in its 1�+ electronic124

ground state in the presence of a strong linearly polarized laser125

field. The electric field of the laser is assumed to propagate in126

the parallel direction of the z axis of an inertial reference127

frame with the origin at the center of mass of the nuclei. For a128

TABLE I. Values of the fitting parameter for the long-range
behavior of the potential energy curve ε(R) and the parallel and
perpendicular polarizabilities α‖,⊥(R). All parameters are given in
atomic units.

b6 = 5284 b8 = 730520 b10 = 1.0831 × 108

c2 = 1888.9 c3 = −351865.9 c4 = 1.5056 × 106

d2 = 1277.8 d3 = 374596.4 d4 = 2.7868 × 106

nonresonant laser field, the Hamiltonian of the system can be 129

expressed as [39] 130

H = P 2
R

2μ
+ P 2

θ

2μR2
+ P 2

φ

2μR2 sin2 θ
+ V (R,θ,t), (1)

where μ is the reduced mass of the nuclei, (R,θ , φ) are the 131

internuclear distance and the Euler angles, and (PR,Pθ ,Pφ) are 132

the corresponding canonically conjugate momenta. V (R,θ,t) 133

is the potential energy surface given by 134

V (R,θ,t) = ε(R) + VL(R,θ,t), (2)

which is made of the field-free adiabatic electronic potential 135

energy curve ε(R) and the laser-molecule interaction potential 136

VL(R,θ,t), 137

VL(R,θ,t) = −g(t)
F 2

4
[α‖(R) cos2 θ + α⊥(R) sin2 θ ]. (3)

The function g(t) is the laser pulse envelope and F is 138

the strength of the electric field of the laser. The functions 139

α‖,⊥(R) are the parallel and the perpendicular molecular 140

polarizabilities [40]. The pulse envelope g(t) contains a ramp- 141

up, a plateau, and a ramp-down with durations Tru, Tp, and Trd, 142

respectively, and its profile is taken to be [41] 143

g(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2
(

πt
2Tru

)
if 0 � t < Tru,

1 if Tru � t < Tru + Tp,

sin2
(

π(t−Tru−Tp−Trd)
2Trd

)
if Tru + Tp � t < Tru + Tp + Trd,

0 elsewhere.

(4)

This field envelope describes accurately experimental laser144

pulses [42].145

In order to manage an analytical representation for the146

potential energy surface V (R,θ,t) for the RbCs molecule, we147

have fitted the available data of ε(R) [43] and α‖,⊥(R) [40]148

to three appropriate functional forms. In the case of ε(R),149

the fitting function of the ab initio data includes the long-150

range behavior of the energy curve, which is expressed151

as [44]152

εLR(R) = − b6

R6
− b8

R8
− b10

R10
. (5)

For the 1�+ RbCs these coefficients can be found153

in the literature [44] and their values are reported154

in Table I. The asymptotic behavior of the polariz-155

abilities α‖,⊥(R) is well described by the Silberstein156

expressions [45,46] 157

αLR
‖ (R) = αRbCs + 4αRbαCs/R

3

1 − 4αRbαCs/R6
,

(6)

αLR
⊥ (R) = αRbCs − 2αRbαCs/R

3

1 − αRbαCs/R6
,

where αRb ≈ 313 a.u. and αCs ≈ 394 a.u. are the atomic 158

polarizabilities of the atoms and αRbCs = αRb + αCs. The two 159

Silberstein expressions (6) diverge when R → (4αRbαCs)1/6 ≈ 160

8.8889 a.u. and R → (αRbαCs)1/6 ≈ 7.0552 a.u., respectively. 161

This is a drawback for classical calculations. Taking into ac- 162

count that computational data for the molecular polarizabilities 163

are available up to the intermolecular distance of R = 30 a.u., 164

instead of using the analytical expression (6) to model the 165

long-range behavior of α‖,⊥, we append to the computational 166
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FIG. 1. (a) Electronic potential energy curve ε(R) of the RbCs
and (b) parallel α‖(R) and perpendicular α⊥(R) components of the
molecular polarizability of the RbCs molecule.

data of the molecular polarizabilities, values of α‖,⊥ evaluated167

for R > 30 a.u. at the Silberstein expressions (6). This allows168

us to fit the polarizabilities α‖,⊥ with smooth functions which169

are very convenient for classical calculations. The long-range170

fittings for α‖,⊥(R) are given by171

αLR
⊥ (R) = αRbCs + c2

R2
+ c3

R3
+ c4

R4
, (7)

αLR
‖ (R) = αRbCs + d2

R2
+ d3

R3
+ d4

R4
. (8)

The fitting parameters bi , ci , and di are shown in Table I. The172

fitted curves ε(R) and α‖,⊥(R) are plotted in Fig. 1.173

Owing to the continuous axial symmetry of the system, the174

polar angle φ is cyclic in Hamiltonian (1) and the z component175

Pφ of the angular momentum is conserved. This allows one to176

consider the expression (1) as a classical Hamiltonian system177

with 2 + 1/2 degrees of freedom in (R,θ ). The 1/2 degree178

of freedom is due to the explicit time dependence in H.179

The present study is restricted to the Pφ = 0 case, i.e., the180

corresponding magnetic quantum number is zero, being this181

particular value widely used is several studies [47,48]. The182

landscape of the potential energy surface V (R,θ,t) during the183

plateau [g(t) = 1] is strongly determined by the polarizability.184

Indeed, as we can observe in Fig. 2, for F = 1.5 × 10−3 a.u.,185

the energy surface V (R,θ,t) presents four critical points: two186

equivalent minima P1,2 at θ = 0,π respectively, a saddle point187

P3 at θ = π/2 and a maximum P4 at θ = π/2. These critical188

points create two different regions of motion. When the energy189

of the molecule is below the energy of the saddle point P3,190

the rovibrational motion of the dimer is made of pendular191

states [49] around the minima P1,2 because the molecule is192

confined in one of the potential wells around P1,2. In other193

words, we find the expected behavior of a dimer aligned in the194

θ = 0,π directions [50]. On the other hand, when the energy195

of the system is above the saddle-point energy, the molecule196

can describe complete rotations. Due to the so-called energy197

hill around the maximum P4 created by the polarizability, the198

molecular bond R always reaches its largest values along the199

θ = 0,π directions. As the electric field strength F increases,200

the maximum P4 approaches the saddle point P3 and its energy201

increases. The directions θ = 0,π together with the threshold202

dissociation conditions R → ∞, PR → 0, and Pθ → 0 allow203

us to get an analytical estimate of the dissociation energy204

Ed . Under the condition R → ∞, the function ε(R) tends to205

0, and α‖(∞) = α⊥(∞) = αRb + αCs. Then, the approximate206

FIG. 2. Equipotential curves of the potential energy surface
V (R,θ,t) during the plateau [g(t) = 1] for a laser field strength
F = 1.5 × 10−3 a.u.

