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Small 4He clusters doped with various molecules allow for the study of “quantum solvation” as a
function of cluster size. A peculiarity of quantum solvation is that, as the number of 4He atoms is
increased from N = 1, the solvent appears to decouple from the molecule which, in turn, appears
to undergo free rotation. This is generally taken to signify the onset of “microscopic superfluidity.”
Currently, little is known about the quantum mechanics of the decoupling mechanism, mainly because
the system is a quantum (N + 1)-body problem in three dimensions which makes computations
difficult. Here, a one-dimensional model is studied in which the 4He atoms are confined to revolve
on a ring and encircle a rotating CO molecule. The Lanczos algorithm is used to investigate the
eigenvalue spectrum as the number of 4He atoms is varied. Substantial solvent decoupling is observed
for as few as N = 5 4He atoms. Examination of the Hamiltonian matrix, which has an almost
block diagonal structure, reveals increasingly weak inter-block (solvent-molecule) coupling as the
number of 4He atoms is increased. In the absence of a dopant molecule the system is similar to a
Lieb-Liniger (LL) gas and we find a relatively rapid transition to the LL limit as N is increased. In
essence, the molecule initially—for very small N—provides a central, if relatively weak, attraction
to organize the cluster; as more 4He atoms are added, the repulsive interactions between the identical
bosons start to dominate as the solvation ring (shell) becomes more crowded which causes the
molecule to start to decouple. For low N , the molecule pins the atoms in place relative to itself;
as N increases the atom-atom repulsion starts to dominate the Hamiltonian and the molecule
decouples. We conclude that, while the notion of superfluidity is a useful and correct description
of the decoupling process, a molecular viewpoint provides complementary insights into the quantum
mechanism of the transition from a molecular cluster to a quantum solvated molecule. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4949537]

I. INTRODUCTION

Superfluidity is often thought of as being an essentially
macroscopic phenomenon with 4He1,2 and 3He3 being the
most common, or at least the most conveniently accessible,4,5

examples—although superfluidity has recently been observed
in ultra-cold atomic gases.6 However, early path integral
Monte Carlo (PIMC) calculations predicted that microscopic
droplets of 4He, containing as few as 64 atoms, would
be superfluid at low enough temperature.7 The earliest
experimental evidence that small 4He droplets might be
superfluid came from studies of 4He nanodroplets doped
with glyoxal molecules8 together with later studies which
investigated the spectra of OCS and SF6 dopants9,10—see also
Refs. 11 and 12. Remarkably, these spectra indicated apparent
free rotation of the OCS and SF6 molecules inside the droplet.
Free rotation was suggested by very sharp rotational lines,
reminiscent of a gas phase spectrum, although with altered
rotational constants; that is, the apparent moment of inertia of
the dopant was larger than its gas phase value but smaller than
expected classically. Since then a large number of molecules

a)Permanent address: Department of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, USA.

have been observed to display similar behavior.13–16 The most
logical—and the original—explanation was that molecules
undergo almost-frictionless rotation in a microscopic analog
of the Andronikashvili experiment.10 The behavior of the
moment of inertia was attributed, in a later theoretical study,17

to a portion of the 4He density “adiabatically following”
the rotation of the molecule, an idea that was later tested
experimentally.18

Grebenev et al.10 originally proposed that 60 4He atoms
were necessary for superfluidity but later work found that
microscopic superfluidity can arise in even smaller clusters,
containing only 9 solvent atoms.23 Pure microwave spectra
collected for a variety of similarly small doped bosonic
clusters, composed of 4He atoms or p-H2 molecules, have since
been obtained,26–32 and rather remarkably, indicate that atomic
scale superfluidity may, in fact, occur for as few as 3–5 bosons.
The evidence is as follows: the effective moments of inertia of
a variety of impurity molecules in 4HeN (or p-(H2)N) clusters
appear initially to increase with N , as expected classically.
However, a turning point is reached when the moment of
inertia commences a nonclassical decrease with the molecule
eventually undergoing almost free rotation inside the cluster.
However, the asymptotic (in N) value of the moment of
inertia—the nanodroplet limit—is larger than for the free
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molecule. The precise value of N at which the observed
moment of inertia starts to decrease depends sensitively on
the molecule. The downturn in the moment of inertia can also
be thought of as an upturn in the effective rotational constant
of the molecule (Beff). This behavior is an indication that the
molecule has started to decouple from the bosonic “solvent”
and it is this turnaround which is taken to signal the onset of
microscopic superfluidity.22–25

