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In order to analyse the dynamics of a given Hamiltonian system
in the space defined as the Cartesian product of two spheres,
we propose to combine Delaunay coordinates with Poincaré-like
coordinates. The coordinates are of local character and have to be
selected accordingly with the type of motions one has to take into
consideration, so we distinguish the following types: (i) rectilinear
motions; (ii) circular and equatorial motions; (iii) circular non-
equatorial motions; (iv) non-circular equatorial motions; and
(v) non-circular and non-equatorial motions. We apply the theory
to study the dynamics of the reduced flow of a generalised
Størmer problem that is modelled as a perturbation of the
Kepler problem. After using averaging and reduction theories, the
corresponding flow is analysed on the manifold S2 × S2, calculating
the occurring equilibria and their stability. Finally, the flow of the
original problem is reconstructed, concluding the existence of some
families of periodic solutions and KAM tori.
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1. Introduction

By averaging the perturbation of a Hamiltonian over the fibres of the circle bundle, Reeb [35]
and Moser [28] obtained a Hamiltonian vector field on the so-called base or reduced (phase) space,
see also the papers [25,26]. They were able to give sufficient conditions for the existence of periodic
solutions by looking at the system on the base alone.

In the setting of perturbed Keplerian problems, we start with a small parameter which is a mea-
sure of the perturbation of the Kepler Hamiltonian (which is an example of an integrable system
where all solutions are periodic). Then one normalises (or averages) the perturbation. After a finite
number of terms have been normalised, the higher-order perturbations are truncated, giving an ap-
proximation of the full system. This approximation is well defined on the lower-dimensional reduced
space, which in the case of fully spatial perturbations is S2 × S2, that is, the Cartesian product of two
spheres [28].

This space is a four-dimensional symplectic manifold, compared to the five-dimensional manifold
of the original system (when the value of the Hamiltonian is fixed). Being lower-dimensional, the
system on the reduced space is easier understandable. However we remark that not all the features
of the full system are accurately reflected by the reduced system; it typically does not display the
breakdown of invariant tori or ergodic regions.

The plan of the paper is as follows. In Section 2 we detail how the reduction of a perturbed Kep-
lerian system to S2 × S2 is performed, characterising this space in terms of the angular momentum
and the Laplace–Runge–Lenz vectors. The purpose of Section 3 is to discuss how the different types
of coordinates have to be constructed to classify the type of motions that can occur. Previous work on
this appeared in [34,36] where rectilinear, circular and equatorial solutions occurred. In Section 4 we
deal with the generalised Størmer problem, averaging and reducing it to the space S2 × S2. The pur-
pose of Section 5 is the detailed analysis of the relative equilibria of the system using the coordinates
introduced in Section 3. These relative equilibria are associated with families of periodic solutions of
the original Hamiltonian vector field and this is proved rigorously in Section 6. Besides, the existence
of various KAM tori is also established in Section 6.

Preliminary studies on the topic we bring to the paper appeared in [36], where we dealt with
coordinates on S2 × S2 for rectilinear as well as circular equatorial motions. Related work is due
to Cordani [7], who dealt with the dynamics of perturbed Keplerian Hamiltonians on S2 × S2. He
introduced global coordinates that parameterise S2 × S2 and local symplectic coordinates to treat
circular equatorial motions. The local coordinates are equivalent to those proposed in [36]. Cordani
also established the existence of KAM tori around the relative equilibria he computed for several
examples. In this paper we generalise the treatments of [7,36] dealing with other types of motions.
We also propose a different set of coordinates to study circular equatorial motions which usually
yields a more straightforward approach of this class of motions.

Other related papers are due to Cushman and collaborators [10,15,16], where they analyse with
great detail the dynamics of the hydrogen atom perturbed by sufficiently small homogeneous static
electric and magnetic fields. This problem is modelled as a perturbation of the Kepler problem.
Concretely these authors deal with the reduction of the three-degree-of-freedom problem to a
Hamiltonian of one degree of freedom through two successive averages. The main purpose of the
papers [10,15] is to analyse the monodromy of the system, an obstruction feature to define global
action-variables and the relationship of monodromy with non-integrability and with the existence of
Hamiltonian–Hopf bifurcations. In [10], they also deal with the dynamics on S2 × S2, defining a set
of local symplectic coordinates, but they do not look very practical as the change of coordinates is
only defined through a Taylor series. The reconstruction of the flow of the original problem is done in
the three papers, leading to very interesting features, especially in the review paper [16], about the
dynamics of the hydrogen atom influenced by electric and magnetic fields. However, the existence of
KAM tori is only mentioned but not established rigorously in any of the three papers. Moreover, the
authors of [16] criticise the use of the Delaunay coordinates but they do not realise how to combine
them in an efficient way in order to cope with the singular cases in a right way as we show in the
paper.
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We try to give a systematic approach, defining local symplectic coordinates covering all possible
types of elliptic motions, classifying the motions in five different classes: (i) near rectilinear; (ii) near
circular equatorial; (iii) circular non-equatorial; (iv) non-circular equatorial and; (v) non-circular non-
equatorial. We also reconstruct with rigour the flow of the original system through the dynamics of
the reduced flow on S2 × S2 where the non-degeneracy of the relative equilibria holds. Besides, when
these equilibria are parametrically stable, the corresponding families of periodic solutions are linearly
stable (elliptic). Finally, we search for KAM tori introducing action-angles coordinates from the local
coordinates we have defined previously. Our conclusion is that the combination of global coordinates
of S2 × S2 with local coordinates yields a methodological and convenient way of approaching a per-
turbed Keplerian Hamiltonian.

Another motivation of the present work was the local analysis of two points of the plane of para-
metric bifurcations corresponding with the analysis of the twice-reduced space of the generalised
Størmer problem. Indeed, this plane of bifurcations contains two special points related to circular
equatorial motions where all the bifurcation curves are coincident—see [24], and also [21]—where we
analysed a simplified version of the generalised Størmer problem and only one of the two points was
present in the study. However, these points are limit situations of the behaviour of the flow corre-
sponding with the twice-reduced space as this space gets reduced to points for circular equatorial
trajectories. So, the right analysis has to be achieved properly on S2 × S2 and we have carried out
this study in Section 5.2. Our conclusion is that there is no bifurcation on the space S2 × S2 related
to circular equatorial motion, but these two points have the feature that the two-degrees-of-freedom
normal forms in the neighbourhoods around them are in resonance 1:1. This also implies the impos-
sibility of obtaining KAM tori in these circumstances as we shall see in Section 6.

All the computations have been carried out with Mathematica, Version 7.0.1, and many of the
calculations cannot be printed down in the paper as they are too big. However, the interested reader
can obtain the Mathematica files upon request.

2. S2 × S2 as the reduced space of perturbed Keplerian problems

In the six-dimensional space fixed at a certain frame centred at a point O and spanned by a vector
denoting the position, x = (x, y, z), and another vector designating the momenta, X = (X, Y , Z), we
write down a Hamiltonian function of the form

H = HK + εP(x,X) = 1

2

(
X2 + Y 2 + Z 2) − 1√

x2 + y2 + z2
+ εP(x,X) (1)

where ε stands by a small parameter and P a regular function denoting the perturbation of the
problem. The Hamiltonian HK represents the Hamiltonian of the two-body problem (or, equivalently,
the Hamiltonian of the Kepler problem).

