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We study the classical dynamics of the RbCs molecule in the presence of a static electric field. Under the
Born–Oppenheimer approximation, we perform a rovibrational investigation which includes the interac-
tion of the field with the molecular polarizability. The stability of the equilibrium points and the phase
space structure of the system are explored in detail. We find that, for strong electric fields or for ener-
gies close to the dissociation threshold, the molecular polarizability causes relevant effects on the system
dynamics.
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1. Introduction

Since the pioneering works of Langevin [1] and Debye [2] to
nowadays, the manipulation of the spatial direction (rotational ori-
entation and alignment) of molecules by means of external fields
has been a permanent “hot topic” in Chemical Physics (see [3] to
get an overall vision of the state of the art).

For polar dimers, the simplest experimental technique that al-
lows to control the molecular orientation is provided by an static
electric field [4,5]. On the other hand, molecular alignment is ob-
tained by means of nonresonant laser fields [6]. The theoretical
investigations following these experiments have been focused on
the impact of the field in the molecular structure, mainly on the
rotational dynamics [5–7]. The major effect for strong fields is the
appearance of pendular states [7] for which the molecule is ori-
ented and/or aligned along the electric field axis. Friedrich and
Herschbach [8] and Cai et al. [9] proposed the combination of
static electric and nonresonant laser fields to enhance the molec-
ular orientation and to gain versatility in the manipulation proce-
dure. The predicted properties of this combined configuration have
been successfully tested at the laboratory [10].

In general, the theoretical description of the nuclear dynamics
of diatomic molecules exposed to electric fields has been based on
the rigid rotor approximation. Under this approximation, the cou-
pling between the vibrational and rotational motion is neglected,

* Corresponding author.
E-mail address: josepablo.salas@unirioja.es (J.P. Salas).
0375-9601/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2012.02.058
and the dipole moment and the polarizabilities of the dimer take
constant values [11]. However, for strong field strengths and within
certain energy regions, recent theoretical studies showed that the
rigid rotor model fails because the vibrational motion is also af-
fected by the external fields [12]. Then a full quantum rovibrational
treatment is needed.

From the classical point of view, molecular systems are in gen-
eral nonlinear dynamical systems with a few degrees of freedom.
Then, invariant objects as periodic orbits, act as organizing struc-
tures for the quantum mechanical eigenstates and their identi-
fication is needed for the spectral assignment of highly excited
levels [13,14]. In other words, molecular systems, in particular di-
atomic molecules in external fields, are perfect systems to follow
the tracks of the classical phase space structure in the quantum
spectra. In this sense, the classical rovibrational dynamics of the
LiCs dimer in the presence of a static homogeneous electric field
has been investigated [15]. For the case of a dimer exposed to
parallel static and nonresonant laser fields, the analysis of the
stability of the equilibrium points, their bifurcation and the evo-
lution of the phase flow have provided a detailed picture of the
classical dynamics and, in particular, of the influence on the ori-
entation of the quantum states [16]. For the general case of tilted
fields, the phase space structure, the degree of classical chaos, the
classical-quantum correspondence for the non-integrable case, and
the phenomenon of monodromy [17] have been investigated [14].
When the rotational dynamics of a diatomic molecule in the pres-
ence of ac fields was considered, these studies revealed a close
correspondence between the classically chaotic dynamics and the
corresponding quantum time evolution [18]. Furthermore, when
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Fig. 1. (a) Electronic potential energy curve and electronic dipole moment function of RbCs. (b) Parallel α‖(R) and perpendicular α⊥(R) components of the molecular
polarizability.
the dimer is dressed by a circular polarized resonant IR field, it
has been demonstrated that the transition to chaos is connected
with a nonlinear rovibrational coupling that appears at rather low
radiation field intensities [19].