Recent experiments have directly confirmed superfluidity
in 4He droplets by observing a critical Landau velocity
in droplets containing ∼106 atoms19 and by imaging
quantized vortices in droplets containing ∼108–1011 atoms.20

However, while the term “superfluidity” provides a compelling
description of experimental observations, a molecular picture
provides complementary insights into the transition from
a small molecular complex to a quantum solvated dopant.
The picture is somewhat clouded by the fact that,
in the literature, superfluidity does not always have a
unique definition, especially in microscopic or reduced
dimensionality situations; for example, according to Ref. 21,
superfluidity is best thought of as a “complex cluster of
phenomena.” It is, therefore, important to emphasize that the
term “microscopic (or atomic scale) superfluidity,” as often
used in the context of doped helium droplets in the chemical
physics literature, does not necessarily imply a microscopic
system that displays the complete range of properties generally
associated with HeII.26 Rather, the term most often refers,
specifically, to the nonclassical turnaround of the moment of
inertia as a function of cluster size. It is possible that different
aspects of superfluidity (frictionless flow, quantized vortices,
nonclassical behavior of the moment of inertia, etc.21) will
appear at different sized cluster sizes.

Naturally, these observations and considerations have
precipitated computational studies into the connection
between microscopic and macroscopic superfluidity24,25 for
example, using PIMC calculations. The PIMC method utilizes
an isomorphism between the actual quantum problem and
a classical system of “bead and spring” ring polymers.7

Superfluidity manifests itself when the polymers “cross-link”
and an “area estimator” can be used to compute the fractions
of normal and superfluid components.7 Using this method
recent finite temperature simulations have identified normal
and superfluid components in CO2–4HeN and CO-(p-H2)N
clusters.31,33 The calculations for CO-(p-H2)N clusters yield
two remarkable results:31 (i) a superfluid component is
calculated for N = 1 while (ii) for N > 10 the CO molecule
undergoes completely free rotation with no apparent reduction
in its rotational constant. In contrast, for CO–4HeN clusters
with N ∼ 10 the effective rotational constant is observed
experimentally to lie close to the converged nanodroplet limit
which is somewhat lower than the gas-phase value.30,31,34

Clearly, these simulations add validity to the notion that
superfluidity is in some way behind the observed turnaround
in the effective rotational constant. However, while PIMC
calculations are a computational diagnostic of the presence of
a superfluid component, having to view the results through the
prism of a classical isomorphism provides a less direct route
to understanding the actual quantum mechanism than does
a variational calculation. Similarly, diffusion Monte Carlo

(DMC) calculations can reproduce accurately the observed
turnaround in the effective rotational constant for a variety
of molecules, but yield less insight into the details how
and why this behavior occurs. Unfortunately, the many-body
nature of doped 4He clusters makes them difficult to study
computationally except using quantum Monte Carlo methods.

To avoid some of the aforementioned difficulties, in
previous work, a simplified model of the intensively studied
CO–4HeN-complex was introduced in which the 4He atoms
were confined to a ring—the bosons on a ring (BOAR)
model35—see also Ref. 36. Comparison of accurate DMC
calculations for (i) the full problem,34 (ii) an intermediate
case in which the 4He atoms were confined to a sphere,
and (iii) the BOAR model itself, provided support that the
BOAR approximation captures much of the essential physics,
including the turnaround in the effective moment of inertia.35

By further modeling the system as a stirred 1D Tonks-
Girardeau (TG) gas37 the existence of a threshold to stirring
of the solvent by the dopant molecule was demonstrated,
indicative of superfluidity.35 However, that conclusion relied
on assuming that the molecule had already decoupled
adiabatically from the solvent; that is, the molecule was
perturbing the solvent but not vice versa. The details of how
the molecule decouples were, therefore, not fully elucidated.

Here we study the decoupling mechanism in the BOAR
model in more detail and make an explicit connection with the
Lieb-Liniger (LL) model of a one-dimensional (1D) quantum
gas.38 The TG gas is the hard core limit of the LL model.
The main advantage of the BOAR model is that quantum
variational calculations are possible and we can follow the
quantum behavior directly. This essentially molecular point
of view allows us to compute many-body wave functions and
avoids the need for phenomenological estimates of superfluid
versus normal fluid fractions as is typically done in PIMC
calculations.39–41 We find that, in the BOAR model, the CO
molecule decouples quite early from the 4He atoms with
the system rapidly undergoing a transition to something
resembling a Lieb-Liniger (LL) gas. In some ways this
situation is similar to a pinning quantum phase transition
in which the relative importance of competing terms in the
Hamiltonian changes at a critical value.42,43

The article is organized as follows. Section II introduces
the BOAR model Hamiltonian and explains the various
approximations made, the symmetrization of the basis vectors,
and the variational procedure. Section II also discusses the
structure of the Hamiltonian matrix which is key to understand
the decoupling mechanism with increasing N . In Sec. III
the LL and stirred TG (STG) models are introduced and a
comparison is made with numerical results obtained in the
BOAR model. Conclusions are in Sec. IV where the case of
fermionic 3He clusters is briefly considered.

