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We study the classical dynamics of a Rydberg hydrogen atom near a metal surface in the presence of a 
constant electric field in the electron-extraction situation [1], e.g., when the field attracts the electron to 
the vacuum. From a dynamical point of view, this field configuration provides a dynamics richer than in 
the usual ion-extraction scheme, because, depending on the values of field and the atom–surface distance, 
the atom can be ionized only towards the metal surface, only to the vacuum or to the both sides. The 
evolution of the phase space structure as a function of the atom–surface distance is explored in the 
bound regime of the atom. In the high energy regime, the ionization mechanism is also investigated. 
We find that the classical results of this work are in good agreement with the results obtained in the 
wave-packet propagation study carried out by So et al. [1].

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In the study of charge transfer processes between a Rydberg 
atom and a metal surface, an electric field perpendicular to the 
metal surface in the ion-extraction scheme is usually applied [2]. 
Under this scheme, and after the electron is captured by the sur-
face, the Coulomb force on the positive ion neutralizes the metal 
attraction and the ion escapes the surface providing useful in-
formation on the atom–surface ionization distance. The reversed 
ion-extraction field situation was considered by So et al. [1] for 
a Rydberg hydrogen atom. The wave packet propagation study of 
the ionization of the system performed by these authors resulted 
in significant differences between the “normal” and the reversed 
situations. From a classical point of view, a comprehensive study 
of the dynamics of this system in the ion-extraction scheme was 
done in [3]. Following the same classical approach, the aim of this 
paper is to study the interaction of a Rydberg hydrogen atom with 
a metal surface in the presence of an electric field in the electron-
extraction scheme.

The structure of the paper is organized as follows. In Section 2, 
the classical Hamiltonian of the system is presented, and the main 
features of the real potential are described. Section 3 is devoted to 
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the study of the dynamics of the Rydberg electron in the bound 
regime, that is, for low energy system values. Section 4 is focussed 
on the dynamics of the system in the unbound regime for high 
enough energy values, where the ionization of the atom is possible. 
Finally, conclusions are presented in Section 5. Atomic units are 
use throughout the paper.

2. The problem: Rydberg hydrogen atom near a metal surface

We consider the motion of an electron in a Coulomb field in-
duced by a infinitely massive nucleus of charge e > 0 at the origin 
of the coordinate system. The metal surface is located at the plane 
z = −d, and a constant electric field of strength f along the z-axis
is superimposed. In cylindrical coordinates (ρ, z, φ, Pρ, P z, Pφ)

and atomic units, the Hamiltonian H of the system reads

H = P 2
ρ + P 2

z

2
+ P 2

φ

2ρ2
− 1

r
+ f z

+ 1√
ρ2 + (2d + z)2

− 1

4(d + z)
, (1)

where r = √
ρ2 + z2. The last two terms in H account for the 

image model describing the interaction of the atom with the sur-
face [4]. Owing to the axial symmetry, the z component Pφ of 
the angular momentum is conserved and (1) defines a two-degree-
of-freedom dynamical system. We consider in this paper the case 

http://dx.doi.org/10.1016/j.physleta.2014.11.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:josepablo.salas@unirioja.es
http://dx.doi.org/10.1016/j.physleta.2014.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2014.11.004&domain=pdf


132 M. Iñarrea et al. / Physics Letters A 379 (2015) 131–136
Fig. 1. Effective potential curves U (ρ = 0, z) for several values of the electric field f . 
The atom–surface distance is fixed at d = 100a0.