We introduce a couple of sets of coordinates, suitable for dealing with perturbed Keplerian sys-
tems. The set of orbital coordinates is given by the six-tuple (r, ϑ, ν, R, G, N) where r stands for
the radial distance from the origin of reference to the particle, ϑ represents the argument of lati-
tude, ν is the right ascension of the node whereas R , G and N are the conjugate momenta of r,
ϑ and ν respectively, see more details in [12]. Besides the action G represents the modulus of the
angular momentum vector, i.e. G = |G| = |x × X| and N = xY − y X stands for the third component
of the angular momentum; see more details in [32]. Notice that 0 � |N| � G . The explicit relation
between polar-nodal and Cartesian coordinates is obtained through the following transformation:
� : (r, ϑ, ν, R, G, N) → (x, y, z, X, Y , Z), where

x = x′ cosν − y′ cos I sinν, X = X ′ cosν − Y ′ cos I sinν,

y = x′ sinν + y′ cos I cosν, Y = X ′ sinν + Y ′ cos I cosν,

z = y′ sin I, Z = Y ′ sin I, (2)

with cos I = N/G (I is the inclination between the orbital and the equatorial planes) and x′ , y′ , X ′
and Y ′ are given by
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x′ = r cosϑ, X ′ = R cosϑ − G

r
sinϑ,

y′ = r sinϑ, Y ′ = R sinϑ + G

r
cosϑ. (3)

We have to take into account that the transformation � is singular for r = 0, G = 0 and G = |N| as
I is an angle defined on (0,π). The condition |N| < G ensures that G is not parallel to the z axis, so ν
is well defined. Hence, polar-nodal coordinates are not valid for rectilinear and equatorial trajectories.
The name of polar-nodal variables is due to the fact that they are constructed as the composition of
transformations (2) and (3).

Delaunay coordinates are given by (�, g, ν, L, G, N). The angle � stands for the mean anomaly,
g is the argument of the pericentre, L the square of the semimajor axis, hence 0 � |N| � G � L. The
condition G < L ensures that the ellipse does not degenerate to a circle, thus g and � are well defined
and |N| < G ensures that ν is well defined. Thus, Delaunay coordinates are not valid for rectilinear,
circular and equatorial trajectories.

Both polar-nodal and Delaunay coordinates are symplectic. Typically, the Hamiltonian H is ex-
pressed as a combination of polar-nodal and Delaunay elements [13,29]. In particular HK = −1/(2L2).

The first task consists in transforming Hamiltonian (1) with the aim of introducing a symmetry
to the vector field related to H. The transformation is usually performed in the setting of averaging
theory, that is, the mean anomaly � is averaged over one period. The theory is accomplished using De-
launay normalisation techniques [13,31–33]. This strategy lies in the context of a perturbation theory
as we are considering our Hamiltonian H a perturbation of the Kepler Hamiltonian HK . If higher-
orders of the averaging process are needed one has to resort to the combination of averaging theory
with Lie transformations [11].

The transformed Hamiltonian, that we also call H after truncating higher-order terms, depends on
the two angles g and ν and their associated momenta G and N , respectively, whereas L is an integral
of motion as its associated angle has been removed from the transformed Hamiltonian.

Applying reduction theory, the Hamiltonian H is defined on the orbit space, or base space, which
is the four-dimensional space S2 × S2.

We can use the set of variables given by a = (a1,a2,a3) and b = (b1,b2,b3) with the constraints
a2

1 + a2
2 + a2

3 = L2 and b2
1 + b2

2 + b2
3 = L2 to parameterise S2 × S2, where a = G + LA and b = G − LA,

with A the Laplace–Runge–Lenz vector, i.e. the vector

A = X × G − x

|x| .

Thus, fixing a value of L > 0, the product of the two-sphere

S2 × S2 = {
(a,b) ∈ R6

∣∣ a2
1 + a2

2 + a2
3 = L2, b2

1 + b2
2 + b2

3 = L2} (4)

is the phase space for Hamiltonian systems of Kepler type independent of �, that is, for Hamiltonians
for which L is an integral. This result was first reported by Moser [28] using a regularisation technique
based on stereographic projections. Observe that S2 × S2 is a smooth space (a symplectic manifold)
and therefore the reduction is symplectic and regular [26,25]. Note that for planar perturbations of
the planar Kepler Hamiltonian, the corresponding reduced space is S2.

We need to know the Poisson structure on S2 × S2 in a and b as we will use it in the application.
We have

{a1,a2} = 2a3, {a2,a3} = 2a1, {a3,a1} = 2a2,

{b1,b2} = 2b3, {b2,b3} = 2b1, {b3,b1} = 2b2, {ai,b j} = 0.

Explicitly, the functions ai ’s and bi ’s can be given in terms of the coordinates x and X as G, A
and L may be written in terms of the position and momenta vectors. However, we prefer to give
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the expressions of ai ’s and bi ’s in terms of the Delaunay variables [6,8,9] as they are more practical.
We follow the approach introduced by Cushman [8,9]. If e = √

1 − G2/L2 represents the eccentricity
of the orbit, one has

a1 = G sinν sin I + Le cos g cosν − Le sin g sinν cos I,

a2 = −G cosν sin I + Le cos g sinν + Le sin g cosν cos I,

a3 = G cos I + Le sin g sin I,

b1 = G sinν sin I − Le cos g cosν + Le sin g sinν cos I,

b2 = −G cosν sin I − Le cos g sinν − Le sin g cosν cos I,

b3 = G cos I − Le sin g sin I. (5)

The variables ai ’s and bi ’s—also called generators or coordinates of the reduced space—are indeed the
(global) coordinates used to describe the reduced phase space as they are the functions associated to
the vector fields generating the SO(4) symmetry of −1/(2L2).

Now we account for the subsets of S2 × S2 related to special motions. Observe that

2G =
√

(a1 + b1)2 + (a2 + b2)2 + (a3 + b3)2,

so G = 0 on S2 × S2 if and only if a1 + b1 = a2 + b2 = a3 + b3 ≡ 0, a2
1 + a2

2 + a2
3 = L2, and b2

1 + b2
2 +

b2
3 = L2. Thus, the subset of S2 × S2 given by

R = {
(a,−a) ∈ R6

∣∣ a2
1 + a2

2 + a2
3 = L2}

is a two-dimensional set homeomorphic to S2 consisting of the rectilinear trajectories. In Delaunay
elements, the circular orbits satisfy the condition G = L, and in terms of a and b this implies that
a1 = b1, a2 = b2, and a3 = b3. So the circular orbits define the two-dimensional set homeomorphic to
S2 given by

C = {
(a,a) ∈ R6

∣∣ a2
1 + a2

2 + a2
3 = L2}.

Similarly, equatorial trajectories satisfy G = |N| and are given by the two-dimensional set

E = {
(a,b) ∈ R6

∣∣ a2
1 + a2

2 + a2
3 = L2, b1 = −a1, b2 = −a2, b3 = a3

}
,

which is again homeomorphic to S2. Notice that the intersection C ∩ E yields the subset of equatorial
and circular solutions, and it is given by zero-dimensional set composed of two points of S2 × S2, i.e.

C ∩ E = {
(0,0,±L,0,0,±L)

}
.

Just as in the planar case, the introduction of these invariants extends the use of the Delaunay
variables, as we can include equatorial, circular, and rectilinear solutions [32,34,36]. The other points
on S2 × S2 correspond to elliptic orbits of the Kepler problem.
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From (5) it is easy to deduce that

2G sinν sin I = a1 + b1,

2Le(cos g cosν − sin g sinν cos I) = a1 − b1,

−2G cosν sin I = a2 + b2,

2Le(cos g sinν + sin g cosν cos I) = a2 − b2,

2N = a3 + b3,

2Le sin g sin I = a3 − b3, (6)

which allows us to express the functions G , N , cos g , sin g , cosν and sinν in terms of a and b.
Now, the constant term HK can be dropped and the reduced Hamiltonian H̄, which is independent

of �, can be written as a function of a and b and the constant L > 0, i.e. H̄ ≡ H̄(a,b; L). Note that the
way in which the coordinates ai ’s and bi ’s appear in the Hamiltonian H̄ depends on the manner that
the position x and the momentum X appear in P , so, it depends on each specific problem. Typically,
P(a,b; L) is a rational or even a polynomial function.

3. Symplectic coordinates on S2 × S2

3.1. Global versus local coordinates

Coordinates ai ’s and bi ’s together with the constraints are the natural set of variables to use when
one analyses a Hamiltonian vector field related to a perturbed Keplerian system averaged over the
mean anomaly. However, when dealing with concrete solutions they are, in general, not very useful
as the expressions become in general cumbersome as one needs to handle six coordinates plus two
independent constraints.