II. BOSONS-ON-A-RING MODEL

In the BOAR model35 the 4He atoms are confined to
revolve on a ring of radius R0 measured from the center-of-
mass of a linear molecule. The center-of-mass of the molecule
is pinned at the origin and the molecule rotates in the plane of
the ring.
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A. Hamiltonian

The BOAR Hamiltonian is

Ĥ =
ĵ2
z

2I
+

N
µ=1



ℓ̂2
µ

2mR2
0

+ V (φµ − θ)

+

N
µ<κ

U(φµ − φκ), (1)

where I is the moment of inertia of the molecule and ĵz is the
molecular rotational angular momentum (AM) operator (with
quantum number j); the quantity ~2/2mR2

0 cm−1 is used to
define an effective moment of inertia I0 = mR2

0 associated with
the 4He atoms; ℓ̂µ is the orbital AM operator (with quantum
number ℓµ) for the µth 4He atom (mass m), and φµ and θ are
the angles shown in Fig. 1. The atom-molecule intermolecular
potential energy surface (PES) is V (φµ − θ). The PES44 has
the radial Jacobi coordinate held fixed, that is, R = R0. We
chose R0 = 9 a.u. based on DMC calculations for the full
Hamiltonian. The 4He–4He PES is U(φµ − φκ). Two reference
angular frequencies are introduced:ω0 = ~/I0 andω = ~/I. In
terms of these quantities the Hamiltonian becomes

Ĥ = −~ ω ∂2

∂θ2 − ~ ω0

N
µ=1

∂2

∂φ2
µ

+

N
µ=1

V (φµ − θ)

+

N
µ<κ

U(φµ − φκ). (2)

To investigate the effects of the symmetry and strength of
the PES, V (φi − θ) is expanded in Legendre polynomials as
follows:

V (Θµ) =
λ=n
λ=0

Vλ(R0)Pλ(cosΘµ), (3)

where the Jacobi angle Θµ = φµ − θ. The Vλ are referred to as
radial strength functions. Since we are mainly interested
in drawing qualitative conclusions about the decoupling
mechanism we set n = 2 in Eq. (3) (the strength functions
for n > 2 are generally relatively small in magnitude). The V0
strength function provides a constant energy shift and so can
be omitted in the BOAR model; however, we retain it for ease
of comparison with DMC calculations.

FIG. 1. Bosons on a ring model showing the CO molecule, several 4He
atoms, (not to scale) and their respective angles, θ and φµ.

TABLE I. Convergence of the lowest energies in the J = 0 and J = 1 man-
ifolds as a function of jmax and ℓmax for N = 3. The excited states correlate
with the a-type series of energies observed experimentally.30

ℓmax jmax EJ=0 (cm−1) EJ=1 (cm−1)

10 0 −18.5283 −17.9194
10 5 −19.5293 −19.3887
10 10 −19.5293 −19.3887

18 0 −18.5285 −17.9201
18 9 −19.5313 −19.3917
18 18 −19.5313 −19.3917

22 0 −18.5286 −17.9203
22 11 −19.5317 −19.3923
22 22 −19.5317 −19.3923

B. 4He–4He interaction

The most accurate 4He–4He PES is that of Aziz et al.,45

which resembles a Morse potential, and contains an attractive
and a repulsive branch. The main difficulty in using this form
of PES in a variational study relates to the strong interatomic
repulsion when 4He atoms µ and κ approach each other
closely. This complicates the calculation of matrix elements
of the potential energy. Therefore we replace the PES by a
gaussian barrier on the ring of the form

U(φi j) = g

σ
√

2π
e−φ

2
µκ/2σ2

, (4)

where φµκ is the angle between 4He atoms µ and κ. Previous
DMC calculations for this Hamiltonian (and also for its
analog wherein the atoms are confined to a sphere with the
molecule pinned at the center and free to rotate in 3D) have
shown that this PES provides good qualitative agreement with
experimental results.35 The advantage of using this PES is
that (i) the required matrix elements can be easily computed
and (ii) the PES has a δ-function as a limit which facilitates