Pφ = 0 in such a way that, besides the energy E = H, the system 
will depend on the external parameters d and f . The equations of 
motion of Hamiltonian (1) are

ρ̇ = Pρ, ż = P z,

Ṗρ = ρ

((2d + z)2 + ρ2)3/2
− ρ

(ρ2 + z2)3/2
,

Ṗ z = 2d + z

((2d + z)2 + ρ2)3/2
− 1

4(d + z)2
− f − z

(ρ2 + z2)3/2
. (2)

In Hamiltonian (1) we can define the effective potential U (ρ, z)

U (ρ, z) = −1

r
+ f z + 1√

ρ2 + (2d + z)2
− 1

4(d + z)
, (3)

which presents a singularity at the origin. For f > 0 (ion-extraction 
scheme), U (ρ, z) has a unique critical point (see [3] and references 
therein). More precisely, it is a saddle point (ρ, z) = (0, zn) located 
at the negative side of the z-axis. This is the potential barrier that 
the electron overcomes when it is captured by the metal surface. 
For f > 0, the escape of the electron to the vacuum side is for-
bidden. The potential curves U (ρ = 0, z) for f = 5 × 10−4 a.u. and 
for f = 1 × 10−4 a.u. in Fig. 1 illustrate this case. However, when 
the electric field is negative, f < 0 (electron-extraction scheme), 
U (ρ, z) presents an additional saddle point (ρ, z) = (0, zp) at the 
positive part of the z-axis. Through this new potential barrier, the 
electric field can drag the electron to the vacuum side. This case is 
depicted in Fig. 1 for f = −5 ×10−4 a.u. and for f = −1 ×10−4 a.u. 
The electron capture by the surface is enhanced with increasing 
positive electric field values because the surface potential barrier 
becomes lower. However, decreasing negative electric field values 
obstruct the surface ionization process (increasingly higher sur-
face barrier), while the vacuum ionization process is enhanced 
(decreasingly lower vacuum barrier). Because in this study we con-
sider negative electric field values, in Fig. 2 it is shown a detailed 
evolution of the position, zp and zn , and the energies, Ezp and Ezn , 
of the saddle points as a function of the distance d.

The usual way to avoid the numerical problems involved with 
the Coulomb singularity is to apply the well known Levi-Civita 
regularization [5]. This procedure starts with a change to semi-
parabolic coordinates (u, v),

ρ = uv, z = (
u2 − v2)/2, (4)

u = ±√
r + z, v = ±√

r − z. (5)

Next, we define a new scaled time τ = t/(u2 + v2). Finally, after 
an overall multiplication by u2 + v2, the Hamiltonian (1) reads
Fig. 2. Position (solid lines) and energy (dashed lines) of the saddle points (0, zn)

and (0, zp) for f = −5 × 10−6 a.u. and for varying distance d.

K = 2

= P 2
u + P 2

v

2
− E

(
u2 + v2) + f

2

(
u4 − v4)

+ 2(u2 + v2)√
4du2 v2 + (4 + u2 − v2)2

− u2 + v2

2(2d + u2 − v2)
, (6)

where

Pρ = v Pu + u P v

u2 + v2
, P z = u Pu − v P v

u2 + v2
, (7)

Pu = v Pρ + u P z, P v = u Pρ − v P z. (8)

Thence, the regularized Hamiltonian (6) enables to study the dy-
namics of orbits that, at a given moment, collide with the nucleus. 
Note that the regularized Hamiltonian K takes a constant value 2 
and that the energy E appears as a parameter in K. The regular-
ized equations of motion of Hamiltonian (6) are given by

u̇ = Pu, v̇ = P v ,

Ṗu = −∂K
∂u

, Ṗ v = −∂K
∂v

. (9)

Rectilinear trajectories are typical colliding orbits. It is easy to 
check that rectilinear orbits along the z-axis are particular solu-
tions in the equations of motion (2). These rectilinear orbits are 
a convenient example of how the described regularization proce-
dure works. In Fig. 3 is shown the time evolution of two rectilinear 
trajectories for d = 100 a.u. and for f = −5 × 10−6 a.u. along the 
z-axis with initial conditions (ρ, Pρ, z, P z) = (0, 0, 45.1861, 0) and 
(ρ, Pρ, z, P z) = (0, 0, −45.2000, 0), e.g., at the positive and at the 
negative part of the z-axis, respectively. These initial conditions 
were previously converted to regularized coordinates using (4)–(8)
and they were numerically propagated by using the regularized 
equations of motion (9). As we observe in that figure, the trajec-
tory with positive (negative) z initial condition is always moving in 
the positive (negative) z-axis because, when the electron collides 
with the nucleus, it bounces back. In other words, we have two dif-
ferent families of rectilinear periodic orbits along the z-axis which 
are kept apart by the Coulomb singularity. For historical reasons, 
we name these rectilinear families as I+∞ (z ≥ 0) and I−∞ (z ≤ 0), 
respectively.