Related work was initiated in [34,36], where the full analysis of the reduced flow in the context
of the spatial restricted three-body problem for the Lunar case is obtained using the variables ai ’s
and bi ’s. In particular we encountered four equilibria, classified in two different types, the points
(0,0,±L,0,0,±L) and the points (0,0,±L,0,0,∓L). The points (0,0,±L,0,0,±L) correspond with
motions whose projections in the configuration space O xyz are of circular equatorial type (prograde
and retrograde) whereas the points (0,0,±L,0,0,∓L) correspond with motions whose projections
in the space O xyz are of the class of rectilinear motions in the vertical z axis, also prograde and
retrograde. Thus, reconstructing the flow, one concludes that the spatial circular restricted three-body
problem in the Lunar case has two families of periodic solutions near circular equatorial and two
families of periodic solutions near rectilinear type in the z axis. In this example, the local analysis to
obtain the linear and non-linear stability of the relative equilibria was performed introducing ad-hoc
symplectic coordinates for rectilinear or circular equatorial coordinates.

In this section we propose to combine the global coordinates ai ’s and bi ’s with other local sym-
plectic coordinates in order to facilitate the analysis of the possible relative equilibria, their stability
and bifurcations on S2 × S2. Thus, the point is to give a practical point of view of how to proceed
when one faces with the analysis of the reduced flow of a Hamiltonian vector field related with a
perturbed Keplerian system.

3.2. Near rectilinear trajectories

An equilibrium of this type has coordinates (a1,a2,a3,−a1,−a2,−a3) with a2
1 +a2

2 +a2
3 = L2. Thus,

the analysis of near rectilinear trajectories may be done within the two-sphere a2
1 +a2

2 +a2
3 = L2. Thus,

once the equilibrium (a0
1,a0

2,a0
3) is given, we need to make the translation
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a1 = ā1 + a0
1, a2 = ā2 + a0

2, a3 = ā3 + a0
3,

b1 = b̄1 − a0
1, b2 = b̄2 − a0

2, b3 = b̄3 − a0
3,

so that we move the origin to the point of interest. Then, we introduce the coordinates xi ’s and yi ’s
(called Q i ’s and Pi ’s in Section 4.3.1 of [36])

x1 = ā2√
2L + ā3

, x2 = b̄2√
2L − b̄3

,

y1 = − ā1√
2L + ā3

, y2 = b̄1√
2L − b̄3

, (7)

with inverse

ā1 = −y1

√
2L − y2

1 − x2
1, ā2 = x1

√
2L − y2

1 − x2
1, ā3 = −y2

1 − x2
1,

b̄1 = y2

√
2L − y2

2 − x2
2, b̄2 = x2

√
2L − y2

2 − x2
2, b̄3 = y2

2 + x2
2. (8)

The local variables (x1, x2, y1, y2) constitute a symplectic set for which x1, x2 can be interpreted
as coordinates, and y1 and y2 represent their associated momenta, respectively.

3.3. Near circular equatorial trajectories

This time, instead of working with the coordinates Q i ’s and Pi ’s defined in Section 4.3.2 of [36]
we resort to Poincaré-like coordinates [3,20]. For practical examples where the averaged Hamiltonian
is obtained in terms of the Delaunay elements, the resulting expressions are shorter and easier to deal
with compared to the formulae derived from the coordinates of [36].

In particular, for near circular equatorial prograde solutions (N ≈ G ≈ L > 0, i.e., I ≈ 0 and e ≈ 0)
we introduce

x1 = −√
2(L − G) sin(g + ν), x2 = −√

2(G − N) sinν,

y1 = √
2(L − G) cos(g + ν), y2 = √

2(G − N) cosν. (9)

For near circular equatorial retrograde orbits (N ≈ −G ≈ −L < 0, i.e., I ≈ π and e ≈ 0) we take

x1 = −√
2(L − G) sin(g − ν), x2 = √

2(G + N) sinν,

y1 = √
2(L − G) cos(g − ν), y2 = √

2(G + N) cosν. (10)

We remark that the angle g is not well defined when G = L, besides ν is not well defined when
|N| = G , however the angle g + ν is properly defined [18] when N = G and g − ν is properly defined
for N = −G , thus x1 and y1 are defined properly for (9) and (10). The coordinates x2 and y2 are a
bit more problematic but when N = G , then x2 = y2 = 0 in (9) whereas if N = −G , then x2 = y2 = 0
in (10) and therefore the coordinates xi ’s and yi ’s are well defined near circular equatorial motions,
including true circular equatorial motions.

If x1 and x2 are taken as coordinates whereas y1 and y2 are their associated momenta, it is an
easy exercise to prove that the sets of coordinates given through (9) and (10) are both symplectic on
S2 × S2.

Note that the point (0,0, L,0,0, L) of S2 × S2 accounting for circular equatorial prograde solutions,
corresponds with x1 = x2 = y1 = y2 = 0 in (9) whereas (0,0,−L,0,0,−L) corresponds with x1 = x2 =
y1 = y2 = 0 in (10).
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The inverses of (9) and (10) are, respectively,

g = arccos

(
± y1√

x2
1 + y2

1

)
− arccos

(
± y2√

x2
2 + y2

2

)
,

ν = ±arccos

(
± y2√

x2
2 + y2

2

)
,

G = 1

2

(
2L − x2

1 − y2
1

)
,

N = 1

2

(
2L − x2

1 − y2
1 − x2

2 − y2
2

)
, (11)

and

g = arccos

(
± y1√

x2
1 + y2

1

)
+ arccos

(
± y2√

x2
2 + y2

2

)
,

ν = ±arccos

(
± y2√

x2
2 + y2

2

)
,

G = 1

2

(
2L − x2

1 − y2
1

)
,

N = 1

2

(
x2

1 + y2
1 + x2

2 + y2
2 − 2L

)
. (12)

In both formulae, all possible combinations of the signs have to be taken into account, depending
on the different relative positions of the angles g and ν in [0,2π), therefore there are eight different
combinations. We have to exclude the point x1 = x2 = y1 = y2 = 0 as the g and ν are not well defined
in this case.

We have defined the sets of coordinates in terms of Delaunay elements as this is usually more
practical than the specific expressions of xi ’s and yi ’s as functions of a and b. The reason is that, in
general, the averaged Hamiltonian is written in terms of Delaunay elements, so these specific orbits
are analysed straightforwardly using the coordinates (11) and (12). The same happens with the other
coordinates that we introduce in the next subsections.

3.4. Near circular non-equatorial trajectories

We introduce

x1 = −√
2(L − G) sin g, x2 = ν − ν0,

y1 = √
2(L − G) cos g, y2 = N − N0, (13)

where ν0 and N0 are supposed to be the concrete values that the relative equilibrium takes on
S2 × S2. Taking x1, x2 as coordinates and y1, y2 as their associated momenta, the set (13) is symplec-
tic. Notice that the point x1 = x2 = y1 = y2 = 0 corresponds with the set of circular non-equatorial
motions on S2 × S2 (i.e., the set C \ E ).

Let us remark that x2 and y2 are not problematic. Nevertheless, when G = L the pericentre is not
well defined, but similarly to the case of circular equatorial motions, precisely in this situation one
has x1 = y1 = 0, so, these coordinates make sense near circular non-equatorial motions, including true
circular non-equatorial orbits.
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The inverse of (13) reads as

g = ±arccos

(
± y1√

x2
1 + y2

1

)
, ν = x2 + ν0,

G = 1

2

(
2L − x2

1 − y2
1

)
, N = y2 + N0. (14)

There are four different combinations that depend on the position of g in [0,2π). The inverse
change (14) is not well defined on the plane x1 = y1 = 0.

3.5. Near non-circular equatorial trajectories

We distinguish between prograde and retrograde motions.
For prograde orbits we take

x1 = g + ν − k0, x2 = −√
2(G − N) sinν,

y1 = G − G0, y2 = √
2(G − N) cosν, (15)

where k0 is the value of the angle g + ν (which is well defined for equatorial prograde motions) at
the equilibrium and G0 is the value of G at the equilibrium. Considering x1 and x2 the coordinates
and y1 and y2 their associated momenta, the set of coordinates (15) is symplectic.