value for the dissociation energy is given by 207

Ed ≈ −F 2

4
α‖(∞) = −F 2

4
(αRb + αCs). (9)

Thus, the molecular polarizabilities lead to a decrease of 208

the dissociation energy to a negative value, which depends on 209

the electric field strength F as well as on the polarizabilities 210

of the atoms. 211

III. DRIVING THE FORMATION OF THE DIMER: 212

NUMERICAL EXPERIMENTS 213

We use Hamiltonian (1) to study the impact of the laser 214

field in the creation of bound molecular states. In particular, 215

we compute numerically the formation probability P (F ) as 216

a function of the field strength F . To do that, we consider a 217

large ensemble of initially free pairs of Rb-Cs atoms, whose 218

dynamics is governed by the free Hamiltonian 219

H0 = P 2
R

2μ
+ P 2

θ

2μR2
+ ε(R). (10)

All the initial conditions (R0,P
0
R,θ0,P

0
θ ) of the ensemble 220

have the same positive energy H0 = E0 = 3 × 10−9 a.u. This 221
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FIG. 3. Formation probability as a function of F for an initial
energy E0 = 3 × 10−9 computed from Hamiltonian (1). The pa-
rameters of the pulse are Tru = Trd = 5 ps and Tp = 70 ps (shaded
red line), Tru = Trd = 15 ps and Tp = 70 ps (solid green line) and
Tru = Trd = 15 ps and Tp = 140 ps (dotted blue line), respectively.

energy roughly corresponds to the temperature T = 1 mK222

of a sample of cold atoms in a typical photoassociation223

experiment [7,51]. The choice of the initial states is an224

important issue as it is shown later on. Here P 0
θ is taken225

to be zero, θ0 is chosen randomly in [0,π ], and R0 is226

chosen in the interval [Rmin,Rmax] = [6.2319,100] a.u., where227

Rmin is the (inner) turning point of the phase trajectory of228

Hamiltonian (10) for P 0
θ = 0. First, let us compute the time229

evolution of the (unbound) trajectory of energy E0 = 3 × 10−9
230

a.u. starting at the initial internuclear distance R0 = Rmax and231

with the inward initial radial momentum P 0
R ≈ −0.04 a.u.232

given by Eq. (10). We consider this orbit until it reaches again233

Rmax with PR ≈ 0.04 a.u. When the intermolecular distance234

R(t) of this trajectory is mapped at equal time intervals, we235

observe that large values of R(t) are rapidly reached. In other236

words, the initial conditions with large values of R0 are more237

likely than initial conditions with small values of R0. In this238

way, in order to mimic more accurately the initial states of239

the system, we choose the initial conditions (R0,P
0
R) along the240

phase curve (10) for E0 at equal time steps. It is worth noting241

that, with these initial conditions uniformly distributed over242

time, less than a 1% of the initial conditions have values of243

R0 < 25 a.u.244

By the numerical integration of the equations of motion245

arising from Hamiltonian (1), we propagate the ensemble of246

trajectories for the entire pulse duration. If after the pulse247

the energy of a given trajectory is negative, a bound state is248

then created. Otherwise, the trajectory remains unbounded.249

In our numerical experiments we consider laser pulses with250

electric field F amplitude between 0 and 4 × 10−3 a.u.,251

which corresponds to a laser field of maximal intensity of252

1012 W cm−2. The Tru + Tp + Trd total duration of the pulse253

is taken between 80 and 170 ns. In Fig. 3 the formation254

probability P (F ) as a function of the electric field strength255

F for three different laser profiles is represented. Since we256

start with a positive initial energy, the formation probability is257

-5

-4

-3

-2

-1

 0

 1

 0  20  40  60  80  100

En
er

gy
 (a

.u
.)

time(ps)

 x10-4

FIG. 4. Evolution of the energy of an ensemble of trajectories
with initial energy E0 = 3 × 10−9 a.u. The amplitude of the laser
field is F = 1.5 × 10−3 a.u. The parameters of the pulse are Tru =
Trd = 15 ps and Tp = 70 ps. The solid red and the dashed blue lines
indicate the dissociation energy (9) and the zero energy, respectively.

zero for F = 0. It then increases sharply with F up to a given 258

critical value of F which depends of the pulse envelope g(t), 259

and then it decreases with F . Our objective is to analyze the 260

reversal behavior observed in the formation curves in order 261

to assess the role of the different parts of the pulse in the 262

building up of this curve. To this end, we analyze separately 263

the role of the ramp-up, the plateau, and the ramp-down in the 264

dynamics of the system. Special attention is put on the study 265

of the dynamics during the plateau because this study provides 266

important information about the phase space structure of the 267

system and its possible impact in the formation mechanism. 268

Although results are not being reported here, it is worth noting 269

that from the computations with ensembles of trajectories with 270

initial conditions where Pφ and Pθ were not necessarily fixed 271

to zero, the formation probability has exactly the same shape 272

observed in Fig. 3. In this way, this reversal behavior seems 273

to be very robust and not restricted to trajectories with initial 274

conditions on the invariant manifold Pφ = 0 and with initial 275

conditions Pθ = 0. 276

A. Role of the ramp-up of the laser pulse 277

In Fig. 4 the evolution as a function of time of the energy 278

of a bunch of representative trajectories with initial energy E0 279

is represented for an amplitude of the laser field of F = 1.5 × 280

10−3 a.u. The parameters of the pulse are Tru = Trd = 15 ps 281

and Tp = 70 ns. As expected, the role of the ramp-up is to 282

decrease the energy of the system and to promote the initially 283

unbounded trajectories in a region where, potentially, they 284

might be bounded. After the ramp-up, the energy probability 285

is represented in Fig. 5 (dashed red line). 286

This energy distribution indicates that, after the ramp-up, 287

a big amount of trajectories acquire energy values around 288

a relatively narrow region. This peak structure is easily 289

understood assuming that the dynamics does not play a major 290

role. Under this assumption, the energy Ef at the end of the 291
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FIG. 5. Probability distribution of the energy of an ensemble of
trajectories with an initial energy E0 = 3 × 10−9 a.u. after a ramp-up
of 15 ps (dashed red line). The dotted blue line is the probability
energy distribution of an ensemble given by Eq. (11). The dissociation
energy Ed for this electric field is denoted with the solid green vertical
line. The parameters of the pulse are Tru = Trd = 15 ps and Tp = 70 ps
and the amplitude of the electric laser field is F = 1.5 × 10−3 a.u.