FIG. 2. Convergence of the lowest energies in the J = 0 and J = 1 manifolds
as a function of jmax with ℓmax= 18 for N = 3. The J = 1 state corresponds
to the experimentally probed a-series of states. The inset shows Beff as a
function of N .
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FIG. 3. Plot of part of the Hamiltonian matrix—shown as log10(|Hpq |)—
with N = 3 and jmax= ℓmax= 18. The large central blocks have fixed values
of j and arise from the diagonal parts of the Hamiltonian and the 4He–4He
interaction. The elements outside of the blocks arise from the molecule-4He
atom interactions.

comparison with the LL and TG models. Throughout we set
σ = 0.1 rad−1 and g

σ
√

2π
= 75 cm−1. These values were chosen

to make a rough match with the onset of the repulsive wall of
the accurate potential. Varying these values affects the details

FIG. 4. Percentage relative error in energy as obtained using only a single
block ( jmax= 0) as a function of the number of 4He atoms (N ) with ℓmax

= 18. The energies are the lowest in the J = 0 and J = 1 manifolds.

somewhat but, provided the value of g is sufficiently large, the
qualitative picture is unaffected.

C. Basis set calculations

The Hamiltonian of Eq. (1) is diagonalized using the
Lanczos algorithm46 in a symmetrized basis built from the
following product primitive basis functions for N 4He atoms:

FIG. 5. Projections of ground state probability densities for N = 2 with θ = 0 obtained using: (a) the accurate BOAR wave function, (b) the BOAR wave function
with the molecule omitted, and (c) the Lieb-Liniger wave function. For clarity the vertical axes were scaled to the interval (0,1).
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ψ j,{ℓµ} =
(

1
√

2π

)N+1

ei ( jθ)
N
µ=1

eiℓµφµ. (5)

The quantum numbers are allowed to range between specified
maximum and minimum values; (− jmax ≤ j ≤ jmax) and
(−ℓmax ≤ ℓµ ≤ ℓmax). The symmetrized basis vectors (SBVs)
are linear combinations of primitive basis vectors containing
all permutations of their ℓµ quantum numbers. The total
angular momentum of the system, J, given by

J = j +
µ=N
µ=1

ℓµ = j + L (6)

is conserved. The SBVs are conveniently organized by the
quantum number j which introduces an almost block-diagonal
structure into the Hamiltonian matrix. The number of primitive
basis vectors grows rapidly with the number of 4He atoms
and also with the magnitude of jmax and ℓmax. For example,
with N = 4 and jmax = ℓmax = 18 there are 1 122 901 primitive
basis vectors and the Hamiltonian matrix is 53 088 × 53 088.
For N = 5 with the same values of jmax and ℓmax there are
38 151 847 primitive basis vectors and the Hamiltonian matrix
is 395 152 × 395 152.

In principle, jmax and ℓmax need not necessarily span
the same ranges in order to obtain convergence. Therefore,
we investigated convergence of both the eigenvalues and
eigenvectors as a function jmax and ℓmax separately. Table I
shows the convergence behavior of the lowest eigenvalues

in the J = 0 and J = 1 manifolds as a function of jmax and
ℓmax for N = 3. The situation is similar for other values of N .
Also shown in Fig. 2 is the convergence of the lowest J = 0
and J = 1 levels as a function of jmax with ℓmax = 18. These
energy levels were chosen because they are the ones accessed
in recent experiments. Two overall trends are clear: (i) for a
given ℓmax, convergence as a function of jmax is quite rapid
and (ii) for a sufficiently large jmax (typically in the range 6–8)
overall convergence requires a relatively larger value of ℓmax,
typically in the range 12–18.

This convergence behavior is supported by the fact that
the eigenvalues of a symmetric matrix are well conditioned,
that is, they are slightly affected by small perturbations of the
original matrix.47 Even more, the matrix can be brought into a
more convenient form by adding a sufficiently large quantity to
the whole diagonal in such a way that it becomes strictly row
diagonal dominant. For this type of matrix useful results about
the bounds of the eigenvalues exist.48,49 Indeed, if we introduce
the diagonally dominant part of a row of a given matrix as

vi = aii −

j,i

ai j,

the relative error for the eigenvalues can be bounded by ϵ , if
it is less than unity and it is verified

|vi − ṽi | ≤ ϵ |vi |,
being vi and ṽi the diagonally dominant parts of the given
matrix and the close one. We note that this bound is not

FIG. 6. Projections of ground state probability densities for N = 3 with θ = 0 and φ3= π/5 obtained using (a) the accurate BOAR wave function, (b) the BOAR
wave function with the molecule omitted, (c) the Lieb-Liniger wave function, and (d) the Tonks-Girardeau wave function. For clarity the vertical axes were
scaled to the interval (0,1).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  212.21.249.151 On: Mon, 23