Notice that the coordinates x1 and y1 are always well defined. Besides, when N = G , although the
argument of the node is not well defined, one has that x2 = y2 = 0 so, these coordinates are properly
defined near circular non-equatorial prograde motions as well as in exactly non-circular equatorial
prograde orbits.

In the case of retrograde trajectories we define

x1 = g − ν − k0, x2 = √
2(G + N) sinν,

y1 = G − G0, y2 = √
2(G + N) cosν, (16)

where k0 is the value of the angle g − ν (which is well defined for equatorial retrograde motions) at
the equilibrium whereas G0 corresponds with the value of G at the equilibrium. If we interpret x1
and x2 as the coordinates and y1 and y2 as their associated momenta, the set of coordinates (16) is
symplectic.

The coordinates x1 and y1 are well defined. When N = −G , the argument of the node is not well
defined, but then x2 = y2 = 0, hence, xi ’s and yi ’s are properly defined near circular non-equatorial
motions, even in true non-circular equatorial retrograde motions.

The points x1 = x2 = y1 = y2 = 0 of (15) and (16) correspond with the set E \ C .
This time the inverses of (15) and (16) are, respectively,

g = x1 ± arccos

(
± y2√

x2
2 + y2

2

)
+ k0,

ν = ±arccos

(
± y2√

x2
2 + y2

2

)
,

G = y1 + G0,

N = 1

2

(
2G0 + 2y1 − x2

2 − y2
2

)
, (17)
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and

g = x1 ± arccos

(
± y2√

x2
2 + y2

2

)
+ k0,

ν = ±arccos

(
± y2√

x2
2 + y2

2

)
,

G = y1 + G0,

N = 1

2

(
x2

2 + y2
2 − 2y1 − 2G0

)
. (18)

In both formulae, all possible combinations of the signs have to be taken into account, so there
are eight different possibilities. The change (18) is not well defined on the plane x2 = y2 = 0.

3.6. Near non-circular non-equatorial trajectories

Now we define

x1 = g − g0, x2 = ν − ν0,

y1 = G − G0, y2 = N − N0, (19)

where we have taken the values (g0, ν0, G0, N0) as those corresponding with a certain equilibrium
point on S2 × S2. It is obvious that (19) is symplectic.

For this type of motions the angles g and ν are well defined, therefore xi ’s and yi ’s are properly
defined. Moreover, for particular values g0, ν0, G0 and N0, the point x1 = x2 = y1 = y2 = 0 yields the
relative equilibrium on S2 × S2 that corresponds with non-circular non-equatorial solutions.

The trivial inverse of (19) is

g = x1 + g0, ν = x2 + ν0,

G = y1 + G0, N = y2 + N0. (20)

4. The generalised Størmer problem and its reduction to S2 × S2

4.1. Hamiltonian model

This problem studies the dynamics of charged particles around rotating magnetic planets. Specif-
ically, the generalised Størmer problem we analyse here, describes the dynamics of a dust particle
of mass m and charge q orbiting a rotating magnetic planet of mass M . The magnetic field of the
planet is supposed to be a perfect magnetic dipole of strength μ aligned along the north-south poles
of the planet. Moreover, the planet’s magnetosphere is taken as a rigid conducting plasma which ro-
tates with the same angular velocity Ω as the planet, in such a way that the charge q is subject to a
corotational electric field. Furthermore, the gravitational interaction in our model takes into account
the non-sphericity of a planet given by means of the so-called J2 term [30]. Introducing cylindrical
coordinates and momenta (ρ, z, φ, Pρ, P z, Pφ), the generalised Størmer problem is given through the
following two-degree-of-freedom Hamiltonian

H = 1

2

(
P 2

ρ + P 2
z + P 2

φ

ρ2

)
− 1

r
− δ

Pφ

r3
+ δ2

2

ρ2

r6
+ δβ

ρ2

r3
+ 3 J2

z2

2r5
− J2

2r3
, (21)
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where J2 is a positive dimensionless parameter for an oblate planet, whereas it is negative for a
prolate one. For example, in the case of Saturn, J2 = 0.016298 [5]. Lengths and time are expressed,
respectively, in units of the radius of the planet, R, and the Keplerian frequency w K = √

M/R3 (Gaus-
sian units). The variable r = √

ρ2 + z2 stands for the distance of the charged particle to the centre of
mass of the planet. Cylindrical variables are natural to formulate the problem, as the system is in-
variant under rotations around the z axis, Pφ is an integral of the system, indeed it corresponds with
the action N . Furthermore, Hamiltonian (21) depends also on three external parameters, namely, δ, β

and J2, which indicate respectively the ratio between the magnetic and the Keplerian interaction (i.e.,
the charge-mass ratio q/m of the particle), the ratio between the electrostatic and the Keplerian in-
teractions (i.e., the ratio Ω/w K , thus β > 0 and for Saturn β ≈ 2/5), and the oblateness of the planet
taken into consideration. The value of δ can be positive or negative, depending on the charge of the
particle, but we can locate it in the interval [−10−2,10−2], see the details in [21]. Notice also that for
a given planet, β and J2 are fixed while δ varies. We also assume that J2 > 0, therefore our analysis
is valid for oblate planets. On the other hand, the system depends on the two internal parameters Pφ

and H = E (the energy).
Hamiltonian (21) generalises that considered in the papers by Dullin and collaborators [19,14]

and Iñarrea et al. [21,22]. In particular, assuming that J2 = 0, Dullin et al. [14] and Howard et al. [19]
proved the existence and stability of orbits around the planet lying on the equatorial plane (equatorial
orbits), and orbits that do not intersect the equatorial plane, i.e. the so-called halo orbits. The studies
carried out in [21,22] also assume that J2 = 0 and are based on the twice-reduced flow corresponding
with the second reduction. Indeed, after averaging over �, as Pφ is an integral of motion one can
reduce again the Hamiltonian and work in the twice-reduced phase space, a two-dimensional space
homeomorphic to a sphere. In this setting, the occurrence of relative equilibria, together with their
stability analysis and bifurcations, have been achieved with detail.

We have used this model to establish the existence of equatorial and halo solutions [23]. However,
our purpose here is the analysis of the reduced flow related to the average of Hamiltonian (21) over
the mean anomaly. This analysis has to be performed on S2 × S2, combining the global coordinates
a and b with the local coordinates given by xi ’s and yi ’s in Section 3. In [24], using the Hamilto-
nian function of (21) we have extended the previous research of [21,22], as we take into account the
oblateness coefficient of the planet. Moreover, the reconstruction of the flow of the original system
from the flow in the twice-reduced space is rigorously done, concluding the existence of some in-
variant tori together with different types of bifurcations of them. Furthermore, the existence of some
KAM tori is also established in [24]. However, not all the information about the dynamics of Hamilto-
nian (21) can be recovered from the flow in the twice-reduced phase space. For instance, the analysis
of circular equatorial motions cannot be carried out in the twice-reduce space as this space gets re-
duced to a unique point. Furthermore, there are other features of the system that need to be analysed
in the first-reduced phase space, that is, on S2 × S2. Hence, the study we perform along the paper
must be understood complementary to that of [24].