ramp-up is approximately292

Ef ≈ ε(R) − F 2

4
[α‖(R) cos2 θ + α⊥(R) sin2 θ ], (11)

In Fig. 5 the dashed blue line is the probability distribution293

given by Ef , where θ and R are evaluated in the ensemble of294

trajectories after the ramp-up. We notice that this distribution295

displays the same peak structure as the distribution of energies296

after the ramp-up computed from the equations of motion297

associated with Hamiltonian (1). The peak is located around298

the maximum of Ef for Rmax, which is the maximum299

distance considered in the ensemble of initial conditions. This300

maximum of energy almost corresponds to the dissociation301

energy Ed ≈ 3.977 × 10−4 a.u. for F = 1.5 × 10−3 a.u. This302

value is denoted with the green vertical line in Fig. 5. Around303

R = Rmax, the potential ε(R) is negligible. This means that304

most of the trajectories have energies as if they were at305

R = Rmax. This comes from the fact that the potential is306

rather flat for R � 30, which affects more than 75% of the307

trajectories. Therefore, the dynamics is very slow for these308

trajectories, and θ and R are approximately constant over the309

duration of a ramp-up of a few picoseconds.310

B. Dynamics during the plateau311

During the plateau, Hamiltonian (1) is autonomous and312

with two degrees of freedom. We visualize the nonlinear313

dynamics using Poincaré surfaces of section. A convenient314

Poincaré section is PR = 0 with ṖR > 0, represented in the315

plane (θ,Pθ ). Since we would like to gain insight into the316

formation probability, we look at bounded trajectories for317

which the distance R is oscillating in time. In addition, to318

compute the surface of section we select the value of the319

most probable energy, i.e., the peak in Fig. 5 which roughly320

corresponds to E = −3.98 × 10−4 a.u. For a single value of321

(θ,Pθ ) there are two possible values of R, one close to the322

inner turning point and another one for a larger value of R323

close the outer turning point. The first one corresponds to324

-100

-50

 0

 50

 100

 0  0.25  1 0.75 0.5

P
(a

.u
.)

FIG. 6. Poincaré section (PR = 0, ṖR < 0) of Hamiltonian (1)
for an energy E = −3.98 × 10−4 a.u. and for an electric field F =
1.5 × 10−3 a.u.

ṖR > 0 and the second one to ṖR < 0. In order to draw the 325

Poincaré section, we must allow the trajectory to cross the 326

section a relatively high number of times, so we consider the 327

long-term dynamics much larger than the duration of the laser 328

pulse. A Poincaré section of Hamiltonian (1) is represented on 329

Fig. 6. Each initial condition is integrated up to 105 ps. 330

We notice that for a reasonable range of values of Pθ 331

the dynamics resembles the one of a forced pendulum with 332

rotational and librational trajectories, and a rotational chaotic 333

zone around the hyperbolic point at θ = π/2 [30]. We use 334

the term rotational chaotic zone to indicate the chaotic 335

trajectories spanning the whole interval [0,π ] for the angle 336

θ . We observe a different librational chaotic zone around 337

the elliptic points (located at θ = 0 and θ = π ), which is 338

apparently disconnected from the rotational chaotic zone, at 339

least on the duration of the numerical integration we have 340

performed. The elliptic points at θ = 0,π correspond to two 341

straight radial oscillations from Ra to Rb. These values Ra and 342

Rb are the two solutions of ε(R) − F 2α‖(R)/4 = E. We refer 343

to these radial periodic orbits as IR . In Fig. 7 some sample 344

trajectories are shown. The initial conditions of these orbits 345

are taken on the surface of a section of Fig. 6. A rotational 346

trajectory is depicted in Fig. 7(a); these trajectories live on 347

two-dimensional invariant tori. The orbit in Fig. 7(b) is an 348

example of chaotic trajectory in the rotational chaotic zone. We 349

notice that the interatomic distances of these two trajectories 350

do not reach large values. Figure 7(c) shows a trajectory 351

in the librational chaotic zone; indeed, we notice that the 352

trajectory does not span the whole interval of definition of the 353

angle θ . Finally, in Fig. 7(d) a trajectory in a regular elliptic 354

island near the elliptic fixed point around θ = 0 is shown. 355

We notice that these last two trajectories reach very large 356

values of R. As expected, all trajectories remain bounded since 357

the energy E = −3.98 × 10−4 a.u. is below the dissociation 358

energy Ed ≈ 3.977 × 10−4 for F = 1.5 × 10−3a.u. 359

What is not apparent in the Poincaré section of Fig. 6 is the 360

time scales of the dynamics. In order to illustrate this property, 361

we plot the first recurrence time (the time it takes a trajectory 362
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FIG. 7. Trajectories in the plane (R sin θ,R cos θ ) of Hamilto-
nian (1) for F = 1.5 × 10−3a.u. and energy E0 = −3.98 × 10−4 a.u.
(a) Rotational trajectory with initial conditions θ = π/2, Pθ = 50,
and PR = 0 (red square in Fig. 6); (b) rotational chaotic trajectory
with initial conditions θ = 1.45, Pθ = 0, and PR = 0 (green dot
in Fig. 6); (c) vibrational chaotic trajectory with initial conditions
θ = 1.1, Pθ = 0, and PR = 0 (blue star in Fig. 6); and (d) vibrational
regular trajectory with initial conditions θ = 0.2, Pθ = 0, and PR = 0
(purple diamond in Fig. 6).