May 2016 15:48:43



204301-6 Farrelly et al. J. Chem. Phys. 144, 204301 (2016)

good enough if ϵ ≈ 1. However, in our case, the approximated
matrices are constructed step by step. In the first step the
approximated matrix is block diagonal, so that the eigenvalues
are those of the blocks. As the lowest eigenvalue belongs to the
central block, this is our first estimation. In the second step, we
add the off diagonal-block elements coupling the three central
blocks. Once again, the lowest eigenvalue corresponds to the
coupled central three blocks. In the next step we consider the
coupling elements for the five central blocks and so on. In
each step, the trace of the matrix is conserved and, due to the
interlacing property47 and the previous bound, we get a good
accuracy for the lowest eigenvalue after three or four steps.

These observations allow some computational simpli-
fications to be made for larger values of N . They also
provide insight into the decoupling mechanism. It should
be noted that the value of ℓmax necessary for acceptable
convergence increases as the gaussian 4He–4He interaction
becomes narrower. In the LL limit of a δ-function very
large values of ℓmax are necessary to achieve even acceptable
convergence, as has been noted previously.50

While it is apparent from Table I that, for a given value of
ℓmax, convergence as a function of jmax is quite rapid, relatively
large values of ℓmax are needed to ensure final convergence.
This conclusion is similar for other values of N and can be
understood by examining the structure of the Hamiltonian ma-
trix which is shown in Fig. 3 for N = 3. The main conclusion is
that the molecule-4He interactions lie away from the diagonal

and are relatively small in comparison to the atom-atom inter-
actions which have a block diagonal structure. Crucially, each
of the blocks conserves the value of j because the atom-atom
interaction potential does not couple directly to the molecule.
That is, in the absence of atom-molecules interactions (or for
an isotropic PES) the quantum number j would be exactly
conserved, i.e., it would be a good quantum number. Because
j is conserved within each block this is a measure of how
strongly coupled the molecule is to the 4He atoms in compar-
ison to 4He–4He interactions. Figure 4 shows the percentage
of the converged energy recovered by including only a single
block, i.e., the j = 0 block for the ground and also the a-type
series of the CO–4HeN complex. It is clear that, with increasing
N , convergence accelerates which indicates that fewer blocks
are needed. In turn this suggests increasing decoupling.

If the molecule is assumed to have decoupled completely
then the BOAR Hamiltonian is quite similar to that for an
important 1D problem, the Lieb-Liniger gas.38,50,51

III. REDUCED DIMENSIONALITY MODELS

A. Lieb-Liniger model

The Lieb-Liniger (LL) Hamiltonian can be used to
describe a system of N spinless, repulsive bosons confined to
a ring.7,38 In dimensionless coordinates xµ with 0 ≤ xµ ≤ L
where L is the (dimensionless) length of the ring the

FIG. 7. As for Fig. 5 with N = 4. Here φ3= π/5 and φ4=−π/5.
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Hamiltonian is given by

Ĥ = − ~
2

2m

N
µ=1

∂2

∂x2
µ

+ g1D

N
µ<κ

δ(xµ − xκ). (7)

Here m is the mass of each boson and the interaction
potential is a δ-function where g1D measures its strength. The
bosons are repulsive for g1D > 0 and attractive when g1D < 0.
Only the repulsive case is considered here.

The LL model reduces to N − 1 coupled transcendental
equations that can be solved to yield the exact N-particle
ground state. Lieb and Liniger solved this problem but
only considered the N = 2 case and the thermodynamic
limit in detail. Recently, Cederbaum and co-workers have
obtained accurate LL solutions up to N = 50.50 The reason
for considering the LL model is that it corresponds to the
BOAR model in which the molecule is completely decoupled,
albeit with a δ-function, rather than a gaussian, interaction.
The quantity g1D was chosen so that, in the limit σ → 0,
the gaussian in the BOAR model tends to the corresponding
δ-function limit.