4.2. Averaging

The first step consists in passing from cylindrical coordinates to a mixed of polar-nodal and Delau-
nay elements. We stress that the terms that are not factorised by δ, β or J2 in (21) correspond with
the Kepler Hamiltonian HK in cylindrical coordinates. Considering that the effect of the magnetic and
electric fields and that the perturbation caused by the presence of J2 are all small compared with
the pure Kepler attraction, we can think of our model as a perturbed Keplerian Hamiltonian in the
space and that δ, β and J2 are small parameters such that the terms of the Hamiltonian (21) which
do not correspond with the Keplerian Hamiltonian are of the same asymptotic order in the small
parameter. Thus, we can apply the Delaunay normalisation to average the perturbation with respect
to �. We give no details on the process of averaging as the reader is addressed to [13], however we
remark that both the averaged Hamiltonian and the generating function, that we do not write down
explicitly as it is too large, are computed in closed form, allowing the analysis of any type of elliptical
motion [31,33].
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Thus, we arrive at the Hamiltonian

H = H0 + H1 + O(2) (22)

with

H0 = − 1

2L2
,

H1 = δ

16L5G7(L + G)

(
2(L + G)

(
4βL3G7 + 4βL3G5N2 − δG4

− 8L2G4N − δG2N2 + 3δL2G2 + 3δL2N2)
+ (L − G)

(
G2 − N2)(8βL3G5 + δG2 + 2δLG + δL2) cos(2g)

)

+ J2(G2 − 3N2)

4L3G5
.

By putting O(2) we assume terms of order two, that have been also obtained explicitly and that play
a certain role in the analysis of the problem as we will illustrate in the next sections.

Note that H1 has a pole at G = 0, which implies that rectilinear motions have to be excluded
from our analysis. This is related with the fact that the charged particle cannot enter the planet,
therefore we have to fix a minimum value for G , say Gm , such that we study the values of G with
0 < Gm � G � L, hence collision with the planet is avoided.

4.3. Reduction

Now, our goal is to perform the reduction of H given by (22) to the orbit space. This may be
achieved once we have truncated higher-order terms. Although we will need the expression of terms
of order two, O(2), later, for the moment we content ourselves to reduce only H1. We can also
drop the zeroth-order term H0 as it is a constant of motion. Using the expressions of g , G and N in
terms of ai ’s and bi ’s given by (6), and after doing some algebra calculations to simplify the formulae,
we arrive at

H̄ = δβ(4L(2L2 − a2
3 − b2

3) + 2(4L2 − (a3 + b3)
2)G)

8L3(L + G)2

+ 1

128L5G7

(
32δβL2(a3 + b3)

2G6 − 8
(
3δ2 − 4 J2L2 + 8δL2(a3 + b3)

)
G4

+ (
δ2(28L2 − 3a2

3 + 2a3b3 − 3b2
3

) − 24 J2L2(a3 + b3)
2)G2

+ 10δ2L2(a3 + b3)
2), (23)

with G = √
(L2 + a1b1 + a2b2 + a3b3)/2. We remark that H̄ is a rational function in ai ’s and bi ’s, with

a singularity at a1b1 + a2b2 + a3b3 = −L2. Thus, the Hamiltonian normal form is not bounded on
S2 × S2, that is, H̄ is not a Morse function in the whole space S2 × S2, consequently we cannot apply
the bounds on the number of critical points nor the Morse inequalities, those given in [35,27,28,36].

Notice that the reduction to S2 × S2 is regular. Moreover, by the introduction of the coordinates ai ’s
and bi ’s we have extended the Hamiltonian expressed in Delaunay coordinates and can consider equa-
torial or circular motions. We need to exclude rectilinear motions as the original Hamiltonian was not
well defined for G = 0.

The next step is to obtain the Hamiltonian vector field associated with H̄, yielding explicit val-
ues ȧi ’s and ḃi ’s as follows: ȧi = {ai, H̄}, ḃi = {bi, H̄}, for i = 1,2,3.
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5. Relative equilibria and stability

5.1. Circular equatorial solutions

We exclude the searching of rectilinear motions, so we start with the case of near circular equato-
rial solutions as relative equilibria of the Hamiltonian vector field related with H̄.

Replacing (a1,a2,a3,b1,b2,b3) by (0,0,±L,0,0,±L) in the vector field we get ȧi = ḃi = 0 for i =
1,2,3. Thus, we conclude that circular equatorial motions are solutions of the Hamiltonian. In order to
study the normal form and stability of the equilibria we need to make the changes defined in (9) and
in (10) to Hamiltonian H1 of (22). Then, we make a Taylor-expansion around x1 = x2 = y1 = y2 = 0,
yielding after dropping constant terms

H̄ = c±
1 (δ, J2, L)

(
x2

1 + y2
1

) + c±
2 (δ,β, J2, L)

(
x2

2 + y2
2

) + · · ·

= 6δ2 − 3 J2L2 ∓ 4δL3

4L9

(
x2

1 + y2
1

)

+ −δ2 + 3 J2L2 + 2δL3(±1 − βL3)

4L9

(
x2

2 + y2
2

) + · · · , (24)

where c±
1 and c±

2 take the explicit values of the factors of x2
1 + y2

1 and x2
2 + y2

2, respectively. Moreover,
the sign “+” refers to prograde solutions whereas “−” is related with retrograde solutions. The same
convention holds for the other cases where the coefficients c±

i ’s arise.
We notice that the quadratic part of H̄ is already diagonalised, which shows the convenience

of using the sets of coordinates defined in the paper. This feature is in contrast with the approach
followed in [36], where a long process was done in order to diagonalise the quadratic part of a normal
form.

As the linearisations around the two points are both of the form centre × centre (generically
when the eigenvalues do not vanish), it is immediate to deduce that the points (0,0,±L,0,0,±L)

are, in general, linearly stable on S2 × S2. However, there are different situations depending on the
combinations among the parameters.

Let us start the analysis of (24) for the prograde solutions, and positive-charged particles (δ > 0).
We do not take into account in our study the pure Kepler case, i.e., the case δ = β = J2 = 0.

By inspection of the normal form, the coefficient of x2
1 + y2

1 remains negative for the allowed values
of all the parameters; we can ensure it if we restrict the value of L to the interval (1,3], which is a
right interval to consider the generalised Størmer problem as a perturbed Kepler problem [21]. Even
when β and J2 are fixed while δ and L vary (δ accordingly with the particle and L accounting for
the distance from the particle to the centre of the planet) it is easier but equivalent to interpret the
results in terms of β , thus, we set

βc = −δ2 + 3 J2L2 + 2δL3

2δL6
. (25)

We conclude that if β < βc the coefficient of x2
2 + y2

2 is positive, hence the quadratic part of H̄ is
undefined while if β > βc the quadratic part of H̄ is negative definite. Finally, if β = βc the quadratic
form is negative semidefinite, however there is still a set of four eigenvectors which implies that in
all the cases the quadratic form is semisimple.

Resonances between the x1–y1 and x2–y2 directions can occur for various combinations of the
parameters, either if β < βc or β > βc . For instance, if β = (−7δ2 + 6 J2L2 + 6δL3)/(2δL6), the
quadratic part of H̄ is in resonance 1:1. This is the precise value of β where most of the bifurca-
tion lines of the two-reduced space are confluent, see [24], although no bifurcation occurs on S2 × S2.
If β = (4δ2 + 3 J2L2)/(4δL6) the system is in resonance 1:−2. However, for the allowed values of the
parameters, the resonance 1:−1 cannot occur. The resonance 1:1 is connected with the confluence of
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the bifurcation curves for prograde orbits appearing in the study of the twice-reduced space achieved
in [24], see also [21]. Nevertheless, no bifurcation occurs on S2 × S2 for the value of β leading to the
resonance 1:1 for prograde motions.

When β > βc the quadratic form is negative definite, thus, applying the Dirichlet theorem, we con-
clude that the equilibrium becomes also parametrically and non-linearly stable. If β < βc , the equi-
librium is also parametrically stable (the only chance of parametric instability is the resonance 1:−1)
whereas the non-linear stability should be studied using Arnold’s theorem [2,3] or other analog re-
sults for resonant Hamiltonians [4,17]. When β = βc the equilibrium is not parametrically stable and
the non-linear stability is an open question. Even more, after computing the determinant of the Jaco-
bian matrix associated to the quadratic part of H̄, it is deduced that the equilibrium is not isolated
when β = βc as the determinant vanishes at βc , whereas it is always isolated when β �= βc .