to cross the Poincaré section for the first time after starting on363

the Poincaré section) as a function of (θ,Pθ ) on the Poincaré364

section. The recurrence time map corresponding to the surface365

of section of Fig. 6 is shown in Fig. 8. As we can observe in366

this color map, in the rotational zones, the dynamics is rather367

fast (of the order of tens of ps), while in the librational zones368
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FIG. 8. First recurrence time (in ps) in the Poincaré section (PR =
0,ṖR < 0) in the plane (θ,Pθ ) for F = 1.5 × 10−3a.u. and energy
E = −3.98 × 10−4 a.u. The color axis has been saturated at 1000 ps
for clarity. In the middle region, the recurrence time reaches above
1400 ps. Note that a logarithmic scale is used in the color code.
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FIG. 9. Poincaré section (PR = 0, ṖR < 0) of Hamiltonian (1)
for an energy E = −3.976 × 10−4 a.u. and for an electric field F =
1.5 × 10−3 a.u.

the dynamics is much slower (on the order of a thousand ps). 369

This is due to the fact that the trajectories in the librational 370

zones [see Figs. 7(c) and 7(d)] reach rather large values of R 371

where the potential is extremely flat and hence the dynamics 372

is potentially extremely slow. 373

During the plateau of the pulse, for E < Ed [see Eq. (9)], 374

the trajectories are bounded and the ones which are the most 375

stretched are around the radial modes IR . As the energy E gets 376

closer to Ed , the maximum radius Rb of IR increases rapidly. 377

When the energy crosses the value Ed , the radial trajectories 378

IR and the quasiperiodic orbits surrounding them are the first 379

orbits to be unbounded because these orbits are localized along 380

the dissociation channels at θ = 0,π . This fact is observed in 381

the Poincaré section of Fig. 9 where the holes in the regions 382

around θ = 0,π correspond to the unbounded trajectories. 383

C. Dynamics during the ramp-down 384

As we observe in Fig. 4, the expected role of the ramp- 385

down is to increase the energy of the trajectories. Note that 386

not all the bounded dressed states, i.e., the bounded states 387

in the presence of the laser field, remain bounded after the 388

ramp-down. When the energy probability distribution after the 389

ramp-down is calculated (see Fig. 10), we observe a strong 390

peak structure which indicates that, after the ramp-down, most 391

of the trajectories have energies in a narrow region around 392

zero. 393

Where are the formed trajectories in phase space? This 394

is a particularly difficult question to address since, besides 395

the dependence of the formed trajectories with the initial 396

conditions, it highly depends on the parameters of the laser 397

pulse (like the intensity, the duration of the ramp-up, plateau, 398

and ramp-down). In particular, it is not possible to predict 399

on the Poincaré section represented in Fig. 6 which initial 400

conditions lead to formation and which ones to dissociation. 401

The main reason is that, depending on the duration of the pulse, 402

the same initial condition can lead to formation or dissociation. 403

One of the noticeable features is that the formed trajectories 404
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FIG. 10. Probability distribution of the energy of an ensemble
of trajectories with an initial energy E0 = 3 × 10−9 a.u. after the a
ramp-down of 15 ps. The vertical red line indicates the zero energy
value. The amplitude of the laser field is 1.5 × 10−3 a.u. and the
parameters of the pulse are Tru = Trd = 15 ps and Tp = 70 ps.

have a finite range for the distance, meaning that if the distance405

between the two atoms is too large, it will not lead to formation.406

For instance, for F = 1.5 × 10−3, this maximum distance is407

about 130 a.u. In Fig. 11 we represent the histograms of initial408

distances leading to formation compared to the ones which409

lead to dissociation, where we notice that after some fixed410

initial distance, the formation is no longer possible. We also411

notice that the trajectories leading to formation are the ones412

with small values of Pθ , especially at the end of the laser pulse.413

From the pendulum-like structure of the Poincaré map of414

Fig. 6, we know that the phase space is populated with two415

main types of trajectories, namely, vibrational and rotational416

trajectories. As we illustrate in Fig. 7, the vibrational orbits417

reach the largest interatomic distances. Thence, because the418

dimer must be formed with trajectories connecting large419

and small values of R and most of the orbits have initial420

conditions with values of R0 > 25 a.u., we can argue that421

vibrational trajectories should play a dominant role in the422

formation mechanism. Moreover, because the radial mode423

IR is the simplest vibrational orbit, it is expected to find in424

C
ou

nt
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2×10

0 50 100 150 200
R0 (a.u.)

-4

1×10-4

FIG. 11. Histogram of the initial conditions leading to formation
(solid red line) and leading to dissociation (shaded blue line). The
parameters of the laser are F = 1.5 × 10−3 a.u., Tru = Trd = 15 ps,
and Tp = 70 ps. The energy of the trajectories is E0 = 3 × 10−9 a.u.

this periodic orbit the same qualitative formation behavior 425

observed in the full system. In other words, this information 426

allows one to focus on the formation dynamics arising from 427

the one-degree-of-freedom Hamiltonian associated with IR , 428

e.g., with a Hamiltonian model where the degree of freedom 429

(θ,Pθ ) is frozen. 430

IV. ONE-DEGREE-OF-FREEDOM MODEL 431

The codimension 2 manifolds defined by θ = kπ/2 (k = 432

0,1,2) and Pθ = 0 are invariant under the dynamics. This 433

allows us to define essentially two reduced Hamiltonian 434

systems with 1+1/2 degrees of freedom: 435

H1(R,PR,t) = P 2
R

2μ
+ ε(R) − g(t)

F 2

4
α‖(R), for θ = 0,π,

(12)

and 436

H2(R,PR,t) = P 2
R

2μ
+ ε(R) − g(t)

F 2

4
α⊥(R), for θ = π/2.

(13)

The model (12) describes the dynamics of the radial mode 437

IR and it is structurally stable, in the sense that if we move 438

slightly away from this model by considering the full model in 439

a range of values of θ and Pθ close to zero, the dynamics stays 440

in the vicinity of the ones obtained with the model (12). On 441

the contrary, the second model described by Hamiltonian (13) 442

is structurally unstable since trajectories near θ = π/2 and 443

Pθ = 0 tend to move away from these values in the full model. 444

In this way, in what follows we focus on Hamiltonian (12). 445

The corresponding equations of motion are 446

Ṙ = PR

μ
,

(14)

ṖR = −dε(R)

dR
+ g(t)

F 2

4

dα‖(R)

dR
.