In this Letter we perform a full rovibrational classical study of
the dynamics of the RbCs dimer with electronic ground state of
1Σ+ symmetry in the presence of a static homogeneous electric
field. Besides the interaction of the electric field with the perma-
nent dipole moment, this study includes the interaction of the field
with the molecular polarizability. The main goal of this Letter is
to determine the effect of the polarizability on the dynamics of
the system. On the one side, we analyze the number, stability and
bifurcations of the equilibrium points of the potential energy sur-
face of the system as a function of the electric field strength. On
the other, we study the phase space structure and its evolution
with the field strength and energy by means of Poincaré surfaces
of section. Special attention is paid to the bifurcations that suffer
the main periodic orbits of the system. In a recent paper, Iñar-
rea et al. [15] performed a similar study on the (1Σ+) LiCs dimer.
These authors found that, for strong fields and/or for high ener-
gies, the polarizability creates a new region in phase space where
the molecule can be oriented in an anomalous stable way parallel
to the field. However, this region is small and appears close to the
dissociation threshold to represent a new dynamical situation. The
reason for considering the RbCs is that its dipole moment is sig-
nificantly smaller (in absolute value) than the LiCs dipole moment.
Therefore, the effect of the polarizability on the RbCs is expected
to be more important than on the LiCs.

The Letter is organized as follows. In Section 2, the two-
dimensional Hamiltonian used to describe the dynamics of the
polar dimer and the corresponding classical equations of motion
are presented. The classification of the equilibrium points of the
potential energy surface of the system as a function of the field
strength is also provided. Section 3 is devoted to the analysis of
the phase space structure. The dynamics of the dimer close to
the dissociation threshold is studied in Section 4. The conclusions
and outlook are provided in Section 5. Atomic units will be used
throughout.

2. Classical Hamiltonian, equations of motion and equilibrium
points

We employ the Born–Oppenheimer approximation to describe
the dynamics of the RbCs dimer in its 1Σ+ electronic ground
state in the presence of a homogeneous static electric field of
strength F . We restrict our study to a non-relativistic treatment
and we take into account that the interaction of the field with
the molecule is via its dipole moment and its polarizability. The
electric field is assumed to be oriented parallel to the z-axis of an
inertial reference frame with the origin at the center of mass of the
nuclei. Using spherical coordinates (R, θ,φ), the classical Hamilto-
nian governing the nuclear motion is given by:

H = P 2
R

2μ
+ P 2

θ

2μR2
+ V ef (R, θ), (1)

V ef (R, θ) = P 2
φ

2μR2 sin2 θ
+ ε(R) − F D(R) cos θ

− F 2

2

[(
α‖(R) − α⊥(R)

)
cos2 θ + α⊥(R)

]
, (2)

where μ is the reduced mass of the nuclei and P R , Pθ and Pφ

are the corresponding classical conjugate momenta. V ef (R, θ) is
the effective potential energy surface composed by the centrifugal
term depending on Pφ , the field-free adiabatic electronic poten-
tial energy curve ε(R)[20], and the interaction of the static elec-
tric field with both the electronic dipole moment function D(R)

[21], and the parallel and the perpendicular molecular polarizabili-
ties α‖(R) and α⊥(R) [22]. These functions are plotted in Fig. 1.
In order to manage an analytical representation for the poten-
tial energy surface V ef (R, θ), we have fitted the numerical data of
ε(R), D(R), α‖(R) and α⊥(R) to four different appropriate func-
tional forms. Besides, the fitting functions have been built in such
a way that they satisfy the correct long range behavior. In this
sense, the long range potential energy curve can be expressed as
ε(R) = C6/R6 + C8/R8 + C10/R10. For the 1Σ+ RbCs these coeffi-
cients can be found in the literature [23]. For the dipole moment
function D(R) we fitted the large R values to the well known ex-
pression D(R) = C7/R7. Finally, the assymptotyc behavior of the
polarizabilities α‖(R) and α⊥(R) have been fitted to the corre-
sponding Silberstein expressions [24].