When δ < 0 the analysis can be carried out similarly to the previous paragraphs. However, since
the coefficient of x2

1 + y2
1 can also vanish, more cases arise. Thus, when J2 = J2c with

J2c = 2δ(3δ − 2L3)

3L2
, (26)

the quadratic form of H̄ becomes negative semidefinite. Anyway the two eigenvalues c+
1 and c+

2
cannot vanish at the same time. We have not pursued further research on this as the results are of
the same type as before. The resonance 1:1 can occur, but the resonance 1:−1 is not allowed for the
parameters with physical significance.

Now we deal with retrograde orbits, starting with δ > 0.
This time the quadratic form can be undefined, positive definite or negative definite. If J2 = J2c

with

J2c = 2δ(3δ + 2L3)

3L2
, (27)

the coefficient of x2
1 + y2

1 vanishes while if β = βc with

βc = −δ2 + 3 J2L2 − 2δL3

2δL6
, (28)

the coefficient of x2
2 + y2

2 vanishes. Both coefficients are allowed to vanish at the same time,
leading therefore to a very degenerate situation. Besides, other combinations allow the quadratic
Hamiltonian to be in resonance 1:1 (when β = (−7δ2 + 6 J2L2 − 6δL3)/(2δL6)) and 1:−1 (when
β = (5δ + 2L3)/(2L6)) and other higher-order resonances. The case of resonance 1:1 corresponds with
the confluence of almost all bifurcation curves in the analysis of the twice-reduced space performed
in [24]. However, we stress that no bifurcation occurs on S2 × S2 for the value of β leading to the
resonance 1:1 for retrograde motions.

Linear, parametric and non-linear stabilities depend on the different situations: leaving apart the
degenerate case ( J2 = J2c and β = βc , with the value of J2c inserted inside βc), the rest of situations
are of semisimple character, therefore the linear stability of the equilibrium is ensured. Parametric
stability is concluded when J2 �= J2c , β �= βc and, moreover, the system is not in resonance 1:−1.
Finally, non-linear stability of the equilibrium is satisfied when the quadratic form is either positive
or negative definite. The equilibrium is isolated excepting for J2 = J2c or β = βc .

Finally, for retrograde motions but with δ < 0, it is straightforward to prove that the coefficients
of (24) do not change sign for the values of the parameters with physical interest. Concretely, the
sign of x2

1 + y2
1 remains negative while the sign of x2

2 + y2
2 is positive, therefore the quadratic part

of the normal form is undefined. The resonance 1:−1 may happen. Thus, the equilibrium is linearly
stable and its parametric stability is assured excepting for the resonance 1:−1, i.e., excepting for
β = (5δ + 2L3)/(2L6). The analysis of the non-linear stability would deserve further development
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based on Arnold’s theorem [2] and its variants for resonant cases [4,17], but we do not cope with it.
This time (0,0,−L,0,0,−L) is always an isolated equilibrium on S2 × S2.

5.2. Circular non-equatorial solutions

We seek points of the type (a1,a2,a3,a1,a2,a3) with a2
1 + a2

2 + a2
3 = L2. Using directly the Hamil-

tonian vector field in a and b, we get the circle

a2
1 + a2

2 = L2 −
(

2δL4

δ2 − 3 J2L2 + 2δβL6

)2

, a3 = 2δL4

δ2 − 3 J2L2 + 2δβL6
, (29)

together with b1 = a1, b2 = a2 and b3 = a3. Moreover, in order that these equilibria make sense as
circular non-equatorial motions one needs that |a3| < L which implies that

Min

{∣∣∣∣−δ2 + 3 J2L2 − 2δL3

2δL6

∣∣∣∣,
∣∣∣∣−δ2 + 3 J2L2 + 2δL3

2δL6

∣∣∣∣
}

< β < Max

{∣∣∣∣−δ2 + 3 J2L2 − 2δL3

2δL6

∣∣∣∣,
∣∣∣∣−δ2 + 3 J2L2 + 2δL3

2δL6

∣∣∣∣
}
.

We stress that when β reaches one of the two extremes above, the equilibria become circular
equatorial. An outstanding conclusion is that there is not an isolated equilibrium point related with
circular non-equatorial motions on S2 × S2.

We apply the change (14) to get the normal form of the Hamiltonian around the equilibrium, then
we compute the 2-jet in terms of x1, x2, y1 and y2. Next, the linear terms vanish provided that
N0 = 2δL4/(δ2 − 3 J2L2 + 2δβL6), compatible with the value obtained in the previous paragraph as
N0 = (a3 + b3)/2 ≡ a3. Dropping constant terms one gets

H̄ = c1(δ,β, J2, L)x2
1 + c2(δ,β, J2, L)y2

1 + c3(δ,β, J2, L)y2
2 + · · · ,

for concrete (and big) values c1, c2 and c3. The coordinates xi ’s, yi ’s are defined in (13). Thus, circular
non-equatorial trajectories are equilibrium points when N ≡ N0. The inclination of the circular orbits
with respect to the equatorial plane is given through the identity cos I = N0/L. When c3 �= 0, the
normal form has a non-null nilpotent term, thence, the relative equilibrium would be unstable. Even
when c3 = 0, if c1c2 < 0 the equilibrium would be unstable. So, linear stability is possible if and only
if c3 = 0 and c1c2 > 0. A refined analysis of the stability and bifurcations of circular solutions needs
to be made in the twice-reduced space, and we have performed it in [24].

Besides, the determinant of the Jacobian matrix associated with the quadratic part of H̄ is identi-
cally zero, hence the equilibrium is not isolated.

We have also calculated the second-order averaged Hamiltonian through Lie transformations, that
is, the terms of order two of (22), with the aim of clarifying if the equilibria of circular non-equatorial
type are isolated. The computations become huge but we could conclude that there are not isolated
equilibria of this type.

We cannot obtain more information from the normal form of above. However, it is not a surprise
if we compare this result with the one given in [24]. Indeed, studying the set of circular motions in
the twice-reduced space, we deduce that the circular non-equatorial trajectories are represented by
an isolated equilibrium point of this space. Thus, the continuum of equilibria given in (29) get trans-
formed into an isolated equilibrium point of the twice-reduced space. We should take into account
that, in order that the linear part of the 2-jet got vanished, we needed to specify a value for N0 but
ν0 can get any value, which reflects the fact that there is an infinite number of equilibria.
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5.3. Non-circular equatorial solutions

We seek now equilibria of the form (a1,a2,a3,−a1,−a2,a3) with a2
1 + a2

2 + a2
3 = L2. Proceeding as

in the previous subsection we arrive at a continuum of equilibria, also a circle

a2
1 + a2

2 = L2 − a3(δ, J2, L)2

where a3 is a specific value of the parameters δ, J2 and L. In particular

a3 = C2/3 − C1/3(δ2 + 2 J2L2) + (δ2 + 2 J2L2)2

8δL2C1/3
, (30)

with

C = −δ6 − 8 J 3
2 L6 − 6δ4L2( J2 − 80L4) − 12δ2 J 2

2 L4

+ 8
√

15δ2L3
√

−δ6 − 12δ2 J 2
2 L4 − 8 J 3

2 L6 − 6δ4L2
(

J2 − 40L4
)
,

with some conditions among the parameters so that |a3| < L is ensured.
Applying the changes (17) and (18) to Hamiltonian (22) and calculating the 2-jets, we get that the

linear terms vanish if and only if

3δ2G2
0 − 15δ2L2 ± 8δL2G3

0 + 6 J2L2G2
0 = 0. (31)

The positive sign corresponds with prograde trajectories whereas the negative one is related with ret-
rograde motions. The positive roots G0 correspond with the possible values related with non-circular

equatorial prograde and retrograde motions. These motions have eccentricity
√

1 − G2
0/L2.

After a careful look at the polynomial (31) and taking into account the restrictions on the pa-
rameters, it is easy to conclude that there are two possibilities: (i) if N = G > 0 and δ < 0; (ii) if
N = −G < 0 and δ > 0. Then, there are valid roots G0 such that the motions do not collide with
the planet. The eccentricities of these orbits are moderate to high. Notice that for equatorial orbits,
N = (a3 + b3)/2 ≡ a3, the concrete value of a3 in (30) is exactly the absolute value of the valid root
G0 for the polynomials (31).

