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Abstract
We apply Reeb’s theorem to prove the existence of periodic orbits in the rotating Hénon–
Heiles system. To this end, a sort of detuned normal form is calculated that yields a reduced
system with at most four non degenerate equilibrium points. Linear stability and bifurcations
of equilibrium solutions mimic those for periodic solutions of the original system. We also
determine heteroclinic connections that can account for transport phenomena.

Keywords Averaging · Normalization · Reduced space · Hamiltonian oscillators · Periodic
solutions

1 Introduction

Hénon–Heiles system arises as a model to answer the question of the existence of a third
integral of motion in an axisymmetrical potential [13]. It was formulated in the context of
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galactic dynamics, although the potential chosen does not necessarily represent an actual
galactic one. However, it is simple enough to account for many qualitative aspects of similar,
but more complex, dynamical systems. For instance, it serves as a goodmodel to study escape
dynamics [4] which, in turn, provides a mechanism to describe reaction dynamics with some
open channels [15]. Moreover, also in the context of atomic physics, Hénon–Heiles system
can be used as a suitable model for ion traps, where a confinement region is created by means
of external fields [16].

Nevertheless, both in the field of atomic physics and in the field of galactic dynamics,
rotating potentials are of great interest. Indeed, the addition of a magnetic field or a circu-
larly polarized microwave field to a Rydberg atom introduces a Coriolis term, giving rise to
a rotating potential of Hénon–Heiles type [29]. This model describes properly the chaotic
ionization mechanism in chemical reactions. On the other hand, in the context of galactic
dynamics, the classical book by Binney and Tremaine [3] emphasizes the necessity of con-
sidering rotating potentials to better explain the dynamics of the stellar orbits in a galaxy. In
this setting equilibrium points and periodic orbits play an important role, as they organize
the phase flow structure and different qualitative aspects of the dynamical system can be
understood. An interesting example is the possibility of matter transfer through heteroclinic
connections between equilibrium points, a mechanism proposed to explain the formation
of spiral arms [31]. Nevertheless, the general interest lies in the determination of periodic
orbits, mainly used to classify different types of motion that can account, for instance, for
the existence of unusual rotating barred galaxies [27].

In this paper, we consider the system given by

H = 1

2
(X2 + Y 2) − ω(xY − yX) + 1

2
(x2 + y2) + ayx2 + by3, (1)

which can be viewed as a generalizedHénon–Heiles system in a rotating reference framewith
angular velocity ω and it can serve as a model for chemical reactions and galactic dynamics.
The system depends on three parameters, namely a, b and ω. The rotating frequency, ω,
controls in a great deal the structure of the phase space, modifying the stability properties of
equilibrium points when the critical valueω = 1 is crossed [14]. Our main goal is to establish
the existence of periodic orbits and bifurcations in a vicinity of the origin when ω is close to
the critical value.

Averagingmethod [32,35] is suitable for this purpose. Indeed, it has been extensively used
to determine periodic orbits in both non rotating [1,5,6,18–20] and rotating potentials [8,9]
and also to establish periodic orbits for system (1), as it is done in [17]. The method is simple
to apply, although some times tricky, but, if the system is Hamiltonian, alternative techniques
can be used. In this sense, suppose that theHamiltonian is divided into an unperturbed part and
a perturbation, the solutions of the unperturbed system being periodic. Then, the unperturbed
Hamiltonian can be extended as a formal integral, decreasing the number of degrees of
freedom of the system by one unit, using normal form theory combined with symplectic
reduction. The equilibrium points of the reduced system are associated to families of periodic
orbits of the perturbed one, i.e. the full system. This is in essence Reeb’s theorem [30] which,
combined with symplectic reduction, is in many aspects equivalent to the averaging method,
but preferable as all the periodic orbits obtained are different. As well, it works properly in
some degenerate situations.More specifically, symplectic reduction provides the right way of
obtaining the base space (or reduced space) in terms of a fixed value ofH0 (the unperturbed
Hamiltonian), say h. This space can be a symplectic manifold (regular reduction) or an
orbifold (singular reduction) but can be parameterized by global coordinates, the so called
invariants of the reduction process, see for instance [36]. This allows us to analyze the
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dynamics of the reduced system in the reduced space properly. We will use this approach to
prove the existence of periodic orbits for the Hamiltonian system defined by (1).