Owing to the axial symmetry, the z-component Pφ of the an-
gular momentum is conserved. Hence, the expression (1) defines
the classical Hamiltonian of a system with two degrees of freedom
(R, θ). The Hamiltonian equations of motion read as

Ṙ = P R

μ
, θ̇ = Pθ

μR2
,

Ṗ R = P 2
θ

μR3
+ P 2

φ

μR3 sin2 θ
− ∂ε

∂ R
+ F

∂ D

∂ R
cos θ

+ F 2

2

[
∂�α(R)

∂ R
cos2 θ + ∂α⊥

∂ R

]
,

Ṗθ = P 2
φ cos θ

μR2 sin3 θ
− [

F D(R) + F 2�α(R) cos θ
]

sin θ, (3)

where �α(R) = (α‖(R) − α⊥(R)). Besides Pφ , the classical dy-
namics of this system depends on the energy E = H and on the
external parameter F .

A previous way to see how the external field F modify the
dynamics of the molecule is to study the shape of the potential
energy surface V ef (R, θ) as F varies. The shape of V ef (R, θ) is
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Fig. 2. Evolution of the energy E of the critical points of the effective potential
V ef (θ, R) for Pφ = 0 as a function of the electric field F . Red, green and blue colors
indicate that the corresponding critical point is a saddle point, a (relative) minimum
or a (relative) maximum, respectively. Ei is the energy of the corresponding critical
point Pi . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this Letter.)

determined by its critical points, and the critical points are the
equilibrium points of the Hamiltonian flux (3) together with the
conditions P R = 0 and Pθ = 0. At this point, we distinguish be-
tween the case Pφ = 0 and the case Pφ �= 0.

2.1. Critical points: Case Pφ = 0

By substituting Pφ = 0 = P R = Pθ = 0 in the Hamiltonian flux
(3) and equating to zero, it yields

∂ε

∂ R
− F

∂ D

∂ R
cos θ − F 2

2

[
�α(R)

∂ R
cos2 θ + ∂α⊥

∂ R

]
= 0, (4)

[
F D(R) + F 2�α(R) cos θ

]
sin θ = 0. (5)

From Eq. (5), it is clear that the critical points, when they exist,
appear at

θ1 = 0, θ2 = π, and cos θ3 = γ (R) =
[ |D(R)|

F�α(R)

]
� 1.

Whereas the critical points associated to θ1 = 0 and θ2 = π are
due to the interaction of the field with the molecular dipole mo-
ment, those arising from cos θ3 = γ (R) are due to the molecular
polarizability. When these three values of θ are substituted in (4),
we obtain the three equations

− ∂ε

∂ R
+ F

∂ D

∂ R
+ F 2

2

∂α‖
∂ R

= 0, (6)

− ∂ε

∂ R
− F

∂ D

∂ R
+ F 2

2

∂α‖
∂ R

= 0, (7)

− ∂ε

∂ R
+ F

∂ D

∂ R
γ (R) + F 2

2

[
∂�α

∂ R
γ (R)2 + ∂α⊥

∂ R

]
= 0. (8)

Since the analytical solutions of the above equations are not known
it is impossible to provide close expressions of the roots of Eqs. (6),
(7) and (8). Thus, we perform a numerical study in order to ob-
tain these roots and to determine the nature of the corresponding
critical points. The results of this numerical investigation are illus-
trated by the diagram in Fig. 2. In this diagram it is shown the
evolution of the energy of the critical points as a function of the
field strength F . For F < 0.0011156 a.u., there are three critical
points: the (relative) minimum P1, the saddle point P2 and the
(relative) maximum P3 (see Fig. 3). The contour plot of V ef (R, θ)

for F = 10−3 a.u. is depicted in Fig. 3(a), where depending on the
value of the energy, two different regions of motion are distin-
guished. For illustrative purposes, these contour figures have been
plotted for −π � θ � π , and not only in the interval of defini-
Fig. 3. Evolution of the equipotential curves of the potential V ef (θ, R) for Pφ = 0 as
a function of the electric field F .

tion of the polar angle [0,π ]. When the energy E is below E2, the
energy of the saddle point P2, the molecule is trapped into the
potential energy well around θ = π , in such way that, the field
prevents the molecule from describing complete rotations. Thence,
the molecule can eventually be oriented along the opposite electric
field direction, as it corresponds to the pendular states of dimers
with a negative electric dipole moment. Note that, as F increases,
the depth of the potential well increases. When the energy sur-
passes the energy of P2, the electric field is not able to trap the
molecule and full rotations are allowed. Moreover, the polarizabil-
ity creates an “energy hill” (the maximum P3, see Fig. 3(a)) which,
in fact, prevents the molecular bond R from reaching large values
unless through two narrow channels located along the θ = 0 and
θ = π directions. As we shall see, these directions will allow us to
define the dissociation threshold of the dimer.