We consider an ensemble of initial conditions (R0,P
0
R) with 447

energy E0 = 3 × 10−9 a.u. defined as 448

E0 = P 2
R0

2μ
+ ε(R0),

where the initial values of intermolecular distance R0 are 449

distributed in the interval [Rmin,Rmax] = [6.2319,100] a.u. 450

according to the criterion described in Sec. III. 451

Using this ensemble of initial conditions, we compute 452

the formation probability as a function of the electric field 453

parameter F and the results are shown in Fig. 12. We notice 454

that we find the same qualitative behavior as in the formation 455

probability for the full Hamiltonian (1), notably the decrease 456

of the probability for sufficiently large amplitudes. 457

After a ramp-up of 15 ps, the probability distribution of the 458

energy is represented in Fig. 13 for the value F = 1.5 × 10−3
459

a.u. for which a significant formation probability is observed 460

(see Fig. 12). 461

From the computation of the probability distribution of the 462

energy after the ramp-up (red line in Fig. 13), we observe 463

again a strong peak structure which indicates that, after the 464
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FIG. 12. Formation probability as a function of F for an initial
energy E0 = 3 × 10−9 a.u. computed using Hamiltonian (12). The
parameters of the pulse are Tru = Trd = 5 ps and Tp = 70 ps (dashed
red line), Tru = Trd = 15 ps and Tp = 70 ps (solid green line), and
Tru = Trd = 15 ps and Tp = 140 ps (dotted blue line), respectively.

ramp-down, most of the trajectories have energies in a narrow465

region below the dissociation threshold Ed = −F 2α‖(∞)/4.466

This is an expected behavior since the effect of the ramp-up is467

to decrease the initial energy E0 of the trajectories and due to468

fact that E0 is small, the energies of the trajectories after the469

ramp-up are below Ed .470

Since the initial distances R0 of our trajectories are in471

general large, we assume that, during the ramp-up, the472

intermolecular distances R do not change significantly since473

Ṙ = PR/μ is small. Under this assumption, an approximation474

of the momentum at the end of the ramp-up is obtained by475

considering that R is constant. Indeed, using the equations of476

motion (14), the variation of the radial momentum induced by477

0
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FIG. 13. Probability distributions of an ensemble of trajectories
with an initial energy E0 = 3 × 10−9 a.u. after a ramp-up of 15 ps
obtained with formula (16) (solid red line) and with Hamiltonian (12)
(dashed blue line). The amplitude of the laser field is F = 1.5 ×
10−3a.u. The dashed green vertical line indicates the dissociation
energy Ed = −F 2α‖(∞)/4 while the dotted purple vertical line
denotes the energy Ed = −F 2α‖(Rmax)/4.
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FIG. 14. Formation probability for Hamiltonian (12) as a function
of F for an initial energy E0 = 3 × 10−9 a.u. The parameters of the
pulse are Tru = 15 ps, Tp = 70 ps, and no ramp-down.

the ramp-up of the field is approximately given by 478

�PR(Tru) ≈ F 2

8
Tru

dα‖(R0)

dR
, (15)

where the term of order F 4 is neglected and we assume that 479

dε(R0)/dR ≈ 0. Since dα‖(R0)/dR is negative (see Fig. 1) 480

for most of the values of R0, we conclude that, in general, 481

the momentum decreases as a result of the ramp-up. In order 482

to have an approximate value of the energy at the end of the 483

ramp-up of the laser field for large values of R0, we insert 484

Eq. (15) into Hamiltonian (12). After neglecting the term of 485

order F 4, we get 486

Eru ≈ E0 − F 2

4
α‖(R0) + F 2Tru

8μ
P 0

Rα′
‖(R0). (16)

In order to check the validity of the above equation, we 487

compute the probability distribution of the energy for our set 488

of initial conditions by using Eq. (16). The result (blue line in 489

Fig. 13) is rather accurate since the probability distribution 490

obtained from Eq. (16) is closely peaked below the value 491

E = −F 2α‖(Rmax)/4. 492

During the plateau, the Hamiltonian (12) has one degree of 493

freedom and the energy of the system is conserved. Since 494

for relevant values of F , all the energies are below the 495

dissociation threshold Ed = −F 2α‖(∞)/4, all the trajectories 496

remain bounded during the plateau. This is confirmed in 497

Fig. 14 where the formation probability, computed from an 498

energy criterion E < Ed = −F 2α‖(∞)/4, is represented as a 499

function of F . 500

It means that at all times, all the dimers remain bounded in 501

the presence of the laser field for F � 2 × 10−4 a.u., whether 502

a distance or an energy criterion is used. During the plateau, 503

all the bounded trajectories are periodic and their periods are 504

given by 505

T (E,F ) =
√

2μ

∫ Rb(E,F )

Ra(E,F )

dR√
E − ε(R) + F 2

4 α‖(R)
, (17)

003400-8



DRIVING THE FORMATION OF THE RbCs DIMER BY A . . . PHYSICAL REVIEW A 00, 003400 (2017)

- 4.5 - 4.4 - 4.2

Energy (a.u.)
-4.6 - 4.1 - 4.0- 4.3

Pe
ri

od
 T

 (p
s)

10

50

100

500

1000

FIG. 15. Periods of our ensemble of trajectories for F = 1.5 ×
10−3 a.u. using Eq. (17). Note the logarithmic scale in the vertical
axis.

where Ra < Rb are the two turning points given by the506

solutions of507

ε(R) − F 2

4
α‖(R) = E < Ed.

Since the ramp-up promotes most of the trajectories very508

close but below the threshold energy values Ed , we have509

computed the periods of our ensemble of trajectories for510

F = 1.5 × 10−3 a.u. The results are shown in Fig. 15. As511

expected, the motion is very slow in comparison with the512

duration of the pulse and it mirrors the observation made in513

the first recurrence time map of Fig. 8.514

As we have observed, after the ramp-up and for relevant515

values of F , most of the trajectories remain bounded during516

the plateau. However, not all these bounded dressed states, i.e.,517

the bounded states in the presence of the laser field, remain518

bounded after the ramp-down. Even for this one-dimensional519

model it is cumbersome to untangle the effects of the various520

parts of the pulse and to provide insights into the role of the521

parameters of the pulse. In order to unravel the dynamics,522

we consider the long-range dynamics of the one-degree-of-523

freedom Hamiltonian model (12).524

V. SIMPLIFIED POTENTIAL525

In order to investigate the long-range behavior of Hamilto-526

nian (12), we assume that, for R large, the expressions of the527

functions defining the potential are [see Eqs. (5) and (8)],528

ε(R) ≈ − b6

R6
, (18)