The unnormalized LL wave functions obtained using the
Bethe-ansatz38,52 are given by

ψ =

P

a(P)P exp *.
,
i

N
µ=1

kµxµ
+/
-
, (8)

where kµ are wave vectors and the sum is over all
permutations, P, of the {xµ}. The coefficients a(P) are
obtained as described in Refs. 38, 50, and 53; briefly, if
P = I, the identity, then a(I) = 1. Otherwise P is decomposed
into transpositions, and for every transposition of particles µ
and κ, a factor, −eiΩµκ is generated with Ωµκ defined below.
The coefficient a(P) is the product of these factors. The {kµ}
can then be obtained as the solutions to the following set of
transcendental equations:50

kµL = 2πIµ −
N
n=1

Ωnµ, µ = 1,2, . . . ,N, (9)

where

Ωµκ = i ln


c + i(kµ − kκ)
c − i(kµ − kκ)


= −2 arctan

(
kµ − kκ

c

)
, (10)

where c = g1D/2 and the {Iµ} are a set of integers when N
is odd and are half-integers when N is even. For the ground
state the {Iµ} are defined by

Iµ+1 − Iµ = 1, 1 ≤ µ < N and I1 = −IN . (11)

Two sets of excitations exist labeled type I and type II by
Lieb.51 We only consider particle excitations which correspond
to type 1 excitations and are obtained by defining I1 . . . IN−1
as for the ground state but increasing IN by a positive integer.
Alternatively, one may keep I2 . . . IN as for the ground state
but decrease I1 by a positive integer. Although the system of

FIG. 8. As for Fig. 6 with N = 5. Here φ3= π/5, φ4=−π/5 and φ5= 2π/5.
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equations described by Eq. (9) can be solved algebraically,
this becomes increasingly complicated with increasing N .
However, it is straightforward to solve them numerically, in
this case using a genetic algorithm. Comparison with exact
results available online54 demonstrates the accuracy of this
method. Mathematica55 was used to generate and plot the
LL eigenfunctions using the numerically obtained values of
the {kµ}.

Figures 5–8 show projections of the BOAR probability
densities, with and without the atom-molecule interaction
together with the accurate LL probability density. For
comparison the TG probability density is also shown. It is
apparent that, with increasing N , the BOAR case is tending
to the LL limit which is indicative of molecule-solvent
decoupling. The BOAR plots without the atom-molecule
interaction included are, in all cases, very similar to the
LL model and this serves as a test of the convergence
of the variational calculations. This is important because
of the difficulty in converging the LL problem by direct
diagonalization of the Hamiltonian.56 The good agreement
observed indicates reasonable convergence of the wave
function (with the caveat that the BOAR model uses
a gaussian rather than a δ-potential). Because the wave
functions are multidimensional, in making the plots, we
fixed the angles of all but two of the 4He atoms. Our
general conclusions are not sensitive to the particular values
of these angles. Figure 9 is a similar plot for the lowest
J = 1 excited state with N = 3. This state correlates with the

uncoupled state | j, ℓ1, ℓ2, ℓ3⟩ = |0,1,0,0⟩ (and its symmetric
permutations over the 4He atoms) and is part of the a-
type series of transitions observed experimentally.31 Again,
the good agreement between the BOAR model without the
molecule and the LL result suggests good convergence of our
calculations for the excited states of interest.

The evolution of the system to the LL limit with increasing
N is a clear indicator of molecule-solvent decoupling.
However, these results also predict that decoupling will be
sensitive to (i) the size of the rotational constant, B0 and (ii)
the strength of the molecule-atom interaction potential. To
confirm this we computed wave functions using nonphysical
values for B0 and also varied the size of the radial strength
functions in Eq. (3). Figure 10 compares probability densities
for N = 3 with the “fudged” rotational constant Bf set to
10B0 and B0/10 while using the physical values for V1 and
V2 in Eq. (3). For the larger value of Bf the plot is almost
identical to Fig. 6(b) (N = 3, no molecule present); that is the
increased rotational constant leads to faster decoupling. The
nonphysical, larger value of Bf is causing the intermolecular
potential to appear to be essentially isotropic. In contrast, with
the reduced value of Bf the system lies further away from
the uncoupled (LL) limit; that is later decoupling is observed.
Stated differently, the amount of “adiabatic following”17 is
reduced (increased) by increasing (reducing) Bf . This effect
also depends on the strength of the intermolecular potential.
Figure 10(c) illustrates this; it shows the result obtained
when the values of V1 and V2 are tripled while setting

FIG. 9. Projections of the first J = 1 excited state probability density with N = 3, φ3= π/5, and θ = 0 obtained using: (a) the accurate BOAR wave function, (b)
the BOAR wave function with the molecule omitted, (c) the Lieb-Liniger wave function, (d) the TG wave function. For clarity the vertical axes were scaled to
the interval (0,1).
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FIG. 10. Projections of the ground state probability density with N = 3, φ3= π/5, and θ = 0. (a) B f = 10B0; (b) B f = B0/10; (c) B f = 10B0 and with V1 and
V2 taking values 3 times their physical values. For clarity the vertical axes were scaled to the interval (0,1).