For Fc ≈ 0.0011156 a.u., the saddle point P2 appearing in
Fig. 3(a) undergoes a pitchfork bifurcation which is denoted by BP
in Fig. 2. From this bifurcation on, P2 becomes a minimum and it
gives rise to two saddle points P4 (see Fig. 3(b)). From this value
of F on, the structure of V ef (R, θ) remains unchanged. The sepa-
ratrix passing through the saddles P4 surrounds a new potential
energy well centered at P2. In this way, a new region of oscil-
latory motion around P2 appears. In contrast to the oscillatory
orbits around P1, in these new oscillatory orbits the molecule is
mainly aligned along the θ = 0 direction. At such strong fields,
the dynamics is dominated by the interaction of the field with
the polarizability. As a direct consequence, the dimer presents this
anomalous molecular orientation parallel to the field direction, i.e.,
opposite to the orientation due to the interaction with the dipole
moment.

2.2. Critical points: Case Pφ �= 0

When Pφ �= 0, the centrifugal barrier in V ef (R, θ) prevents the
molecule to pass through θ = 0 and θ = π , i.e. complete rotations
are not allowed. Then, the critical points when they exist are lo-
cated in the interior of the interval (0,π) and they are the roots
of the equations

P 2
φ

μR3 sin2 θ
− ∂ε

∂ R
+ F

∂ D

∂ R
cos θ

+ F 2 [
�α(R)

cos2 θ + ∂α⊥
]

= 0, (9)

2 ∂ R ∂ R
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Fig. 4. Evolution of the energy E of the critical points of the effective potential
V ef (θ, R) for Pφ = 2 a.u. as a function of the electric field F . Red, green and blue
colors indicate that the corresponding critical point is a saddle point, a (relative)
minimum or a (relative) maximum, respectively. Ei is the energy of the correspond-
ing critical point Pi . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

Fig. 5. Evolution of the equipotential curves of the potential V ef (θ, R) for Pφ = 2 as
a function of the electric field F .

P 2
φ cos θ

μR2 sin3 θ
− [

F D(R) + F 2�α(R) cos θ
]

sin θ = 0. (10)

Now, besides F , the roots of the system (9) and (10) depend on the
value of Pφ . Following the same procedure as in the case Pφ = 0,
we determine numerically the roots of this system as a function of
F and for a constant value of Pφ . In diagram of Fig. 4 it is shown
the evolution of the energy of the critical points for Pφ = 2 a.u.
We observe in this diagram that for F < 0.001257 a.u. there are
two critical points: a minimum and a maximum. Because these
critical points would correspond to the minimum P1 and the max-
imum P3 in the case Pφ = 0, we call them P1 and P3 as well. The
contour plot of V ef (R, θ) for F = 0.001 a.u. in Fig. 5(a) shows that
there is only one region of motion in such way that, the greater the
energy is, the wider the amplitude of the rotation of the molecule.
As expected, the main qualitative effect of the centrifugal term in
the shape of the effective potential is that the saddle point P2 does
not exist.

For Fc ≈ 0.001257 a.u. a saddle-node bifurcation takes place.
This bifurcation is denoted by SN in Fig. 4. From this bifurca-
tion, there appear two new critical points: a saddle point and a
minimum named as P4 and P2, respectively (see Fig. 5(b)). This
structure remains unchanged for increasing F . As in the Pφ = 0
case, there appears a new oscillatory region of motion due to the
polarizability interaction.

A general feature of the dynamics is that, due to the large value
of μ, the dynamics is only affected by the centrifugal term when
the angle θ tends to 0 or π .

It is interesting to note that these kind of bifurcations with
similar consequences also appear in the classical study of rigid
diatomic molecules in the presence of combines electrostatic and
nonresonant polarized laser fields [16]. Because for both Pφ = 0
and Pφ �= 0 the system shows a similar dynamical behavior, here-
after we reduce to the case Pφ = 0.