α‖(R) ≈ αRbCs + d2

R2
+ d3

R3
, (19)

and the simplified long-range Hamiltonian becomes529

Hs = P 2
R

2μ
− b6

R6
− g(t)

F 2

4

(
αRbCs + d2

R2
+ d3

R3

)
. (20)

The formation probability computed using Hamilto-530

nian (20) as a function of F is shown in Fig. 16. This531

formation probability (green line in Fig. 16) is in very close532
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FIG. 16. Formation probability as a function of F for an initial
energy E0 = 3 × 10−9 a.u. obtained from the long-range Hamilto-
nian (20) (dashed red line) and the full Hamiltonian (12) (solid
green line). The parameters of the pulse are Tru = Trd = 15 ps and
Tp = 70 ps.

agreement with the formation probability obtained with the 533

full Hamiltonian (12) (red line in Fig. 16), which validates the 534

approximate expressions (18) and (19) of the potentials. 535

In order to get some insight into this probability curve, we 536

compute the momentum transfer during the laser pulse as 537

�PR = F 2

4

∫ Tru+Tp+Trd

0
g(t)

dα‖(R)

dR
dt. (21)

where we again assume that dε(R)/dR ≈ 0. Initially, the 538

momentum is given by 539

P 0
R = ±

√
2μ[E0 − ε(R0)].

For example, for R = 50 a.u. the initial value of the momentum 540

is P 0
R ≈ 0.3 a.u. and the radial velocity is Ṙ(0) ≈ 3 × 10−6

541

a.u. As a consequence, Ṙ(0) is small and, therefore, it is 542

reasonable (at least at the leading order) to assume that R 543

is approximately constant. Using this assumption, the shape 544

of the laser pulse given by Eq. (4) and the expression (21), the 545

momentum transfer induced by the pulse is given by 546

�PR = F 2(Tru + 2Tp + Trd)

8

dα‖(R)

dR
. (22)

We notice that �PR < 0 since dα‖(R)/dR is always negative. 547

This small momentum transfer, which is of the same order 548

as P 0
R , is responsible for the formation, even though this 549

momentum transfer does not have significantly impact on the 550

variation of the interatomic distance on the short time scale of 551

the laser pulse. Furthermore, the dependence of the momentum 552

transfer on the parameters of the laser pulse is rather simple 553

since the only involved parameter is Tru + 2Tp + Trd. In fact, 554

the dependence as a function of F and the parameters of the 555

laser pulse can be encapsulated in a single effective parameter 556

f = F

2
√

2

√
Tru + 2Tp + Trd,
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FIG. 17. (a) Evolution as a function of F of the roots R1 and R2 of E(R) given by Eq. (24). (b) Evolution of R2 − R1 as a function of F .
The parameters of the pulse are Tru = 15 ps, Tp = 70 ps, and Trd = 15 ps.

so that for a fixed value of f , the formation probability no557

longer depends on the parameters of the laser pulse. Using the558

momentum transfer (22), the energy at the end of the laser559

pulse is560

Ef = E0 + P 0
R�PR

μ
+ (�PR)2

2μ
. (23)

According to Eq. (23), there is formation if Ef < 0. Since561

�PR is negative, the final energy Ef can only be negative (i.e.,562

resulting in a formation) if P 0
R is positive. This is a necessary563

but not a sufficient condition. If F is too small, the final energy564

remains positive (and close to E0) since the negative term is565

insufficient to compensate for E0, so there is no possibility for566

formation. If F is too large, the dominant term in Eq. (23) is567

(�PR)2/(2μ) which is positive, therefore resulting in a positive568

final energy, and there is no formation. This qualitatively gives569

the explanation for the increase of the formation probability570

for small F and the decrease for large F .571

In order to be more quantitative, we consider Eq. (23) for572

P 0
R > 0 as a general function E(R) in the variable R and which573

depends on the parameter f ,574

E(R) = E0 − f 2

√
2

μ

(
E0 + b6

R6

) (
2d2

R3
+ 3d3

R4

)

+ f 4

2μ

(
2d2

R3
+ 3d3

R4

)2

. (24)

When R → ∞, E(R) tends to E0 and when R → 0, E(R)575

tends to +∞. The function E(R) has two roots R1(f ) and576

R2(f ) such that R1(f ) < R2(f ). Because the function E(R)577

is negative between these two roots, if the interatomic distance578

is in the region where E(R) is negative, e.g., between the roots579

R1(f ) and R2(f ), then there is formation.580

Figure 17 shows the evolutions of R1,2(F ) and R2(F ) −581

R1(F ) as a function of F . We notice that the distance582

R2 − R1 first increases with F until F ≈ 10−3a.u. and then583

decreases. This behavior mirrors the increase and decrease of584

the formation probability as a function of F .585

In the appendix, we derive some approximate expansions586

for the zeros of E(R) and deduce two expansions for R2 − R1,587

one for small values of F and one for larger values of F . In a588

nutshell, these expansions lead to the following behaviors: For589

small F , the formation probability increases as F 2/7, and for590

large F , it roughly decreases with F as 1/F . More specifically, 591

we have 592

R2(f ) − R1(f ) ≈
(

3d3
√

2b6

E0
√

μ

)1/7

f 2/7 for f 	 1,

(25)

R2(f ) − R1(f ) ≈ b
1/2
6 (2μ)1/4

2
√

3d3E
1/4
0 f

− b
1/2
6 d2(2μ)1/8

4E
3/8
0 (3d3)5/4f 1/2

for f 
 1.