3. Phase space structure

It is well known that the phase space is mainly character-
ized by the number and stability of the periodic orbits existing in 
phase space [6]. For two-degree-of-freedom Hamiltonian systems, 
Poincaré surfaces of section are a useful tool to uncover the phase 
space structure. In our problem, the surface of section is defined 
as the intersection of the phase trajectories with the ρ = 0 plane 
with Pρ ≥ 0. Thus, the surfaces of section lie in the (z, P z) plane 
limited by the curves
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Fig. 3. Rectilinear orbits along the z-axis. Red lines correspond to an orbit with 
initial conditions (ρ, Pρ, z, P z) = (0, 0, 45.1861, 0), while green lines correspond to 
an orbit with initial conditions (ρ, Pρ , z, P z) = (0, 0, −45.2000, 0). Both orbits for 
d = 100a0, f = −5 × 10−6 a.u. and energy E = −0.02 a.u. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

P z = ±
√

2

(
1

4(d + z)
− 1

2d + z
+ E − f z + 1

|z|
)

. (10)

Note that the rectilinear orbits I+∞ and I−∞ are tangent to the flow 
in this map. Furthermore, I+∞ corresponds to the curves (10) for 
z > 0, while I−∞ corresponds to the z < 0 branch of (10). The 
curves (10) are singular when |z| → 0. Because the computation 
of the Poincaré maps requires the numerical integration of phase 
space trajectories, we avoid the numerical problems involved with 
the Coulomb singularity by integrating the trajectories in regular-
ized coordinates (u, Pu, v, P v), using the equations of motion (9)
arising from K. In regularized coordinates, the Poincaré map ρ = 0
converts to the conditions u = 0 and/or v = 0 [see Eq. (4)]. Thence, 
for the sake of completeness, we will also show the corresponding 
regularized surfaces of section u = 0 and v = 0.

The evolution of the phase space structure is visualized by com-
puting surfaces of section for f = −5 × 10−6 a.u., for an energy 
E = −0.02 a.u. which corresponds to a principal quantum num-
ber n = 5, and for some convenient values of the atom–surface 
distance d ranging in the interval 75a0 ≤ d ≤ 300a0. Under these 
conditions, the electron is confined into the infinite potential well 
because the energy E = −0.02 a.u. is below the energy barriers 
Ezp and Ezn .

When the atom is close to the metal surface, the Poincaré maps 
in Fig. 4(a) for d = 75a0 show regular behavior. As we can observe 
in the u = 0 and v = 0 maps [lower and upper insets in Fig. 4(a)], 
orbits are ordered forming invariant KAM tori around three cen-
tral stable fixed points. The central fixed point in the regularized 
Poincaré maps corresponds to I−∞ in the v = 0 map and to I+∞
in the u = 0 map. The other two stable fixed points located on the 
P z = 0 axis are named as C and they correspond to almost circular 
orbits travelled in opposite directions. In the regularized Poincaré 
maps u = 0 and v = 0 [see the insets of Fig. 4(a)], these periodic 
orbits C are located at the Pu = 0 and P v = 0 axis, respectively. 
The levels around C are quasiperiodic orbits with the same sym-
metry patterns as C . In the regularized Poincaré maps a separatrix 
passing through two unstable fixed points located at the u = 0 and 
v = 0 axis separates this new region of motion from the regions 
of motion around I−∞ and around I+∞ . This is the typical behavior 
when the interaction of the atom with the metal surface domi-
nates the dynamics [3,7]. Thence, we have three regions of motion 
populated with orbits with the same symmetry pattern as I−∞ , I+∞
and C , respectively. Examples of each of these kind of quasiperi-
odic trajectories are shown in Fig. 5.