Once the constant terms are removed, the 2-jets acquire the form

c±
1 (δ,β, J2, L)y2

1 + c±
2 (δ,β, J2, L,k0)x2

2

+ c±
3 (δ,β, J2, L,k0)y2

2 + c±
4 (δ,β, J2, L,k0)x2 y2,

where the coordinates xi ’s, yi ’s are defined in (15) for the prograde motions and in (16) for the
retrograde ones. We do not print down the explicit expressions of c±

i ’s as they are too big to be re-
produced here (but c+

4 ≡ c−
4 ). The value of k0 is arbitrary. When c±

1 �= 0, the normal form is nilpotent,
thus, the non-circular equatorial orbits become unstable. However, if c±

1 = 0, the stability depends on
the relative values of c±

2 , c±
3 and c±

4 . The specific analysis on the stability and bifurcations of non-
circular equatorial solutions is performed in the twice-reduced space, and it appears in the companion
paper [24].

The determinant of the Jacobian matrix associated with the quadratic part of H̄ has been cal-
culated and it yields identically zero, this is compatible with the fact that there is a continuum of
non-circular equatorial equilibria.

The second-order averaged Hamiltonian does not yield isolated equilibria of non-circular equa-
torial type. As in the previous subsection, we cannot obtain more information from the normal
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form of above. Anyway, analysing the set of non-circular equatorial motions in the twice-reduced
space [24], we deduce that these trajectories appear as an isolated equilibrium point on this space.
So, the continuum of equilibria in (30) get transformed into an isolated equilibrium point of the twice-
reduced space. We remark that in the normal form given above, G0 had a concrete value whereas k0
can have any value, which is compatible with the feature of an infinite number of equilibria.

5.4. Non-circular non-equatorial solutions

Because of the cumbersome form of the Hamiltonian vector field in terms of ai ’s and bi ’s, it is not
possible to discuss the possible existence of non-circular non-equatorial relative equilibria on S2 × S2.
Thus we resort to the analysis in Delaunay coordinates as they can be used without trouble. After
making the change (20) to (22), we compute the Taylor-expansion of it around x1 = x2 = y1 = y2 = 0
up to degree two.

Examining the four coefficients of the linear part of the 2-jet we get that only one of them is
identically zero. In particular, the coefficient factorised by x1 yields

δ(G2
0 − N2

0)(G0 − L)(8βL3G5
0 + δ(L + G0)

2) sin(2g0)

8L5G7
0(L + G0)

.

Noticing that |N0| < G0 < L the only possibilities for this term to vanish are: (i) 8βL3G5
0 +

δ(L + G0)
2 = 0; (ii) sin(2g0) = 0. When δ > 0, the polynomial of (i) is strictly positive, thus it has

no positive root G0. If δ < 0, it is possible to get a root G0 > 0 but this happens when the parameters
are physically meaningless. Thus, we discard option (i) and focus on the case (ii), and there are two
subcases: (a) sin(2g0) = 0 and cos(2g0) = −1 or (b) sin(2g0) = 0 and cos(2g0) = 1. If we relate N0
with G0, in order to make the linear part of the 2-jet zero, we get for the case (a)

N0 = 8δL2G4
0(L + G0)

16δβL4G5
0 − 12 J2L2G2

0(L + G0) + δ2(L + G0)(7L2 − 3G2
0)

,

whereas for (b) we get

N0 = 8δL2G4
0(L + G0)

16δβL4G5
0 − 12 J2L2G2

0(L + G0) + δ2(L + G0)(5L2 − G2
0)

.

Some restrictions have to be imposed to the parameters, for (a) and (b), so that |N0| < G0 < L is
ensured, thus avoiding to mix these equilibria with circular or equatorial motions.

Besides, G0 has to take a concrete value in terms of the parameters. Indeed this value is given
for (a) and (b) through a root of a polynomial of degree 18, respectively a polynomial of degree 16,
that we do not print down explicitly. These polynomials have been obtained as the resultants of other
polynomials. Then, for (a), G0 has meaningful values provided that δ > 0 while in case (b) there are
realistic solutions for any δ ∈ [−10−2,10−2].

Thus, g0, N0 and G0 take always specific values, however ν0 may get any value and the linear part
of the 2-jet vanishes. It means that there is a continuum of equilibria of non-circular non-equatorial
type.

After dropping the constant terms, the 2-jet takes the form

H̄ = c1(δ,β, J2, L)x2
1 + c2(δ,β, J2, L)y2

1 + c3(δ,β, J2, L)y2
2 + c4(δ,β, J2, L)y1 y2 + · · ·

where ν0 is not present in the expressions (as it should be since it is an ignorable angle and N is
an exact constant of motion of the problem) and the coordinates xi ’s, yi ’s are those given in (19).
We can arrange H̄ by means of a linear symplectic change to obtain a simpler normal form. This
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change can be executed generically, excepting for some combinations of the coefficients ci ’s. Calling
the new coordinates (u1, u2, v1, v2), we get

H̄ = d1(δ,β, J2, L)u2
1 + d2(δ,β, J2, L)v2

1 + d3(δ,β, J2, L)v2
2 + · · · ,

where the coefficients di ’s depend on the coefficients ci ’s. Clearly, H̄ manifests to be nilpotent, there-
fore unstable for generic values of the parameters.

The determinant of the Jacobian matrix associated with H̄ vanishes for all di ’s, thus the non-
circular non-equatorial equilibria cannot be isolated.

The second-order averaged Hamiltonian has been obtained, but it does not yield isolated equi-
libria for this situation. As previously, we cannot obtain more information from the normal form of
above. The study of non-circular non-equatorial motions has to be completed in the twice-reduced
space [24], where we have checked that the non-circular non-equatorial motions are represented as
an isolated equilibrium point. This is equivalent to saying that the non-circular non-equatorial equi-
libria analysed on the space S2 × S2 are independent of particular values ν0.

5.5. Dynamics on S2 × S2 coming from the twice-reduced space

The full analysis of the flow related to the twice-reduced space is treated in [24] where a discus-
sion on the relative equilibria, stability, bifurcation lines and the connection with the original system
is done with great detail.

We know that the sets of non-isolated relative equilibria analysed in Sections 5.2, 5.3 and 5.4 yield
isolated equilibria on the twice-reduced space. However, there are other isolated relative equilibria
on the twice-reduced space that do not manifest as continuum of equilibria on S2 × S2. Indeed, they
correspond with families of periodic solutions on S2 × S2 which have not been treated along this
paper. The existence and stability of these periodic solutions on S2 × S2 reproduces mutatis mutandis
that of the relative equilibria in the twice-reduced space. The reason is that the reduction responsible
of passing to the twice-reduced space is exact as the third component of the angular momentum is
a first integral of the problem, in other words, the argument of the node, when it is defined, is an
ignorable coordinate of the vector field.

Thus, the rich dynamics occurring in the twice-reduced space is inherited for S2 × S2 as follows:
the relative equilibria of the twice-reduced space—where we have discarded the circular equatorial
motions—are families of periodic solutions on S2 × S2 depending on the parameter N . The stability,
linear, non-linear and parametric, of these relative equilibria is inherited by the families of periodic
solutions on S2 × S2. In the twice-reduced space linear and parametric stability coincide because it
is a system of one degree of freedom. The bifurcation lines of relative equilibria are exactly the same
bifurcation lines of families of periodic solutions on S2 × S2.

6. Reconstruction of the flow

The implications for the Hamiltonian vector field related with (21) can be drawn provided that
the relative equilibria are isolated, so first of all we restrict ourselves to extract conclusions of the
dynamics of (21) related with the circular equatorial solutions. The implications are indeed of three
types: (i) families of periodic solutions connected with the relative equilibria of S2 × S2; (ii) KAM tori
around some of these equilibria; (iii) other dynamical consequences extracted from the flow on the
twice-reduced space.

We outline the three outstanding features of the dynamics of the generalised Størmer problem.