The paper is organized as follows. In Sect. 2 we introduce some general properties of
the system, focusing on the linear approximation in a vicinity of the origin. In Sect. 3,
Reeb’s theorem is presented, the normal form around the origin is computed to first order
and symplectic reduction is executed. Section 4 is devoted to the statement of the main
results about the existence of periodic orbits, in particular Theorems 3, 4, 5 and 6. In Sect. 5,
bifurcations of relative equilibria are related with the bifurcations of the families of periodic
orbits by means of Poincaré surfaces of section. Moreover, by applying some theorems that
reconstruct the flow of the full system associated with the different bifurcations of the relative
equilibria, we establish the occurring bifurcations of the families of periodic solutions. This
is summarized in Theorem 7, our last main result.

We want to emphasize that our normalization and reduction procedures are somehow non
standard due to the fact that we are mainly interested in values of the rotating frequency, ω,
near 1. Thus, to succeed in our approach we do not consider the 1:1 resonance combined with
the Coriolis term existing in the unperturbed part of the Hamiltonian function, and perform a
different approach to compute the average and reduce the truncated averaged system, as we
will see in Sect. 3.

2 The System

We start by setting some properties of the Hamiltonian system corresponding to (1). The
equations of motion are given by

ẋ = ∂H
∂X

= X + ωy, Ẋ = −∂H
∂x

= −x + ωY − 2axy,

ẏ = ∂H
∂Y

= Y − ωx, Ẏ = −∂H
∂ y

= −y − ωX − ax2 − 3by2. (2)

It is worth noting that the system enjoys some symmetries. Indeed,H remains invariant under
the transformations

H(x, y, X , Y ;ω, a, b) = H(x, y,−X ,−Y ;−ω, a, b),

H(x, y, X , Y ;ω, a, b) = H(−x, y, X ,−Y ;ω, a, b),

H(x, y, X , Y ;ω, a, b) = H(x,−y,−X , Y ;ω,−a,−b). (3)

The first symmetry allows us to restrict the study to the case ω > 0. Indeed, let

Φ(t) = (x(t), y(t), X(t), Y (t))

be a solution of the differential system (2) for ω > 0, then

(x(−t), y(−t),−X(−t),−Y (−t))

is a solution for ω < 0. The second symmetry tells us that, if Φ(t) is a solution of the
Hamiltonian differential system (2), then

(−x(−t), y(−t), X(−t),−Y (−t))

is also a solution of the same system. That is, the phase flow is time reversal symmetric
with respect to the y axis. As a consequence, equilibrium points are located symmetrically
with respect to the y axis in the configuration space. Moreover, periodic orbits are either
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symmetric with respect to the y axis or they appear in pairs, which are symmetric respect to
the y axis. Finally, the third symmetry indicates that it is enough to consider either the case
a ≥ 0 or the case b ≥ 0. In fact, if Φ(t) is a solution of (2) for a pair of values (a, b), then

(x(−t),−y(−t),−X(−t), Y (−t))

is a solution when the pair is replaced by (−a,−b).
Another interesting quasi-symmetry of the system emerges when studying equilibrium

points. Suppose that

E0 ≡ (x0, y0, X0, Y0)

is an equilibrium point for ω = ω0, then

Ê0 ≡ ( − x0/ω
2
0,−y0/ω

2
0,−X0/ω

4
0,−Y0/ω

4
0

)

is also an equilibrium point for ω = 1/ω0. In some sense, there is a correspondence between
the situations 0 < ω < 1 andω > 1.However, there is a slight difference. Indeed, equilibrium
points are related to the critical points of the effective potential

Φeff = H − 1

2
(ẋ2 + ẏ2) = 1

2
(1 − ω2)(x2 + y2) + y(ax2 + by2), (4)

in such a way that if E0 is an equilibrium point of the system (2), then (x0, y0) is a critical
point of the effective potentialΦeff . It can be seen that, if E0 is a minimum (maximum) of the
effective potential, then Ê0 is a maximum (minimum) ofΦeff . In the case E0 is a saddle point,
the same happens for Ê0. As a consequence, linear stability properties cannot be extended
directly from the case 0 < ω < 1 to the case ω > 1, if the corresponding critical point is a
minimum (maximum). While a minimum of Φeff is always a linear stable equilibrium, the
same cannot be said for amaximum. A detailed study of equilibrium points of this system and
their stability properties is given in [14], where it is established that the maximum number
of equilibrium points is 4, the origin being one of them for every value of the parameters.