3. Evolution of the phase space

In this section we study the phase space structure of the sys-
tem (for Pφ = 0) by using Poincaré surfaces of section [25]. We
define the surface of section by the intersection of the phase tra-
jectories with the (θ, Pθ )-plane for P R = 0. With this selection we
ensure that all the orbits (both rotational and oscillatory) will cross
it at any time, i.e., it is guarantee that this surface of section is
transverse to the Hamiltonian flux [26]. They are generated by the
numerical integration of the Hamiltonian equations of motion (3)
using an explicit Runge–Kutta algorithm of eighth order with step
size control and dense output [27].

Using Hamiltonian (1) for Pφ = 0, the region in the (θ, Pθ )-
plane defining the Poincaré surface of section for P R = 0 is deter-
mined by those values of Pθ satisfying

Pθ = ±√
2μR

{
E − ε(R) + F D(R) cos θ

+ F 2

2

[(
α‖(R) − α⊥(R)

)
cos2 θ + α⊥(R)

]}1/2

. (11)

Therefore, the limit of the surface of section corresponds to the
maximum and minimum values of Pθ satisfying the above equa-
tion. The initial conditions have been chosen inside the region
limited by these extreme points, which were computed numeri-
cally. Note that, to get a better visualization of the different phase
space structures, the surfaces of section have been plotted for
0 � θ � 2π , and not only in the interval of definition of the polar
angle [0,π ]. A complementary vision of the phase space struc-
ture is provided by the surface of section in the (R, P R)-plane for
θ = π . In this case, the allowed region is limited by the equation

P R = ±
√

2μ
[

E − V ef (R,π)
]
. (12)

In order to study the evolution of the phase space structure, we
fix the electric field value F = 5 × 10−4 a.u. while we vary the
energy E . This value of F is well below the critical bifurcation field
Fc ≈ 0.0011156 a.u. and the potential energy surface has similar
structure to the case discussed in Fig. 3(a). The value of the saddle
point energy is E2 ≈ −0.01751 a.u. We restrict our study to this
dynamical region because the required electric field values in this
regime are experimentally more accessible than in the regime for
F > 0.0011156 a.u.

When the energy of the molecule is below the saddle point en-
ergy E2, the surfaces of section in the planes (θ, Pθ ) and (R, P R)

(see Fig. 6(a)–(b)) show that all orbits are ordered forming in-
variant KAM tori around two stable fixed points (periodic orbits)
O V 1 and O R respectively. As can be analytically checked in (3),
O V 1 corresponds to a pure vibrational rectilinear periodic orbit
along the negative z-axis (θ = π). On the other hand, the fixed
point O R corresponds to an arch-like oscillatory periodic motion.



P.F. Arnaiz et al. / Physics Letters A 376 (2012) 1549–1557 1553
Fig. 6. Left panels energy E = −0.018 a.u.: (a) and (b) Surfaces of section for P R = 0 and θ = π ; (c) periodic orbits O V 1 and O R and examples of quasiperiodic orbits around
them. Right panels: The same but for E = −0.015 a.u. The blue lines in (c) and (f) are the equipotential curves for E = −0.018 and E = −0.015 a.u., respectively. All figures
for F = 5 × 10−4 a.u. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
These periodic orbits as well as representative quasiperiodic orbits
around them are presented in Fig. 6(c).

When the energy of the system is above the energy E2 of the
saddle point P2, the molecule is not trapped into the potential
well of the minimum P1 and it can, eventually, describe complete
rotations. We observe this behavior in Fig. 6(d)–(e) where the sur-
faces of section in the planes (θ, Pθ ) and (R, P R) for an energy
E = −0.015 a.u. slightly above the energy of the saddle are shown.