(26)

Naturally, for an ensemble of values of R0 between Rmin 593

and Rmax, we consider the overlap between the intervals 594

[Rmin,Rmax] and [R1(f ),R2(f )], so that an approximation of 595

the formation probability is given by 596

P (f ) = min[Rmax,R2(f )] − max[Rmin,R1(f )]

2(Rmax − Rmin)
, (27)

if R1(f ) � Rmax and R2(f ) � Rmin; otherwise the probability 597

is zero since there is no overlap between the available values 598

of R0 and the values of R leading to a negative energy. The 599

coefficient 1/2 in the probability expression (27) comes from 600

the fact that for a given R, there are two possible initial 601

values for P 0
R , one positive (and possibly leading to formation) 602

and another one negative (not leading to formation) with the 603

same energy E0. The blue curve on Fig. 18 is the formation 604

probability obtained using the numerical computation of the 605

roots of E(R) and using Eq. (27). The agreement with the 606

numerical integration of the trajectories for the simplified 607

Hamiltonian (20) as well as with the full one-dimensional 608

Hamiltonian (12) is very good, validating the assumptions on 609

the dynamics of the trajectories leading to the approxima- 610

tion (27) for the formation probability. 611

The main reason for the rather good quantitative agreement 612

is that, in the interval [Rmin,Rmax], a large portion of the initial 613

values of R are large and the approximations performed to 614

derive Eq. (27) are valid. 615

Three parameters emerge as most influential in the for- 616

mation probability. All of them are related to the long-range 617

behavior of the dimer. One is related to the dimer potential 618

(behavior as 1/R6) and two are linked with the parallel 619
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FIG. 18. Formation probability given by Eq. (27) as a function
of F (dotted blue line). For completeness, the formation probability
as a function of F obtained from the long-range Hamiltonian (20)
(dashed red line) and from the full Hamiltonian (12) (solid green
line) are also shown. The black vertical dashed arrow is located at
the value F ≈ 0.00107 a.u. given by Eq. (28). For this value of F ,
it is expected to find the maximum of the formation probability. The
parameters of the pulse are Tru = 15 ps, Tp = 70 ps, and Trd = 15 ps.
The initial energy of the trajectories is E0 = 3 × 10−9 a.u.

polarizability (behaviors as 1/R2 and 1/R3). It should be620

noticed that the term in 1/R6 in the potential ε(R) is absolutely621

essential to ensure the existence of the two roots of E(R).622

In the appendix we also provide an approximate expression623

for the value of the electric field amplitude where a maximum624

of formation is expected and it is given by625

F ≈ 2
√

2√
Tru + 2Tp + Trd

. (28)

For a laser pulse with parameters Tru = 15 ps, Tp = 70 ps,626

and Trd = 15 ps, according to Eq. (28), the maximum of627

formation is expected at F ≈ 0.00107 a.u. As we can observe628

in Fig. 18, this value lies in the neighborhood of the values of629

F where the computed formation probability is maximum.630

In addition, we have shown in the appendix the rather small631

dependence of the formation probability with respect to the632

initial energy of the system (or equivalently, to its temperature).633

VI. CONCLUSION634

The classical study carried out in this paper shows the635

feasibility of using an intense linearly polarized laser field636

to drive the association of Rb and Cs cold atoms to create a637

dimer in its ground state. Interestingly, from our numerical638

calculations of the evolution of the formation probability639

as a function of the electric field strength of the laser, we640

find that the formation probability first increases and then641

decreases with increasing laser field intensity. In order to642

explain this surprising behavior of the formation probability,643

we use nonlinear dynamics and we show that the main element644

responsible for the formation of RbCs is a rather small change645

in the radial momentum PR induced by the laser pulse through646

its interaction with the molecular polarizability. This change647

of radial momentum is so small that it is not sufficient to648

induce changes in the positions of the atoms on the short time 649

scale of the laser pulse. However, it is sufficient to allow the 650

formation of RbCs dimers. Furthermore, the behavior of the 651

formation probability reflects the long-range behavior of 652

the dimer. The deep impact of the long-range behavior of the 653

molecule in the formation mechanism allows us to reduce 654

the dynamics to a one-dimensional radial Hamiltonian where 655

only the long-range terms of the potential are taken into 656

account. With this simplified Hamiltonian, we explained why 657

initially positive momentum leads to higher formation and 658

why an initially too short or too large interatomic distance 659

[i.e., shorter than R1(f ) or larger than R2(f )] does not 660

lead to formation. Moreover, from these observations and 661

using that one-dimensional Hamiltonian, we have derived 662

the approximate expression (27) for the formation probability 663

which highlights the role of the relevant parameters of the laser 664

pulse and of the interaction potential which lead to the shaping 665

of the formation probability. In particular, such an expression 666

might be helpful to control the formation probability by 667

adjusting the parameters of the laser field. Finally, a quantum 668

extension of our classical approach to the driven formation 669

of cold dimers is of immediate interest in order to predict 670

the quantum association rate which could be compared to 671

experiments. Work along this line is now in progress. 672
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APPENDIX: APPROXIMATE EXPRESSIONS FOR THE 682

ZEROS OF THE FUNCTION E(R) 683

In order to obtain the asymptotic behaviors of the zeros of 684

Eq. (24) and hence of the formation probability, we rewrite 685

E(R) as 686

E(R) = 1

2

[
X −

√
2

(
E0 + b6

R6

)]2

− b6

R6
,

where 687

X = f 2

√
μ

(
2d2

R3
+ 3d3

R4

)
.

The zeros of E(R) satisfy 688

X± =
√

2

(
E0 + b6

R6

)
±

√
2b6

R6
. (A1)

The above equation corresponds to two implicit equations for 689

R1 and R2. The branch with X+ corresponds to R1 and the 690

one with X− to R2. When f tends to zero, the two solutions 691

R1 and R2 converge to zero. Using an expansion of Eq. (A1) 692
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around R = 0, we obtain the asymptotic behaviors693

R1(f ) ≈ 3d3

2
√

2μb6
f 2, (A2)

R2(f ) ≈
(

3d3
√

2b6

E0
√

μ

)1/7

f 2/7. (A3)

As a consequence, if [R1,R2] ⊂ [RminRmax], the formation694

probability increases as f 2/7. It is worth noticing that there695

is a very slight dependence on the initial energy (i.e., on the696

temperature T of the gas) since the approximate formation697

probability behaves as T −1/7.698

For large values of f , the two roots R1(f ) and R2(f ) tend699

to infinity with the same asymptotic behavior given by R0(f )700

solution of701

f 2

√
μ

(
2d2

R3
+ 3d3

R4

)
=

√
2E0.

An explicit solution of R0(f ) can be obtained since it is a702

solution of a quartic polynomial. However, this expression is703

not very helpful. An expansion of the solution is given by704

R0(f ) = 31/4d
1/4
3

√
f

(2μE0)1/8
+ d2

2
√

3d3

f

(2μE0)1/4
+ O(f 5/4).

The two roots R1(f ) and R2(f ) tend to R0(f ) as f in-705

creases, and the distance between the two roots decreases706

as 707

R2(f ) − R1(f ) ≈ b
1/2
6 (2μ)1/4

2
√

3d3E
1/4
0 f

− b
1/2
6 d2(2μ)1/8

4E
3/8
0 (3d3)5/4f 1/2

.