If we pay attention to the eigenvalues of the linear system at the origin, we find that they
are

λ1,2 = ±i(ω − 1), λ3,4 = ±i(ω + 1), (5)

and it is always a center, provided ω �= 1. However, just at ω = 1, there is a pair of zero
eigenvalues and the elliptic character is lost, which indicates the appearance of a bifurcation.
In fact, all the existing equilibrium points coalesce.Moreover, in the passage from 0 < ω < 1
to ω > 1, the origin changes from a minimum to a maximum of the effective potential.

Another interesting feature is that, in a vicinity to the origin, the system can be viewed
as two perturbed harmonic oscillators with frequencies |ω − 1| and ω + 1. Thus, if ω ≈ 1,
one of them oscillates fast in comparison to the other and the theory of averaging is suitable
to study the existence of periodic solutions. This will be our goal, to prove the existence of
periodic orbits and their bifurcations in a vicinity of the origin when ω ≈ 1, that is, close to
the transition case.

3 Averaging and Normal Form

The averaging theory is a classical topic in the field of differential equations (see for instance
[32,35]) and has been used satisfactorily for the determination of periodic orbits in a great
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variety of dynamical systems. However, for Hamiltonian systems, Reeb’s theorem provides
an alternative framework to prove the existence of periodic solutions [23,36].

Let (M,Ω) be a symplectic manifold of dimension 2n and consider a Hamiltonian system
of the form

H = H0 + εH1,

where H0,H1 : M → R are smooth functions and ε a real small parameter. Let us assume
that, for ε = 0, there is an interval I ⊂ R such that, for each h ∈ I, the solutions of
the Hamiltonian system are periodic with period T (h). Indeed, it is supposed that, for the
Hamiltonian vector field Y0 = (dH0)

# with symplectic flow φt
0, the set N0(h) = H−1

0 (h) is
a connected circle bundle over a base space (i.e., the reduced space) B(h), for each h ∈ I.
Moreover, we consider the projection π : N0(h) → B(h). Thus, the following result can be
proved in this context:

Theorem 1 The base space B(h) inherits, from (M,Ω), a symplectic structure 
 ; i.e.,
(B(h),
) is a symplectic manifold.

Now, consider the Hamiltonian vector field Yε = Y0 + εY1 = dH#
ε with symplectic flow

φt
ε and the set Nε(h) = H−1

ε (h). Let the average of H1 be

H̄ = 1

T

∫ T

0
H1(φ

t
0) dt,

which is a smooth function on B(h), and let φ̄t be the flow on B(h) defined by Ȳ = dH̄#. A
critical point of H̄ is nondegenerate if the Hessian at the critical point is nonsingular. Reeb’s
theorem can be formulated as:

Theorem 2 If H̄ has a nondegenerate critical point at π(p) = p̄ ∈ B with p ∈ N0, then
there are smooth functions p(ε) and T (ε) for ε small with p(0) = p, T (0) = T , p(ε) ∈ Nε,
and the solution of Yε through p(ε) is T (ε)-periodic.

To apply Theorem 2, the first step is to convert the Hamiltonian function into an equivalent
one made of two coupled harmonic oscillators with frequencies |1−ω| and 1+ω. To achieve
it, we transform the system by means of the canonical change of variables

x = − x1√
2

+ x2√
2
, X = − X1√

2
+ X2√

2
,

y = X1√
2

+ X2√
2
, Y = − x1√

2
− x2√

2
. (6)

The transformed Hamiltonian is given by

H = 1

2
(1 − ω)(x21 + X2

1) + 1

2
(1 + ω)(x22 + X2

2)

+ X1 + X2

2
√
2

(
a(x1 − x2)

2 + b(X1 + X2)
2) .

(7)

Taking into account that ω ≈ 1, the quadratic part of the Hamiltonian corresponds to two
harmonic oscillators with widely separated frequencies. This situation has been considered
by Tuwankotta and Verhulst [34], who applied averaging techniques to compute the normal
form. The key idea consists in considering the term with almost zero frequency as part of the
perturbation. In fact, the quadratic part of Hamiltonian (7) is nomore than a detuned harmonic
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oscillator in 1:0 resonance. It can be decomposed into two parts. One corresponding to the
pure resonance, which accounts for fast oscillations, and the other one corresponding to the
detuned part, associated to the slow oscillations. The detuned part is incorporated to the
perturbation and the pure resonant term is extended as a first integral, up to a certain order, by
means of normal form theory. Detuning is a useful technique to study the properties of near
resonant systems and has been applied to different models in galactic dynamics [10,11,28]
and also in atomic physics [16].

