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We study the dynamical behavior of the unstable periodic orbit (NHIM) associated to the non-return
transition state (TS) of the H2 + H collinear exchange reaction and their effects on the reaction
probability. By means of the normal form of the Hamiltonian in the vicinity of the phase space
saddle point, we obtain explicit expressions of the dynamical structures that rule the reaction. Taking
advantage of the straightforward identification of the TS in normal form coordinates, we calculate
the reaction probability as a function of the system energy in a more efficient way than the standard
Monte Carlo method. The reaction probability values computed by both methods are not in agreement
for high energies. We study by numerical continuation the bifurcations experienced by the NHIM
as the energy increases. We find that the occurrence of new periodic orbits emanated from these
bifurcations prevents the existence of a unique non-return TS, so that for high energies, the transition
state theory cannot be longer applied to calculate the reaction probability. © 2011 American Institute
of Physics. [doi:10.1063/1.3600744]

I. INTRODUCTION

Since the decade of 1930s, transition state theory (TST)
has been a fundamental tool in the study of chemical reac-
tion dynamics.1 Assuming that in a chemical reaction reac-
tant and product regions are kept apart by a barrier, the main
assumption of the TST relies on the existence of a dividing
surface located at the neighborhood of the barrier, the so-
called transition state (TS), that separates reactants from prod-
ucts. A proper TS presents two properties: it is only crossed
by reactive trajectories, and it is a non-recrossing surface in
the sense that reactive trajectories must cross it only once.
Because the reaction rate is proportional to the directional
flux through the TS,2–5 if any of these conditions does not
hold, the TST would lead to an overestimation of the reaction
rate.

For a two degrees of freedom (2 DOF) reaction (for
instance a collinear triatomic exchange reaction) whose
Hamiltonian is expressed as kinetic plus potential energies,
it is well known from the 1970s that the projection in the
configuration space of an unstable periodic orbit living in the
vicinity of the saddle point (the so-called Lyapunov orbit)
plays the role of dividing surface (TS).2–7 For a given energy,
this projection is a line that bridges the corresponding equipo-
tential curves and it keeps the reactant and the product regions
apart.

However, for 2 DOF chemical reactions whose
Hamiltonians are no longer in the form kinetic plus po-
tential or for chemical reactions of higher dimension, the
above picture defined in the configuration space breaks (see
Ref. 8 for a short and clear review of this subject). Then, the
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general question of how to construct the TS for arbitrary n
DOF chemical reactions remained unsolved during decades.
Recently, when the barrier between reactants and products
corresponds to an index one critical point (saddle point) in
the Hamiltonian of the reaction, the answer to this question
came from the hand of nonlinear dynamics. Indeed, in the
1990s Wiggins9 showed that a normally hyperbolic invariant
manifold (NHIM) is associated with the phase space geom-
etry in the vicinity of the saddle point. With this result and
using Poincaré–Birkhoff theory,10 in the early 2000s it was
possible to obtain analytically the dividing surface (e.g., the
TS) that separates reactants from products with the required
non-return property. Furthermore, when the Hamiltonian is in
normal form, all the geometrical objects that in phase space
define the TS appear in a natural way. Note that now phase
space is the playground for the development of this new
transition state theory. For a review of the subject, we refer
the reader to Refs. 11 and 12. Under this new formulation,
the TST has also been successfully applied in different fields
as atomic physics13 or celestial mechanics.14

In this geometrical formulation of the TST, the NHIM,
which is a (invariant) manifold of dimension (2n − 3)
living in the neighborhood of the saddle, is of fundamental
importance. We note that for 2 DOF, the NHIM reduces
to the Lyapunov periodic orbit, which allowed Pollak and
co-workers to define the aforementioned dividing surfaces in
the configuration space.

Furthermore, the validity of this integrable model
depends on that the NHIM preserves the no-return property.
The non-return property is closely linked to the phase
space has the “bottleneck” structure.3, 5, 15–17 That is to say,
with the existence of a small region in phase space that
separates two large regions. In the case of chemical reactions,
the large phase space regions are the reactants and the
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products, while the bottleneck corresponds to the phase space
region around the barrier, e.g., the saddle point. Whether or
nor the phase space presents the bottleneck property depends
on the value of the energy. For energy values below the saddle
point energy, the reactant and product regions are disjoint
regions and (classically) no reactive trajectories are allowed.
At low energies above the barrier, we find the bottleneck
property because the energy shell in the neighborhood of the
saddle is very narrow. However, as the energy increases, the
bottleneck property is lost because there is a wide available
phase space region around the saddle point and, roughly
speaking, it makes no sense to talk about reactants and
products.