(A4)

Given the values of the coefficients, we expect the formation 708

probability to decrease as f increases. The leading behavior is 709

proportional to f −1 but the second term is of the same order, 710

so it needs to be taken into account for a more quantitative 711

agreement (see Fig. 17). We notice the strong dependence 712

of the formation probability with one of the parameters of 713

the potential ε(R), namely b6, as well as the two main 714

parameters of the parallel polarizability, namely d2 and d3. In 715

addition, there is a slight dependence of the initial energy (or 716

equivalently the temperature): It increases as the temperature 717

decreases. The leading behavior is T −1/4. Using Eqs. (A3) 718

and (A4), we obtain an approximate value of F for the expected 719

maximum of R2 − R1: 720

f∗ = b
1/3
6 μ1/4

223/36(3d3)1/2E
1/12
0

.

In particular we notice the very small dependence of this value 721

with the initial energy, i.e., the temperature of the gas. As a rule 722

of thumb, f∗ ≈ 1, so the expected maximum for the formation 723

probability is approximately obtained for 724

F∗ ≈ 2
√

2√
Tru + 2Tp + Trd

.
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041403(R) (2006).

[20] P. S. Zuchowski and J. M. Hutson, Phys. Rev. A 81, 060703(R)
(2010).

[21] L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys.
11, 055049 (2009).

[22] A. Friedrich and D. Wintgen, Phys. Rep. 183, 37 (1989).
[23] J. Main, M. Schwacke, and G. Wunner, Phys. Rev. A 57, 1149

(1998).
[24] J. Main and G. Wunner, Phys. Rev. Lett. 82, 3038 (1999).

003400-12

https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.78.985
https://doi.org/10.1103/PhysRevLett.78.985
https://doi.org/10.1103/PhysRevLett.78.985
https://doi.org/10.1103/PhysRevLett.78.985
https://doi.org/10.1126/science.285.5434.1703
https://doi.org/10.1126/science.285.5434.1703
https://doi.org/10.1126/science.285.5434.1703
https://doi.org/10.1126/science.285.5434.1703
https://doi.org/10.1103/PhysRevLett.82.4204
https://doi.org/10.1103/PhysRevLett.82.4204
https://doi.org/10.1103/PhysRevLett.82.4204
https://doi.org/10.1103/PhysRevLett.82.4204
https://doi.org/10.1126/science.1059318
https://doi.org/10.1126/science.1059318
https://doi.org/10.1126/science.1059318
https://doi.org/10.1126/science.1059318
https://doi.org/10.1103/RevModPhys.78.483
https://doi.org/10.1103/RevModPhys.78.483
https://doi.org/10.1103/RevModPhys.78.483
https://doi.org/10.1103/RevModPhys.78.483
https://doi.org/10.1039/b911779b
https://doi.org/10.1039/b911779b
https://doi.org/10.1039/b911779b
https://doi.org/10.1039/b911779b
https://doi.org/10.1103/PhysRevLett.113.205301
https://doi.org/10.1103/PhysRevLett.113.205301
https://doi.org/10.1103/PhysRevLett.113.205301
https://doi.org/10.1103/PhysRevLett.113.205301
https://doi.org/10.1103/PhysRevLett.92.033004
https://doi.org/10.1103/PhysRevLett.92.033004
https://doi.org/10.1103/PhysRevLett.92.033004
https://doi.org/10.1103/PhysRevLett.92.033004
https://doi.org/10.1126/science.1159909
https://doi.org/10.1126/science.1159909
https://doi.org/10.1126/science.1159909
https://doi.org/10.1126/science.1159909
https://doi.org/10.1038/nphys1533
https://doi.org/10.1038/nphys1533
https://doi.org/10.1038/nphys1533
https://doi.org/10.1038/nphys1533
https://doi.org/10.1088/0953-4075/39/19/S13
https://doi.org/10.1088/0953-4075/39/19/S13
https://doi.org/10.1088/0953-4075/39/19/S13
https://doi.org/10.1088/0953-4075/39/19/S13
https://doi.org/10.1126/science.1163861
https://doi.org/10.1126/science.1163861
https://doi.org/10.1126/science.1163861
https://doi.org/10.1126/science.1163861
https://doi.org/10.1039/c1cp21769k
https://doi.org/10.1039/c1cp21769k
https://doi.org/10.1039/c1cp21769k
https://doi.org/10.1039/c1cp21769k
https://doi.org/10.1103/PhysRevA.85.032506
https://doi.org/10.1103/PhysRevA.85.032506
https://doi.org/10.1103/PhysRevA.85.032506
https://doi.org/10.1103/PhysRevA.85.032506
https://doi.org/10.1103/PhysRevA.89.033604
https://doi.org/10.1103/PhysRevA.89.033604
https://doi.org/10.1103/PhysRevA.89.033604
https://doi.org/10.1103/PhysRevA.89.033604
https://doi.org/10.1088/0953-4075/39/19/S10
https://doi.org/10.1088/0953-4075/39/19/S10
https://doi.org/10.1088/0953-4075/39/19/S10
https://doi.org/10.1088/0953-4075/39/19/S10
https://doi.org/10.1103/PhysRevA.73.041403
https://doi.org/10.1103/PhysRevA.73.041403
https://doi.org/10.1103/PhysRevA.73.041403
https://doi.org/10.1103/PhysRevA.73.041403
https://doi.org/10.1103/PhysRevA.81.060703
https://doi.org/10.1103/PhysRevA.81.060703
https://doi.org/10.1103/PhysRevA.81.060703
https://doi.org/10.1103/PhysRevA.81.060703
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1103/PhysRevA.57.1149
https://doi.org/10.1103/PhysRevA.57.1149
https://doi.org/10.1103/PhysRevA.57.1149
https://doi.org/10.1103/PhysRevA.57.1149
https://doi.org/10.1103/PhysRevLett.82.3038
https://doi.org/10.1103/PhysRevLett.82.3038
https://doi.org/10.1103/PhysRevLett.82.3038
https://doi.org/10.1103/PhysRevLett.82.3038


DRIVING THE FORMATION OF THE RbCs DIMER BY A . . . PHYSICAL REVIEW A 00, 003400 (2017)

[25] C. A. Arango, W. W. Kennerly, and G. S. Ezra, Chem. Phys.
Lett. 392, 486 (2004).
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