Comparing to the previously discussed case, the (R, P R) sur-
face of section shows a similar structure to the one presented
in Fig. 6(b). However, in the (θ, Pθ ) surface of section significant
modifications are encountered. In the present dynamics, two un-
stable fixed points appear located at (θ, Pθ ) = (0,0) and (θ, Pθ ) =
(2π,0). They correspond to another pure vibrational rectilinear
(θ = 0) periodic orbit O V 2 along the positive z-axis, which can
also be analytically checked in Eq. (3). These two unstable fixed
points are connected by a separatrix that encloses quasiperiodic
oscillatory motions. Outside this separatrix, there are two fami-
lies of curves which sweep out the θ angle from 0 to 2π , which
correspond to complete (quasiperiodic) molecular rotations in op-
posite directions. To obtain a global vision of the different motions
that characterize in this regime the dynamics of this system, the
periodic orbits O V 1, O V 2 and O R , as well as two representative
quasiperiodic orbits, are depicted in Fig. 6(f). Finally, note that the
surfaces of section in Fig. 6 show regular behavior which indicates
that the system is still near integrable.

We have seen that, for an energy slightly above the saddle point
energy E2, the structure of the phase space is characterized by
the periodic orbits O V 1, O V 2 and O R . An efficient tool that allows
one to detect the possible changes in this basic structure is the
numerical continuation of the families of periodic orbits generated
by the variations of the system’s parameters and the computation
of the stability parameter of the families.

As it is well known, the linear stability of a periodic orbit is
determined from the eigenvalues of the monodromy matrix. Since
we are dealing with a two degrees of freedom Hamiltonian system,
the four eigenvalues (λ1, λ2, λ3, λ4) appear in reciprocal pairs. As
a consequence of the invariance of the Hamiltonians equations of
motion, we have two trivial eigenvalues λ1 = λ2 = 1. Thus, we just
have to study the remaining two eigenvalues (λ3, λ4) As they are
complex conjugate and reciprocal, they are on the unit circle in
the complex plane or on the real axis. In other words, λ = λ3 =
1/λ4. In order to have a stable periodic orbit, the two eigenvalues
have to be on the unit circle [28]. If λ3 and λ4 are real the orbit
is unstable. At the critical cases λ3 = λ4 = ±1 the stability may
change. Following Barrio [29] the stability index k defined as

k = λ + 1/λ
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is normally used, where k is real and |k| < 2 applies for linear
stability, and the critical value k = ±2 means that a new fam-
ily of periodic orbits has likely bifurcated from the original one.
Therefore, numerical continuation of periodic orbits and stability
diagrams, where the k is plotted versus the parameter generator
of the family, are useful tools in nonlinear studies (see for in-
stance [29,30]).

At this point, we proceed as follows. For the fixed value F =
5 × 10−4 a.u. and by using the software AUTO [31], we carry out
the numerical continuation of the families of the periodic orbits
O V 1 and O V 2 that emanate from these solutions. Because we fix
the electric field strength, in our system the only parameter for the
continuation procedure is the energy. The stability diagram of each
family as a function of the energy E is also computed. From this
diagram, we can detect values of the energy for which possible bi-
furcations take place. Bifurcations produce qualitative changes in
the phase space structure. When a bifurcation is found, we il-
lustrate its effect by calculating the surfaces of section when the
energy is slightly less and slightly larger than its value at the bi-
furcation.

The stability diagram of the families of the periodic orbits O V 1
and O V 2 is shown in Fig. 7. This diagram gives the stability param-
eter k of each family in the interval −0.01751 < E � −0.001 a.u.
We call each family with same name as the corresponding periodic
orbit. In this interval the family O V 1 is always stable. However,
we see in this diagram that at Eb ≈ −0.003 a.u. the family O V 2
suffers a bifurcation because its stability index reaches at that en-
ergy Eb the critical value k = 2. As we can visualize in the surfaces
of section in Fig. 8, it is a pitchfork bifurcation: when the energy
crosses the value Eb , from the fixed point O V 2 (which becomes
stable) emanate two new unstable fixed points (periodic orbits).
These two new families, named O V 3, have the same stability in-

Fig. 7. Stability diagram of the families of the periodic orbits O V 1 and O V 2 as a
function of the energy E . Dashed lines indicate instability.
dex, and thus in the diagram in Fig. 7 are represented by the same
blue dashed line. These new periodic motions O V 3 consist of two
unstable asymmetric stretchings whose projection in the (R, θ)-
plane joins the corresponding equipotential curves (see Fig. 9).
As the energy increases, they migrate away from the stable fixed
point O V 2.