To properly apply the averaging or normalization procedure, and taking into account that
ω ≈ 1, we introduce the scaling

1 − ω = εν, x j = εx j , X j = εX j , j = 1, 2,

where ν is a new parameter and ε is introduced to highlight that 1 − ω and the variables x j ,
X j are of the same order of smallness. If H is also scaled by a factor ε−2, we arrive at

H = 1

2
(1 + ω)(x22 + X2

2)

+ ε

[
1

2
ν(x21 + X2

1) + X1 + X2

2
√
2

(
a(x1 − x2)

2 + b(X1 + X2)
2)

]
.

(8)

Hamiltonian (8) is in the form of Reeb’s theorem with

H0 = 1

2
(1 + ω)(x22 + X2

2),

H1 = 1

2
ν(x21 + X2

1) + X1 + X2

2
√
2

(
a(x1 − x2)

2 + b(X1 + X2)
2) . (9)

Fixed h = H0 ≥ 0, the setN0(h) = H−1
0 (h) is diffeomorphic to S1 ×R

2, a connected circle
bundle, the base space B(h) being R

2, see [26]. Setting ε = 0, and taking h > 0, all the
solutions are periodic with period 2π/(1 + ω) and are given by

(

x01 ,

√
2h

1 + ω
sin(1 + ω)t, X0

1,

√
2h

1 + ω
cos(1 + ω)t

)

. (10)

The next step in applying Reeb’s theorem involves the average of H1. We can proceed in
different manners to obtain H̄1. The most direct approach is to introduce polar coordinates
for the unperturbed part H0,

x2 = √
2r2 sin θ2, X2 = √

2r2 cos θ2,

and average H1 over the angle θ2, that is

H̄1 = 1

2π

∫ 2π

0
H1 dθ2 = 1

2
ν(x21 + X2

1) + X1

2
√
2

(
a(x21 + c) + b(X2

1 + 3c)
)
, (11)

where c = r2 = h/(1 + ω) is taken to be constant and it is related to the amplitude of the
periodic solutions for ε = 0.

Another way to obtain the average is by means of the reduction theory for polynomial
Hamiltonians [25,26]. Indeed, it is required that H0 is a formal integral up to first order. If
H1 is decomposed into the sum

H1 = K1 + H̃1,
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the normal form, up to order one (truncating higher-order terms), is given by K1, provided
that the Poisson bracket {K1,H0} is equal to 0. By introducing complex canonical variables

xk = 1√
2
(uk + ivk), Xk = i√

2
(uk − ivk), k = 1, 2,

K1 is given by those monomials, uα1
1 uα2

2 v
β1
1 v

β2
2 , such that α2 = β2. It is easy to check that

K1 = H̄1. However, this approach has the flavor of a versal normal form [2], that is a normal
form around an equilibrium point when the canonical form of the linearized part depends on
parameters (in our case, this parameter is the frequency ω). We stress that the normal form
is also valid for the critical case ω = 1, which is the essence of versal normal forms. Due
to this fact, they have been used to study some interesting dynamical systems. For instance,
the dynamics around the Lagrangian point L4 in the circular restricted three body problem
near the critical mass ratio [7,33]. In addition, if pushing the average procedure to higher
orders is required, normal forms can be computed in an algorithmic manner by means of Lie
transforms.

In summary, after the averaging procedure or after computing the normal form, up to first
order, we are left with a reduced Hamiltonian system of one degree of freedom defined in
the reduced space B(h) = R

2 given by the Hamiltonian function

K = K1 = H̄1 = 1

2
ν(x21 + X2

1) + X1

2
√
2

(
a(x21 + c) + b(X2

1 + 3c)
)
, (12)

depending on the four parameters ν, a, b and c.

4 Relative Equilibria and Periodic Orbits

It is worth noting that Hamiltonian (12) is no more than a scaled version of the effective
potential (4) when c = 0. For c small enough, we will obtain the same number of equilib-
rium points and the same bifurcation pattern than the observed for the original system. We
distinguish two cases. On the one hand, if a = 0 the reduced Hamiltonian K depends on ν,
b and c and it is converted into

K = 1

2
ν(x21 + X2

1) + bX1

2
√
2
(X2

1 + 3c). (13)

We can establish the following result.

Theorem 3 Let us consider the Hamiltonian system defined by (8) when a = 0, ω ≈ 1 and
let K be its average. Then, if b �= 0 and h is small enough (i.e. c small enough), there exist
two families of periodic orbits, parameterized by h, provided

2ν2 − 9b2c > 0.