When the systems bears the bottleneck property, the TST
is exact and it is possible to find a unique dividing surface
(TS) around the saddle point region. In this situation, the
NHIM bounds the TS, only reactive trajectories cross the TS,
they do it once, and the reaction rate is proportional to the flux
across the NHIM. However, as the energy increases, the bot-
tleneck (non-return) property of the system is lost and both
reactive and non-reactive trajectories may cross the TS many
times. In this situation, when the flux across the NHIM is eval-
uated, one gets an overestimation of the reaction rate. It is im-
portant to realize that the root of this behavior is completely
dynamical in the sense that there is not any structural change
in the neighborhood of the saddle region.

The loss of the bottleneck property for 2 DOF has
been detected and studied since 1970s by several authors.
For the collinear H2 + H exchange reaction, Pechukas
and co-workers2–5, 7 were the first to realize that no-return
property depends on the existence of a unique dynamical
barrier around the saddle. They found that, from a certain
energy above the saddle, there appeared additional peri-
odic orbits away from the saddle acting as new dynamical
barriers that caused the overestimation of the reaction rate.
Following these works and for the same chemical reaction,
Grimmelmann and Lohr18 and Sverdlik and Koeppl19 investi-
gated the exactness and the validity of the TST. However, all
these works were done in the configuration space while the
dynamics actually takes place in phase space. In this sense
and again for 2 DOF chemical reactions, Davis15–17 was one
of the first to address the breakdown of the TST from the
phase space point of view.

Later on, for the collinear reaction HgI2 → HgI + I,
Burghardt and Gaspard20 showed numerically that, as the en-
ergy increases, they appear new periodic orbits due to bifur-
cations in the saddle point region. These authors noted that
this fact ruins the no-return property provided by the original
NHIM and, in consequence, the breakdown of the TST.

Recently, Li et al.21, 22 studied analytically the definabil-
ity of no-return transition states in the high energy regime by
using “partial” normal forms. In particular, taking the energy
of the system as the bifurcation parameter, these authors ap-
plied this technique to the collinear H2 + H exchange reaction
to study the bifurcations of the the primary NHIM. More-
over, they obtained relevant information about the topologi-
cal changes of phase space in the saddle point region. These
changes, closely related to Davis’ results,17 together with the
bifurcation diagram, allowed them to identify the new unsta-

ble periodic orbit with respect to which the no-return TS is
defined.22

Taking the H2 + H collinear reaction as an example, this
paper is devoted to get a deeper insight into the central role
played by bifurcations in the loss of the bottleneck property
and the breakdown of TST. For this, we will continue nu-
merically the main families of periodic orbits that bifurcate
from the original NHIM of the system. The NHIM is deter-
mined through the normal form Hamiltonian. Then, using the
NHIM, we calculate the evolution of the reaction probabil-
ity as a function of the energy, and we compare these results
to those obtained by a Monte Carlo method. Up to a certain
energy, the significant deviations found will allow us to put
into question the existence of a unique no-return TS and the
breakdown of the TST.

The paper is organized as follows. In Sec. II we give an
overview on the transition state theory that permit the ana-
lytical construction of a no-return transition state. In Sec. III
we apply this theory to the collinear H2 + H reaction and we
determine the geometric structures that govern the reaction.
In Sec. IV we use the results of the previous one to determine
the reaction probability as a function of the energy. A compar-
ison to the results obtained with Monte Carlo calculations is
also done. In Sec. V we study the bifurcations of the NHIM.
Section VI is devoted to the discussion of the breakdown of
the TST. Finally, in Sec. VII we summarize the results.

II. AN OVERVIEW OF THE CONSTRUCTION
OF A NON-RETURN TRANSITION STATE

We consider an arbitrary n-degrees of freedom
Hamiltonian H(x1, . . . , xn, px1 , . . . , pxn ) which has an index
one equilibrium point (saddle point) Ps of energy Es . Without
loss of generality, we assume that Ps is located at the origin.
The eigenvalues of the matrix associated to the linearized
Hamiltonian equations of motion around Ps are of the form:

±ωn, ±i ω j , j = 1, . . . , n − 1.