The separatrix passing through these new unstable fixed points
in the surface of section Fig. 8(b) surrounds new oscillatory (pen-
dular) motions around O V 2. Note that in these new pendular
orbits the molecule is mainly aligned along the electric field di-
rection, that is, around the positive z-axis. In Fig. 9 it is shown
one of these anomalous pendular orbits. It is important to realize
that the origin of this new alignment region is completely dynam-
ical, due to the influence of the polarizability and that cannot be
inferred from the potential energy surface structure, which in fact
remains the same in the considered energy interval.

As the energy increases, the size of the anomalous pendular re-
gion O V 2 increases (see the surface of section in Fig. 10(a) for
E = −1.7 × 10−4 a.u.), in such way that it becomes comparable
in size to the O V 1 pendular region. It is important to note that
even for this quite high energy, for which the size of the molecule
is larger than R = 20 a.u. (see Fig. 10(b)), the phase space still
presents a regular KAM tori structure.

4. Dynamics close to the dissociation threshold

After having studied the evolution with energy of the funda-
mental structures of phase space, in this section we focus on
dynamics of the dimer in an energy range close to the dissoci-
ation energy threshold Ed . The existence of the aforementioned
dissociation channels along θ = 0,π , together with the threshold
dissociation conditions R → ∞, P R → 0 and Pθ → 0, allow us to
get an analytical estimation of Ed . Under the condition R → ∞,

Fig. 9. Projections on the (R, θ)-plane (panel (a)) and on the Cartesian plane x =
R cos θ and z = R sin θ (panel (b)) of the periodic orbits O V 1, O V 2 and O V 3. An ex-
ample of a pendular motion around O V 2 is also shown (green line). The dotted lines
are the equipotential curves of energy E = −0.0004 a.u. Both figures are calculated
for an electric field F = 5 × 10−4 a.u.
Fig. 8. Surfaces of section P R = 0 for (a) E = −0.0045 a.u. and (b) E = −0.0013 a.u. All figures are calculated for an electric field F = 5 × 10−4 a.u.
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Fig. 10. (a) Surface of section for P R = 0. (b) Surface of section for θ = π . Both figures calculated for and energy E = −0.00017 a.u. and for an electric field F = 5 × 10−4 a.u.

Fig. 11. Evolution of the Poincaré surfaces of section P R = 0 for a fixed electric field strength F = 5 × 10−4 a.u. and increasing energies in an interval close to the dissociation
threshold.
functions ε(R) and D(R) both tend to 0, and α‖(∞) = α⊥(∞) =
α(∞) = αRb + αCs. Indeed, the approximate value for the dissocia-
tion energy is given by

H = Ed ≈ − F 2

2
α(∞) = − F 2

2
(αRb + αCs). (13)

Thus, the atomic polarizabilities lead to decrease the dissociation
energy to a nonzero negative value, which depends on the electric
field strength F as well as on the polarizabilities of the atoms.
For example, for the value F = 5 × 10−4 a.u., we obtain that Ed =
−8.965 × 10−5 a.u.

In Fig. 11 it is shown a gallery of surfaces of section for a fixed
electric field F = 5 × 10−4 a.u. and for increasing energies values
in the interval −9.576 × 10−5 a.u. � E � −8.96 × 10−5 a.u. When
the E = −9.576 × 10−5 a.u. the separatrix passing through O V 2
has been replaced by a thin stochastic layer of chaotic motions,
see Fig. 11(a). In this small layer, the motion of the molecule alter-
nates randomly between complete rotations in both directions and
oscillations of large amplitude around both directions of the z-axis.
Moreover, chains of resonant island appear in both the rotational
and the pendular O V 1 regions. For a higher energy (see Fig. 11(b)),
the width of the chaotic layer grows and, in general, the phase
space structure becomes more complex. As the energy is further
increased, this trend to a more complex dynamics continues (see
Fig. 11(c)–(d)–(e)) until the dissociation threshold is reached, see
Fig. 11(f). It is interesting to note that the first orbits to dissociate
are the rectilinear motions O V 1, O V 2 and the nearest quasiperiodic
orbits surrounding them because they are strongly oriented to the
dissociation channels in θ = 0,π . This is why Fig. 11(f) presents
empty regions around O V 1 and O V 2.