In the case the inequality reverses, there are not periodic orbits.

Proof The equations of motion for the averaged system are

ẋ1 = νX1 + 3b

2
√
2
(X2

1 + c),

Ẋ1 = −νx1. (14)
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By setting the equations to zero, the equilibrium points result to be

E1,2 ≡
(

0,
−2ν ±

√
2ν2 − 9b2c

3b

)

. (15)

Thus, if 2ν2 −9b2c > 0, two non degenerate equilibria exist and, applying Theorem 2, there
exist two periodic orbits. 
�

On the other hand, when a �= 0, a proper scaling allows us to reduce the number of
parameters. Indeed, if K is multiplied by a2, we get

a2K = 1

2
ν

(
(ax1)

2 + (aX1)
2) + (aX1)

2
√
2

(
(ax1)

2 + a2c + b

a

(
(aX1)

2 + 3a2c
)
)

.

Thus, renaming the variables and the parameters according to

x1 → ax1, X1 → aX1, c → a2c, b → b/a, K → a2K,

we obtain

K = 1

2
ν(x21 + X2

1) + X1

2
√
2

(
x21 + c + b(X2

1 + 3c)
)
, (16)

depending again on ν, b and c. If this scaling was made from the very beginning, the reduced
Hamiltonian (16) would come from the averaging of Hamiltonian

H = 1

2
(X2 + Y 2) − ω(xY − yX) + 1

2
(x2 + y2) + yx2 + by3, (17)

which is Hamiltonian (1) when a = 1.
Onwhat follows, wewill restrict ourselves to the case a �= 0with averagedHamiltonianK

given by (16), coming from the starting Hamiltonian (17) with a = 1. The following results
can be stated.

Theorem 4 Let us consider the Hamiltonian system defined by (17) when ω ≈ 1 and let K,
given by (16), its average. Then, if b �= 0 and h is small enough (i.e. c small enough):

1. There are four families of periodic orbits, parameterized by h, if

(4 − 6b)ν2 − (1 + 3b)c > 0 and 4ν2 − 6(1 + 3b)bc > 0.

2. There are two families of periodic orbits, parameterized by h, if

((4 − 6b)ν2 − (1 + 3b)c)(4ν2 − 6(1 + 3b)bc) < 0.

3. There are no periodic orbits if

(4 − 6b)ν2 − (1 + 3b)c < 0 and 4ν2 − 6(1 + 3b)bc < 0.

Proof The equations of motion for the averaged system are

ẋ1 = νX1 + b√
2
X2
1 + c + x21 + (3c + X2

1)b

2
√
2

,

Ẋ1 = −
(
X1√
2

+ ν

)
x1. (18)
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By setting the equations to zero, the equilibrium points result to be

E1,2 ≡
(
±

√
(4 − 6b)ν2 − (1 + 3b)c,−√

2ν
)
,

E3,4 ≡
(

0,
−2ν ±

√
4ν2 − 6(1 + 3b)bc

3
√
2b

)

. (19)

The statement of the theorem follows in a straight manner from Theorem 2 (Reeb’s theorem),
provided that, under the conditions of the items, the equilibria, when they exist, are non
degenerate. We name the families of periodic orbits γi , i = 1, . . . , 4, where the subindex
indicates the corresponding orbit is associated to the equilibrium point Ei , with the same
subindex. 
�
It is worth noting that Eq. (18) are the same as the ones obtained by means of the classical
averaging method as it was done in [17], but there the process to get them is more intricate.

The case b = 0 deserves a special treatment because, for this concrete value, one of the
points E3,4 goes to infinity, while the other remains, and themaximumnumber of equilibrium
points is, therefore, three. More precisely, if ν > 0, E4 (minus sign) goes to infinity, whereas,
if ν < 0, it is E3 (plus sign) which goes to infinity. Just in the case b = 0 we find the three
equilibrium points

E1,2 ≡
(
±

√
4ν2 − c,−√

2ν
)

, E3 ≡
(
0,

−c

2
√
2ν

)
, (20)

where we have named as E3 the third equilibrium, regardless of whether it comes from E3

or E4. Thus, by virtue of Theorem 2, we arrive at the following result.

Theorem 5 Let us consider the Hamiltonian system defined by (17) when ω ≈ 1 and let K,
given by (16), its average. Then, for b = 0 and h small enough (i.e. c small enough), there
are three families of periodic orbits, parameterized by h, if 4ν2 − c > 0. In the case the
inequality reverses, there only exist a family of periodic orbits.