This structure remains unchanged as the atom moves away 
from the metal surface (see the surfaces of section in Fig. 4(b) for 
d = 125a0). However, when d = 200a0 [see Fig. 4(c)], the phase 
space structure is completely different. Indeed, through two con-
secutive pitchfork bifurcations (not shown in Fig. 4), the region 
of motion around C disappears, in such a way that orbits are or-
dered forming invariant KAM tori around the central stable fixed 
points I−∞ and I+∞ in the v = 0 and in the u = 0 Poincaré maps, re-
spectively. In this way, the phase space structure shows a smooth 
evolution from quasiperiodic orbits around I−∞ to quasiperiodic or-
bits around I+∞ . Thence, due to the polarizing effect of the field, the 
system is showing a Stark-like behavior because most of the orbits 
are oriented along the z direction. When the atom–surface dis-
tance is further increased, see Fig. 4(d) for d = 300a0, we find the 
same phase space structure. It is worth noting that this structure is 
the classical counterpart of the quantum Stark behavior observed 
in several studies [1,2] which have revealed that wave functions 
are strongly oriented along the field direction. The same qualita-
tive behavior was found in [3] for the case f > 0.

4. Charge transfer mechanism

In this section we focus on the opposite regime, when the en-
ergy is high enough so that the electron can escape from the 
nucleus attraction. Because for f < 0 the ionization of the atom 
can occur through two different and opposite channels, our objec-
tive is to correlate the initial conditions of the electron with the 
two possible ionization outcomes. To this end, we have calculated 
the ionization basins of the system trajectories with initial condi-
tions on the Poincaré plane (z, P z) given by (10). The evolution 
of the ionization basins has been analyzed for a constant energy 
E ≈ −3.472 × 10−3 a.u. which corresponds to n = 12, for a field 
f = −5 × 10−6 a.u., and for atom–surface distances in the range 
100a0 ≤ d ≤ 400a0. For increasing values of d, the surface barrier 
raises and the vacuum barrier lowers (see Fig. 2). Thence, we have 
that up to d ≈ 136a0, the only accessible ionization channel for 
the electron is the negative one; on the contrary, for distances 
larger than d ≈ 326a0 the electron can only escape to the vacuum; 
and for intermediate distances between the former distances, both 
the metal and the vacuum ionization channels are simultaneously 
open. The results of this computation appear in the color maps of 
Fig. 6, in such way that, red color stands for initial conditions of or-
bits that are captured by the metal surface (ionization through the 
negative channel), green color stands for initial conditions of orbits 
that escape to the vacuum (ionization through the positive chan-
nel) and blue color stands for initial conditions of bounded orbits. 
The insets included in Fig. 6 are the corresponding Poincaré maps 
ρ = 0 with Pρ ≥ 0. Based on the same computation of the ion-
ization basins, we have also calculated the ionization probabilities 
(see Fig. 7).

An overall vision of Fig. 6 shows that the ionization dynam-
ics evolves through three different regimes as the distance d in-
creases. For d = 100a0, the influence of the metal surface dom-
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Fig. 4. Poincaré surfaces of section ρ = 0 for d = 75a0, d = 125a0, d = 200a0 and d = 300a0. The insets are the corresponding surfaces of section v = 0 (upper right corners) 
and u = 0 (lower right corners). All sections for an electric field f = −5 × 10−6 a.u. and for an energy E = −0.02 a.u.
Fig. 5. Quasiperiodic orbits around I−∞ (green orbit), I−∞ (red orbit) and C (blue 
orbit). All orbits for d = 75a0, f = −5 × 10−6 a.u. and energy E = −0.02 a.u. (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

inates over the electric field. Thence, in the corresponding color 
map of Fig. 6(a), the basin of initial conditions of orbits that are 
captured by the surface coexists with the basin of initial condi-
tions of bounded orbits. Moreover, we observe in Fig. 6(a) that 
orbits escaping through the surface channel are the rectilinear or-
bit I−∞ and a given portion of the quasiperiodic orbits around it, 
e.g., those orbits strongly oriented along the surface barrier. These 
escape orbits create a gap in the corresponding Poincaré section 
[inset of Fig. 6(a)]. Note that the z < 0 side of the Poincaré plane 
(z, P z) for d = 100a0 is not bounded because I−∞ (the z < 0 limit 
of the surface of section) is an escape orbit. The phase space re-
gion isolated from the surface ionization channel corresponds to 
I+∞ and to the orbits strongly oriented around it. As expected, the 
evolution of the ionization probabilities in Fig. 7 shows that, for 
d < 136a0, the ratio between the number of escape orbits through 
the surface channel and the number of bounded orbits decreases 
for increasing values of d.