1556 P.F. Arnaiz et al. / Physics Letters A 376 (2012) 1549–1557
Finally, it is worth to note that the molecule can persist
bounded in rotational or even in oscillatory states for energies
above the dissociation threshold, see Fig. 11(f).

5. Conclusions

In this work we have studied the classical rovibrational dynam-
ics of the alkali polar dimer RbCs in its electronic ground state
under the action of a strong static homogeneous electric field. In
the framework of the Born–Oppenheimer approximation, we have
considered the interaction of the molecule with the field due to
both, the permanent electric dipole moment of the dimer and its
molecular polarizability. Owing to the axial symmetry of the sys-
tem, the component Pφ of the angular momentum of the dimer
along the direction of the field is conserved and thus, the sys-
tem has two degrees of freedom. This study is focused on the case
Pφ = 0, that is, a zero magnetic quantum number.

The shape of the potential energy surface V (R, θ) and its crit-
ical points are studied depending on the electric field strength F .
This study shows that, due to a pitchfork bifurcation, above a cer-
tain critical value of F , the typical pendular structure of V (R, θ)

is replaced by a new structure where the molecule can be aligned
parallel to the electric field. This orientation is anomalous because
the RbCs dimer has a negative electronic dipole moment function.

By means of appropriate Poincaré surfaces of section, the evo-
lution of the phase space structure as a function of the energy has
also been analyzed. For small energy values, the phase space ex-
hibits a regular structure with quasiperiodic motions organized on
invariant KAM tori around three periodic orbits: two of them, O V 1
and O V 2, are pure vibrational rectilinear motions parallel to the
electric field (O V 1 is stable in the opposite direction of the field,
and O V 2 is unstable in the same direction of the field), and the
third one is an oscillatory orbit O R . For larger energies, O R devel-
ops into a periodic complete rotation.

In order to detect relevant changes in the phase space structure,
we have performed the numerical continuation of the vibrational
periodic motions O V 1 and O V 2 as a function of the energy for
a fixed electric field strength. The stability diagrams of the fami-
lies of O V 1 and O V 2 revealed that the unstable motion O V 2 suf-
fers a pitchfork bifurcation becoming stable. From this bifurcation
two new unstable periodic asymmetric stretchings O V 3 arise. As
the energy increases, new quasiperiodic oscillatory motions appear
surrounding the rectilinear vibrational motion O V 2 that becomes
stable. In these new oscillatory (pendular) orbits the molecule is
mainly aligned in the electric field direction. The amplitude of
these “anomalous” oscillatory motions increase with the energy
becoming comparable to the amplitude of the pendular oscillations
aligned opposite to the direction of the field. The origin of this new
alignment region is completely dynamical, due to the influence of
the polarizability and it cannot be inferred from the potential en-
ergy surface structure.

For energy values close to the dissociation threshold, the system
loses regularity and the phase space structure is more complex.
An stochastic layer appears in the neighborhood of the separa-
trix which keeps apart the oscillatory motions from the complete
rotations. In this chaotic region, the dimer alternates randomly
complete rotations in both directions with oscillations of great am-
plitude.

With respect to the dissociation of the molecule, there exist
two dissociation channels located along the direction of the elec-
tric field, as the first orbits to dissociate are the two periodic vi-
brational rectilinear motions O V 1 and O V 2 and the quasiperiodic
orbits surrounding them. On the other hand, the molecular polar-
izability leads to decrease the dissociation threshold to a nonzero
negative energy value, which depends not only on the electric field
strength, but also on the polarizabilities of the atoms.
An interesting direction for a future study is the investigation
of the impact of these classical results in the quantum counterpart.
Work along this line is now under consideration.
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