The existence of periodic solutions is not the only consequence of the application ofReeb’s
theorem. Indeed, the orbital stability of the periodic orbits is inherited from the parametric
stability of the equilibrium points [23], which, for one degree of freedom systems, follows
from the eigenvalues of the corresponding Jacobianmatrix. Hence, our next task is to perform
the stability analysis, which is summarized in the next theorem.

Theorem 6 For b �= 0, the families of periodic orbits γ1,2 are unstable, when they exist. On
the other hand we get:

1. If ν > 0, 4ν2−6(1+3b)bc > 0 and (4−6b)ν2−(1+3b)c > 0, the family γ3 is orbitally
stable, whereas the family γ4 is unstable for b < 0 and orbitally stable for b > 0.

2. If ν > 0, 4ν2 − 6(1+ 3b)bc > 0 and (4− 6b)ν2 − (1+ 3b)c < 0, the two families γ3,4
are unstable for b < 0. If 0 < b < 1/3, then the family γ3 is orbitally stable whereas
the family γ4 is unstable. If b > 1/3 the family E3 is unstable and the family γ4 orbitally
stable.

3. For ν < 0 the stability of the families γ3 and γ4 is as in the previous items, interchanging
the indices.

Proof We only have to accomplish the stability of the equilibrium points associated with the
periodic orbits. Thus, linearizing the equations of motion (18) around an equilibrium point
(x01 , X

0
1), the stability character is deduced from the eigenvalues of the matrix

123



Journal of Dynamics and Differential Equations

A =

⎛

⎜
⎜
⎜
⎝

x01√
2

ν + 3bX0
1√
2

−ν − X0
1√
2

− x01√
2

⎞

⎟
⎟
⎟
⎠

,

(x01 , X
0
1) being the coordinates of the equilibrium point. For E1,2 we obtain the eigenvalues

λ1,2 = ±
√

(4 − 6b)ν2 + (1 + 3b)c√
2

.

Provided these points exist when the expression into the square root is positive, they are
unstable saddles and, consequently, the families γ1,2 are unstable.

To establish the stability of the points E3,4 we note that the matrix A at these points has
the form

A|E3 =
(
0 α

β 0

)
, A|E4 =

(
0 −α

γ 0

)
,

where

α =
√
4ν2 − 6(1 + 3b)bc

2

and β and γ satisfy:

βγ = − (4 − 6b)ν2 − (1 + 3b)c

6b
,

β + γ = 2(1 − 3b)ν

3b
, β − γ = −

√
4ν2 − 6(1 + 3b)bc

3b
. (21)

We note that α is positive and the stability character depends on the signs of β and γ . In
this way, if β < 0 and γ > 0, E3 and E4 are stable centers. On the other hand, if β > 0
and γ < 0 the equilibrium points are unstable saddles. However, the signs of β and γ can
be deduced from (21). Indeed, in the conditions of item (1), if b < 0 we have βγ > 0 and
β + γ < 0. Thus, both β and γ are negative and, consequently, E3, and also the family γ3,
is stable and E4 and the family γ4 unstable. On the contrary, if b > 0, it is deduced from
(21) that βγ < 0, whereas β − γ < 0. Thus, β < 0 and γ > 0 and both E3 and E4 and the
corresponding families γ3,4 are stable.

The other two items are proved in a similar way using the relations (21) and, for the sake
of conciseness, we omit the details. 
�

5 Bifurcations and Poincaré Surfaces of Section

As a consequence of Theorem 6, the parameter plane (b, c) is divided into different regions
where the number of equilibrium points and their stability character changes. In fact, we have
to distinguish the cases ν > 0 and ν < 0 but, by item (3) of Theorem 6, the only difference is
a permutation of the indices 3 and 4. Figure 1 summarizes the results of the previous theorem
for the case ν > 0. It can be seen that there exist seven different regions, where the phase
flow changes. Moreover, a bifurcation takes place when passing from one region to another
limiting one. The seven regions in Fig. 1 are delimited by three curves:
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Fig. 1 The bifurcation parameter plane (b, c) for ν > 0. There are seven different regions with a different
type of flow

Γ1 ≡ (4 − 6b)ν2 + (1 + 3b)c = 0,

Γ2 ≡ 4ν2 − 6(1 + 3b)bc = 0,

Γ3 ≡ b = 0.