6.1. Families of near circular equatorial periodic solutions

Related to each isolated relative equilibrium point of Section 5.1, there is a family of periodic
solutions in R6 (or, more precisely, in the five-dimensional energy manifold once we fix the energy E)
parameterised by L [35,28,1,36]. Besides, the linear stability of a periodic solution is guaranteed if the
corresponding equilibrium is parametrically stable [36].
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Thus, discarding the cases where β ≡ βc and the cases where J2 ≡ J2c there are families of peri-
odic solutions of (near) circular equatorial type in the original Hamiltonian. These periodic solutions
have periods T = 2π L3 + O(2), and if c±

1 and c±
2 are the eigenvalues appearing in (24), the character-

istic multipliers of the periodic solutions become

{
1,1,1 + c±

1 T ı + O(2),1 + c±
2 T ı + O(2),1 − c±

1 T ı + O(2),1 − c±
2 T ı + O(2)

}
.

Notice that the small parameters are included in the coefficients c±
i ’s. These periodic solutions are

elliptic—i.e., linearly-stable periodic orbits—provided that the relative equilibria are parametrically sta-
ble, see [36]. This is indeed the generic situation when the equilibria are isolated and they are not in
resonance 1:−1.

So, we have concluded the following:

The Hamiltonian vector field of the generalised Størmer problem (21) has near prograde and retrograde
circular equatorial periodic solutions provided that β �= βc (with βc given in (25) or in (28)) and that J2 �= J2c
(with J2c given in (26) or in (27)). For meaningful values of the parameters, the prograde periodic solutions are
elliptic whereas the retrograde periodic solutions are elliptic when the normal form is not in resonance 1:−1,
i.e., if β �= (5δ + 2L3)/(2L6).

6.2. Families of KAM 3-tori related to the circular equatorial motions

We prove now the existence of invariant tori of KAM type related to the isolated equilibria of
Section 5.1. We apply standard KAM theory [3] combined with reduction theory to get families of
KAM tori around a relative equilibria in a reduced space. Concretely, we apply Theorem 2.5 of [36].

We need to take the 4-jet of the Hamiltonian (24), and apply to it the transformation to action-
angle coordinates, introducing also a small “artificial” parameter ε through

x1 = √
ε
√

2I1 sinϕ1, x2 = √
ε
√

2I2 sinϕ2,

y1 = √
ε
√

2I1 cosϕ1, y2 = √
ε
√

2I2 cosϕ2,

such that ε is supposed to be of the size of the small parameter of the problem. The reason to
introduce ε in the scaling is that we need to perform an averaging process with respect to the angular
coordinates ϕ1 and ϕ2 but without altering the size of the higher-order terms, that is, the size of the
terms in O(2), thus we scale by

√
ε instead of scaling by ε. The above transformation is symplectic

with multiplier ε, thus we need to divide the Hamiltonian by ε, including the Kepler term −1/(2L2)

and the terms inside O(2).
Thus, the quadratic terms of H̄ get transformed into

H̄(2) = 6δ2 − 3 J2L2 ∓ 4δL3

4L9
I1 + −δ2 + 3 J2L2 + 2δL3(±1 − βL3)

4L9
I2. (32)

The cubic terms of the 4-jet are identically zero and we do not print down the explicit expressions
of the quartic terms as functions of the action-angle coordinates, as they are too long. Next, in order
to put the quartic terms in normal form we need to average them with respect to ϕ1 and ϕ2, arriving
at

H̄(4) = ε

2L10

((
39δ2 − 12 J2L2 ∓ 12δL3)I2

1

+ (−14δ2 + 24 J2L2 ± 12δL3 − 4δβL6)I1 I2

+ (
δ2 − 3 J2L2 + 2δβL6)I2

2

)
. (33)
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The generating function responsible to bring the quartic terms to normal form is

W(4) = ε(δ + 2βL6)

4(∓L4 + βL7) − 10δL
I1 I2 sin

(
2(ϕ1 + ϕ2)

)
,

or

W(4) = εδ(δ + 2βL6)

2(−7δ2L + 6 J2L3 + 2δL4(±3 − βL3))
I1 I2 sin

(
2(ϕ1 − ϕ2)

)
.

There are two different ways to express W (4) , that depend on the quadrants where the angles g
and ν are located when they are defined, accordingly with the expressions given in (11) and (12).
Thus, out of the eight possible expressions, the quartic terms previous to the normal form trans-
formation get reduced to two different ones whereas the expressions of the quadratic terms get
reduced to one. Notice, however, that there is only one expression of the quartic terms in normal
form.

The generating function W(4) is well defined and is periodic in ϕ1 and ϕ2 excepting when the
denominators of the above expressions become zero and this happens for β = (5δ ∓ 2L3)/(2L6) and
β = (−7δ2 + 6 J2L2 ± 6δL3)/(2δL6), which correspond respectively to the resonances 1:−1 and 1:1
(the upper signs are related to prograde orbits whereas the lower signs to retrograde orbits). At this
point we have to recall that for prograde motions the resonance 1:1 is allowed while the resonance
1:−1 is not, while for retrograde motions the resonance 1:−1 is always allowed but the resonance 1:1
may occur only when δ > 0. When we face with a resonant situation and with physically meaningful
parameters, it is not possible to average the two angles ϕ1 and ϕ2 and the normal form would be
different, but then we cannot apply KAM theory.

After recovering the Keplerian part, undoing the scaling by I1 → ε−1 I1, I2 → ε−1 I2, dividing the
whole Hamiltonian by the multiplier ε−1, the resulting Hamiltonian function valid in the neighbour-
hoods of the relative equilibria on S2 × S2 reads as

H = − 1

2L2
+ H̄(2)(I1, I2) + 1

2
H̄(4∗)(I1, I2) + O(2) + · · · ,

where H̄(4∗) = ε−1H̄(4) and H̄(2) and H̄(4) are respectively given in (32) and in (33) explicitly.
We stress that the terms of O(2) are transformed by the change of coordinates related with the
averaging process that can be computed by means of W (4) , however the resulting terms are of the
same relative size as the ones previous to the transformations, so they are kept in O(2).

Now we compute the determinant of the Hessian

⎛
⎝

∂2H̄(4∗)

∂ I2
1

∂2H̄(4∗)

∂ I1∂ I2

∂2H̄(4∗)

∂ I2∂ I1

∂2H̄(4∗)

∂ I2
2

⎞
⎠ ,

arriving at the expression

D = − 1

L20

(
10δ4 − 39δ2 J2L2 ∓ 72δ3L3 + 108 J 2

2 L4 ± 108δ J2L5

+ 36δ2L6 − 50δ3βL6 − 24δβ J2L8 + 4δ2β2L12).
The determinant D does not vanish for N � 0 (i.e., for the sign “+”) for physically meaningful values
of the parameters whereas it can vanish for N < 0 (with the sign “−”) for some specific values. We
conclude that, generically, D �= 0.
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Thus, we have proved that:

Excepting the possible cases of resonance 1:1 and 1:−1, following the discussions of Section 5.1 and the
above paragraphs, the Hamiltonian vector field of the generalised Størmer problem (21) have families of invari-
ant KAM 3-tori around the families of periodic solutions of circular equatorial type established in Section 6.1.
These families of tori exist excepting for a few combinations of the parameters of the problem.

6.3. Other invariant tori and bifurcations of the generalised Størmer problem

The dynamics on S2 × S2 related with the families of periodic solutions in Section 5.5 has to be
interpreted in terms of the original Hamiltonian vector field (21). We arrive at the following descrip-
tion.

Families of periodic solutions of S2 × S2 are reconstructed as families of invariant 2-tori corresponding
with Hamiltonian (21), that depend on the actions L and N. The parametrically stable periodic solutions are
transformed into linearly stable 2-tori in the original system while the unstable periodic orbits of S2 × S2 are
converted into unstable invariant 3-tori of (21). The bifurcation lines of periodic solutions get transformed into
bifurcation lines of invariant 2-tori in the original system, maybe a bit distorted. A complete description on this
appears in [24].
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