Fig. 6(b) shows the behavior of the system for d = 200a0, when 
both channels are accessible for ionization, and therefore when 
three different ionization basins coexist. We note that the ion-
ization basin through the vacuum is located in the phase space 
region around I+∞ . Due to the fact that I+∞ is an escape orbit, the 
z > 0 part of the Poincaré plane (z, P z) is also unbounded. More-
over, for increasing values of d, the metal ionization basin shrinks 
while the vacuum ionization basin grows in size (see Fig. 6(c) for 
d = 300a0). As a consequence, the ionization probability through 
the surface barrier is still decreasing while the ionization proba-
bility through the vacuum barrier enhances (see Fig. 7). It is im-
portant to note that, even for that high energy value, there always 
exist sets of initial conditions with a persistent non-ionization be-
havior.

For atom–surface distances d > 326a0, the effect of the electric 
field is predominant because only the positive ionization channel is 
open. Thence, we observe in the color map Fig. 6(d) for d = 400a0

that only the basin of initial conditions of orbits that escape to the 
vacuum and the basin of initial conditions of non-escape orbits 
persist. For d > 326a0 the rectilinear orbit I−∞ is bounded, so that 
the z < 0 side of the Poincaré plane (z, P z) in Fig. 6(d) is also 
bounded.
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Fig. 6. Evolution of the ionization basins in the ρ = 0 planar subspace (z, P z) for d = 100a0, d = 200a0, d = 300a0 and d = 400a0. The insets are the corresponding surfaces 
of section ρ = 0. All panels for the electric field f = −5 × 10−6 a.u. and for the energy E ≈ −3.472 × 10−3 a.u.
Fig. 7. Evolution of the ionization probabilities as a function of the metal–atom 
distance d for the electric field value f = −5 × 10−6 a.u. and for the energy 
E ≈ −3.472 × 10−3 a.u.

5. Conclusions

We have studied the classical dynamics of a hydrogen atom 
near a metallic surface in the presence of a uniform electric field f
in the electron-extraction scheme, e.g., the field is directed to the 
metal surface ( f < 0) in such a way that it attracts the electron 
to the vacuum. To describe the atom–surface interaction we have 
used a simple electrostatic image model to construct the Hamil-
tonian of the system. Owing to the axial symmetry of the system, 
when that Hamiltonian is expressed in cylindrical coordinates, the 
z component Pφ of the angular momentum is conserved, and the 
system has two degrees of freedom. We have restricted our study 
to the case Pφ = 0.

By means of Poincaré surfaces of section, we have explored the 
structure and evolution of the phase space of the system as a func-
tion of the negative electric field strength f < 0. We have found 
that, due to the polarizing effect of the field, the system is showing 
a Stark-like behavior because the electronic orbits are mainly ori-
ented along the z direction. It is worth noting that the dynamical 
robustness of the rectilinear orbits I+∞ and I−∞ is the responsible 
for that Stark orientation. Moreover, that classical Stark behavior 
has its quantum confirmation in several wave packet studies [1,2].

The ionization of the atom has been also investigated by 
calculating the ionization basins of the system for several sur-
face distances d in the interval 100a0 ≤ d ≤ 400a0. As the dis-
tance d increases in this convenient interval, the ionization of 
the atom evolves through three different regimes. We empha-
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size that the classical results obtained in the study of the charge 
transfer mechanism are in good agreement with the quantum 
results of the wave-packet propagation study carried out by So 
et al. [1] for negative electric field f < 0. Indeed, these authors 
found that quantum states initially oriented towards the vac-
uum (surface) are likely to ionize at the greatest (smallest) dis-
tances.
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