The first two curves, Γ1 and Γ2 establish the zones where E1,2 and E3,4 exist, respectively.
If they are crossed, the number of equilibria changes, but also the stability of the remaining
points. The third one, Γ3, is also related to the existence of equilibrium points. In fact, when
this curve is reached, one of the equilibrium points E3 or E4 goes to infinity and the number
of equilibria reduces by one. Moreover, a change in the stability in one of these points takes
place. It is worth noting thatΓ2 is asymptotic toΓ3. In addition, bothΓ1 andΓ2 are asymptotic
to b = −1/3, the classical case of the Hénon–Heiles system, which corresponds to the dotted
line in Fig. 1. This is not a bifurcation line but, for b = −1/3, the three saddles in region 6
have the same energy and are connected by heteroclinic orbits.

In order to compare the phase flow of the reduced system with the phase flow of the
original one, we set ε = 1 in such a way that ν = 1−ω, and the correspondence between the
two systems is clearer, taking into account that c = h/(1+ ω). We note that ε does not need
to be small. The only important thing is to ensure that H1 is small in comparison with H0,
which is true if ω ≈ 1 and ‖(x j , X j )‖ < 1. Now, we fix the values of ω = 0.9 and h = 0.15
which gives c ≈ 0.08. We will follow the evolution of the flow as b goes from region 7
to region 2, crossing regions 6, 5 and 4. In Fig. 2 it can be observed that, for b = −0.6,
inside the region 7, there are two saddles. As b increases and reaches region 6, a saddle-node
bifurcation occurs and a new saddle and a center appear, as it is seen in Fig. 2 for b = −0.4.
For the special value b = −1/3, still in region 6, the three saddles are connected and, as
soon this value is overpassed, the center and the two symmetric saddles tend to coalesce
(b = −0.2 in Fig. 2) and a subcritical pitchfork bifurcation takes place when b reaches Γ1.
Once in region 5 (b = −0.09 in Fig. 2), we are left with two saddle points, namely E3 and
E4. As b increases, but still being negative, the saddle in the right (X1 > 0) migrates to
infinity and it appears as a center with X1 < 0 when b > 0 (b = 0.045 in Fig. 2). Finally,
when Γ2 is crossed, a new saddle center bifurcation takes place and, in region 2, there are
not critical points (b = 0.08 in Fig. 2).
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Fig. 2 Evolution of the phase flow of the reduced system for c = 0.08, ω = 0.9 and b varying from −0.6 to
0.08
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The same pattern of bifurcations is observed for the periodic orbits in the system defined
by Hamiltonian (17). This is visualized by means of Poincaré surfaces of section. We start
by defining the cross section x = 0 when it is crossed with positive velocity, that is ẋ > 0.
We set h = 0.15 and ω = 0.9 and follow the evolution of the phase flow on the surfaces of
section for the same values of b taken in the reduced system. Now, periodic orbits intersect
the cross section in one point and they resemble critical points. Figure 3 shows the different
Poincaré surfaces of section for the specified values of b and the correspondence with the
phase flow of the reduced system is clear. It is worth noting that the limit of the Poincaré
surface of section undergoes a change as b crosses from negative to positive values. Indeed,
the change starts at

b = b0 = − (1 − ω2)3/2

3
√
6h

,

when the region enclosed by the limit curve of the cross section splits into two different ones.
One of them is a bounded region surrounding the origin, while the other one is an unbounded
region increasingly away from the boundedone asb approaches 0. Forb = 0 only the bounded
region remains and, as soon as b takes positive values, the unbounded region appears in the
other part of the cross section. The two regions merge again for b = −b0. For |b| < |b0|
it is not clear that the two systems look the same, because one of the equilibrium points of
the reduced system blows up and the smallness required in Theorem 4 is not guaranteed.
However, in the bounded region, the two systems behave in a similar way. This can be seen
in Fig. 4, where a comparison between the two systems is made for b = 0, ω = 0.9 and
h = 0.057, which correspond to c = 0.03, that is in the boundary of regions 6 and 3, on the
curve Γ3.