Bf = 10B0. In this case the effect of increasing Bf in Fig. 10(a)
has been almost nullified by increasing the strength of the
potential.

It is also interesting to examine the effect of changing
the strength of the 4He–4He repulsion. Figure 11 shows
the probability density when g in Eq. (4) is reduced by a
factor of 15. In this case the 4He density piles on to the
end of the molecule, that is, the molecule-atom interaction
dominates the very weak repulsive interatomic potential. This
means that decoupling will occur much later, if at all. In

agreement with this, the LL limit, also shown, is markedly
different.

The situation is similar to a pinning quantum phase
transition in which the relative importance of competing
terms in the Hamiltonian changes at a critical value.42,43 As N
increases and passes a critical value this ordering is reversed.
The results so far suggest that the LL model introduced
previously lies rather close to the TG limit.35 Therefore we
model the problem as a stirred TG gas, for which the wave
functions are much simpler than in the LL case.

FIG. 11. Projections of the ground state probability density with N = 3, φ3= π/5, and θ = 0 and with g reduced by a factor of 15. (a) BOAR (b) LL. For clarity
the vertical axes were scaled to the interval (0,1).
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B. Stirred Tonks-Girardeau gas

The TG Hamiltonian is the g1D → ∞ limit of Eq. (7).37,50

The TG ground state wave function for an odd number N ≥ 3
of bosons is37

ψB
0 = |ψF

0 | =
1

√
N!LN2N (N−1)


µ>κ

| sin[ π
L
(φµ − φκ)]| (12)

with energy

E0 =
1
6
(N − 1

N
) (π~N)2

mL2 . (13)

Examples of TG ground state probability densities are shown
in Figs. 6 and 8 and are similar to the LL results. For even
N the situation is somewhat more complicated and we do not
consider it here. The lowest excited state wave function is37

ψB
1 = ψ

B
0

N
µ=1

e2πiφµ/L (14)

with energy E1 = E0 + ϵk1 where k1 = 2π/L and

ϵk1 =
~2

m
k1[ (N − 1)π

L
+

1
2

k1]. (15)

The states are actually doubly degenerate because of the
two senses of angular momentum in the ring but here we
consider only excitations in the positive sense. Figure 9(d)

shows a projection of the lowest TG excited state probability
density which agrees well with the LL limit. This suggests
diagonalizing the following Hamiltonian for a TG gas (with
g → ∞) stirred by the molecule:35

ĤSTG = −~ ω
∂2

∂θ2 − ~ ω0

N
µ=1

∂2

∂φ2
µ

+ g

N
µ<κ

δ(φµ − φκ) +
N
µ=1

V (φµ − θ). (16)

To simplify the model even further we use a direct product
basis consisting only of the ground and lowest excited TG
states combined with the j = 0,±1 states of the molecule.
In this notation the state |10⟩, for example, corresponds to
the wave function eiθψB

0 for each N . In the intermolecular
potential we include only the terms in V1, i.e., the
intermolecular potential used here isV = V1

N
µ cos(φµ − θ).

The diagonal elements of the Hamiltonian in this very reduced
basis are E0 + B0 j( j + 1)~2 and E1 + B0 j( j + 1)~2. The
additive rotational energy of the molecule is independent of N
and so the diagonal terms grow as N3—see Eqs. (13) and (15).
By symmetry, only states with ∆ j = ±1 can be coupled by
V which gives rise to off-diagonal matrix elements. In this
basis the non-zero off-diagonal matrix elements have the form
[using Eq. (15)], for example,

⟨00|V |11⟩ = V1

N
µ=1


⟨0| cos θ |1⟩ ×

 2π

0
dφ1 . . .

 2π

0
dφN |ψB

0 |2 × *
,

N
κ=1

e2πiφκ/L+
-

cos φµ

+ ⟨0| sin θ |1⟩ ×
 2π

0
dφ1 . . .

 2π

0
dφN |ψB

0 |2 × *
,

N
κ=1

e2πiφκ/L+
-

sin φµ


. (17)

For relatively small N these integrals can be done analytically
using Mathematica55 and we find that they are constant as
a function of N—this was verified up to N = 7. Thus the
diagonal matrix elements rapidly dominate the off-diagonal
elements as N increases, in accord with our earlier numerical
findings. That is, the molecule rapidly decouples from the
solvent as N grows larger.

IV. CONCLUSIONS

Microscopic superfluidity has been proposed as the
reason that the effective moments of inertia of many
molecules in 4He droplets start a nonclassical decrease as
the number of solvent atoms is increased. Spectra reveal that
the molecule undergoes apparent frictionless free rotation,
but with spectroscopic constants different from their gas
phase values. These observations, combined with the direct
observation of superfluidity in recent experiments,19,20 and
PIMC calculations, make for a compelling case that these
systems are superfluid.