As it has been observed in the previous paragraphs and in Figs. 2 and 3, the behavior
experienced by the equilibria of the reduced system translates to the behavior of the related
periodic solutions corresponding to the full system defined in (2). In other words, the bifur-
cations occurring for the equilibria Ei , i = 1, . . . , 4 at the parametric curves Γ1, Γ2 render
the same for the families of periodic orbits of the full Hamiltonian system. Indeed, the theory
of averaging ensures that if an equilibrium point is a saddle, the family of periodic orbits
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reconstructed from it is hyperbolic, see [32]. AHamiltonian version of this is based on Reeb’s
theorem. In particular, the characteristic multipliers of a periodic solution are obtained from
the eigenvalues of the linearization of the equilibrium, see for instance [36], specifically
Corollary 2.2. Regarding the pattern followed by the bifurcations, it is also the case that a
saddle-center bifurcation concerning equilibrium points is reconstructed as a saddle-center
bifurcation of the resulting periodic orbits. This appears, for instance, in Ref. [12] (Theorem
3.1) and in [24] (concretely, in Theorem 6.2), although the first results on this refer to Meyer
[22]. The same occurs with other bifurcations of periodic solutions reconstructed from bifur-
cations of equilibrium points corresponding to a reduced space, as the pitchfork bifurcation,
see for instance Chapter 3 of [12]. This is realized in the following result.

Theorem 7 (1) For ν �= 0 a periodic Hamiltonian (subcritical) pitchfork bifurcation takes
place for the periodic orbits γ1 and γ2 when Γ1 ≈ 0. (2) For ν �= 0 a periodic Hamiltonian
saddle-node bifurcation takes place for the periodic orbits γ3 and γ4 when Γ2 ≈ 0.

Proof The proof follows straightforwardly applying the results in [12,22,24] which relates,
under customary conditions of non-degeneracy (see for instance [24]), the bifurcations occur-
ring among relative equilibrium points with the bifurcations among the associated families
of periodic orbits of the corresponding full system. 
�

Another interesting consequence of the relation between the relative equilibria and the
families of periodic orbits is the existence of heteroclinic connections, when the equilibrium
points attain the same value of the Hamiltonian function. Thus, one expects to have hetero-
clinic connections for the families γ1,2, when they exist, and also a heteroclinic connection
for the three periodic orbits sharing the same value of the Hamiltonian function for the case
b = −1/3. In this sense, it is possible to find orbits surrounding one periodic orbit, going
next to another one and surround it for a number of times and so forth. Taking as a starting
orbit the naive approximation given by (10), a grid search algorithm [21], combined with
the symmetries (3), is used to get the actual periodic orbits. We do that for two concrete
examples, when h = 0.08, ω = 0.9, a = 1 and b = −0.6 and b = −1/3. In the first case
(b = −0.6) there are two unstable periodic orbits, symmetric respect to the y axis, which
are heteroclinic connected. In the left panel of Fig. 5 the two unstable periodic orbits are
depicted in bold together with an orbit that, after 15 loops around the orbit in the left, moves
to the periodic orbit in the right and surrounds it 45 times before it escapes to infinity, due
to the high instability character of the symmetric periodic orbits. For the case b = −1/3,
we have the classical Hénon–Heiles system, plus the Coriolis term, which is invariant under
the action of the dihedral group D3. Thus, the three unstable periodic orbits are equivalent
excepting a 2π/3 rotation about the origin and there exists a heteroclinic connection between
them. In the right panel of Fig. 5 we depict the three unstable periodic orbits in bold and an
orbit that goes, after 30 revolutions, from the upper periodic orbit to the left down periodic
orbit. After 30 loops around it, the orbit moves to the right down periodic orbit, that also
surrounds 30 times, to return again to the upper one. This cycle is repeated at least 36 times
before the orbit escapes to infinity. This is an interesting phenomenon that can account for
transport mechanisms in specific dynamical systems.

6 Conclusions

We have proved the existence of periodic orbits for a Hénon–Heiles rotating potential by
means of the application of Reeb’s theorem, which yields equivalent results to the classical
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Fig. 5 Orbits close to heteroclinic connections between orbits sharing the same value of the Hamiltonian
function. On the left b = −0.6 and on the right b = −1/3. In both cases ω = 0.9 and h = 0.08

averaging method. However, it is simple to apply and techniques of reduction of polynomial
Hamiltonians can be used to reduce the system to an appropriate base space, where equilib-
rium points are directly related to periodic solutions. Moreover, for this particular system, the
equilibrium solutions and their bifurcations are, in essence, inherited by the reduced system,
when the energy is small enough. This fact serves to know, in advance, that the maximum
number of families of periodic orbits, around the origin, is four. Also the bifurcations we find
are of saddle-center and subcritical pitchfork type, which are reconstructed to bifurcations of
periodic orbits corresponding to the original Hamiltonian system. Finally, heteroclinic con-
nections between relative equilibria translate to heteroclinic connections between periodic
orbits, allowing a transport mechanism along some parts of the phase space.
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