To further address this question, and motivated by
previous accurate DMC calculations for CO–4HeN complexes,

we introduced a reduced dimensionality model in which the
atoms are confined to a ring. The boson-boson interaction
was modeled as a repulsive gaussian barrier. Variational
and previous DMC calculations demonstrated that the
observed turnaround in the effective rotational constant is
captured qualitatively by this model, which suggests that
the underlying physics is similar to the full-dimensionality
problem.

The LL model provides an analytically soluble limit for
the BOAR model of N bosons confined to a ring but with the
molecule absent. Thus, by comparing the wave functions of
the BOAR and LL models it was possible to gauge the degree
to which the molecule had decoupled from the solvent. In the
BOAR model the point at which decoupling starts to occur
depends on the rotational constant of the molecule, the strength
of the intermolecular potential, and the number and strength of
the repulsive interactions between the bosons. In the LL model
the energy splitting between the ground and lowest excited
state increases with N , that is, as more atoms are confined to
the ring. The competition between this tendency to increase
the energy splitting and the molecule-atom interaction, which
tends to decrease this energy splitting (by increasing the
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effective moment of inertia of the molecule) is what leads
to a turnaround in the effective rotational constant. This is
consistent with the experimental observation that different
molecules begin the decoupling process at different values of
N . In part, this is related to the size of their rotational constants
and to the strength and symmetry of the intermolecular
potential.26 Naturally, at some point the ring will become
too crowded and the BOAR model will break down. For some
molecules, e.g., N2O and OCS, the 4He atoms do initially
inhabit a ring but around the waist of the molecule, that is, the
axis of the molecule is perpendicular to the plane containing
the atoms (in contrast to Fig. 1). Applying the BOAR model
to this geometry would lead to no turnaround at all because
the intermolecular potential is isotropic for bosons strictly
confined to a ring in this configuration. Also, for heavier
bosons (e.g., bosonic Ne) no turnaround is expected because
of the much stronger intermolecular potential as compared
to typical 4He-molecule interactions. In addition, attractive
interactions between solvent bosons, ignored here, will play
a more important role. Already for bosonic p-H2 clusters the
attractive interactions are somewhat stronger than for 4He
atoms; however, comparable behavior to CO-(p-H2)N clusters
is observed which suggests a similar mechanism (except for
the behavior of the rotational constant in the nanodroplet
limit). PIMC calculations also show that these clusters are
superfluid.31

The Bose symmetry requirement places constraints on the
4He–4He part of the wave function which tends to its ground
angular momentum state as more atoms are added. That is the
J = 0 ground state eventually becomes the one in which j = 0
and L =


i ℓi = 0 separately, i.e., j and L become “almost-

good” quantum numbers. As noted by Girardeau,37 in a 1D
TG gas, fermions will behave in the same manner as bosons.
Therefore the 1D BOAR model does not distinguish between
4He and 3He in terms of atomic statistics. The situation will
be different if the atoms are not confined to 1D because
of the Pauli exclusion principle which is expected to lead to
significant coupling between j and L for 3He. For example, we
expect that a difference will quickly become apparent between
3He and 4He if the bosons are confined to a sphere. It is worth
pointing out that recent experimental and theoretical studies
of small OCS-3HeN clusters find, somewhat surprisingly, that
the rotational features in 3He clusters are quite similar to 4He
droplets, although considerably broadened.57,58

Our conclusions based on numerical results were
strengthened by considering the case of a TG gas stirred
by a molecule. As the number of solvent atoms increases,
the coupling matrix elements between the molecule and the
solvent atoms diminish rapidly in comparison to boson-boson
interactions. That is, the decoupling of the molecule can
be explained entirely in terms of the Schrödinger equation
without explicit resort to the notion of superfluidity—although
that is not to say that these systems are not superfluid. We
also note recent density functional calculations that report
a quantum phase transition59,60 between a localized state
and an intermediate 1D superfluid61 along the way to bulk
superfluidity. This transition involves particle-hole excitations
and is consistent with earlier findings using the BOAR model35

and this work.

Microscopic superfluidity—signaled by the turnaround
in Beff—has, we conclude, its origin in a combination of
factors: the unusually weak coupling of the molecule to
the solvent, the bose symmetry of the solvent atom wave
function, and the repulsive interactions between the bosons
which dominate as N increases. Of course, several of these
ingredients are precisely the reason that bulk helium-4 can
exist as a superfluid in the first place.
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