The real eigenvalues ±ωn describe the hyperbolic direction of
the saddle point (i.e., the reactive direction) while the n − 1
complex pairs of eigenvalues stand for the n − 1 elliptic
directions of the saddle point (i.e., the non-reactive or “bath”
modes). In the neighborhood of the saddle point, the phase
space geometry becomes transparent when H is transformed
into its normal form. The procedure is carried into two main
steps. In the first one, we express H as an N degree Taylor
expansion around Ps in the following way:

H ≈ Es +
n−1∑
i=1

1

2

(
p2

xi
+ ω2

i x2
i

) + 1

2

(
p2

xn
− ω2

n x2
n

) +
N∑

j=3

H j ,

(1)

where H j are the terms of the expansion of degree j ≥ 3.
Then, using the Poincaré–Birkhoff normalization technique,
we construct a sequence of local canonical nonlinear trans-
formations that express (1) into its normal form K up to the
desired degree N :

H(x1, . . . , xn, px1 , . . . , pxn ) −→ K(q1, . . . , qn, p1, . . . , pn).
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When in normal form, the Hamiltonian K reads as

K = Es +
n−1∑
i=1

Ji + I + F(J1, . . . , Jn−1, I), (2)

where I = (p2
n − ω2

nq2
n )/2 and Ji = (p2

i + ω2
i q2

i )/2, i = 1,

. . . , n − 1 are the canonical actions of the system. The term
F is made of polynomials in (J1, . . . , Jn, I) of degree j with
2 ≤ j ≤ N/2 and it is responsible for the nonlinear terms.
Note that this result is valid in the neighborhood of the saddle
point. For a revision of the procedure see Ref. 10 and refer-
ences therein. From a mathematical point of view, the key fea-
ture of this technique is that the Hamiltonian K is expressed
solely as a function of the new n integrals (J1, . . . , Jn−1, I).
From a chemical point of view, with this procedure the local
separability between the reactive degree of freedom I and the
n − 1 non-reactive degrees of freedom Ji is achieved. Around
the saddle point the dynamics takes place in the (2n − 1)-
dimensional energy surface given by K. The corresponding
Hamilton equations of motion take the following form:

q̇i = ∂K
∂ Ji

(J1, . . . , Jn−1, I) pi , i = 1, . . . , n − 1,

ṗi = − ∂K
∂ Ji

(J1, . . . , Jn−1, I) qi , i = 1, . . . , n − 1,

q̇n = ∂K
∂I (J1, . . . , Jn−1, I) pn,

ṗn = ∂K
∂I (J1, . . . , Jn−1, I) qn .

(3)

From (3) it is clear that qn = pn = 0 is a (2n − 3)-
dimensional invariant manifold. Moreover, it is a normally
hyperbolic invariant manifold.9 Normal hyperbolicity means
that the expansions and contractions normal to the manifold
dominate those tangents to it. Basically, the NHIM is a
higher-dimensional saddle point. Therefore, the NHIM
has attached stable Ws and unstable Wu manifolds which
act like multidimensional separatrices. These surfaces are
(2n − 2)-dimensional spherical cylinders given by setting,
respectively, pn = −qn and pn = qn in K. Note that Ws and
Wu have the right dimension to divide the phase space and,
thence they are impenetrable barriers in phase space12 that
separate reactive from non-reactive trajectories.

The NHIM is the limit (“equator”) of a (2n − 2)-
dimensional sphere obtained by setting qn = 0 in K. This
(2n − 2)-dimensional sphere DT S is the TS. The TS is
locally a surface of no-return because it is transverse to the
Hamiltonian flow: when a trajectory crosses the TS, it must
leave it before (possible) re-intersects the TS.11, 12, 23 The
NHIM divides the TS into two hemispheres D f

T S and Db
T S

with pn > 0 and pn < 0, respectively. The halve D f
T S (Db

T S)
is always crossed by forward (backward) reactive trajectories.

Hence, Ws,u bound a region in the (2n − 1)-dimensional
energy surface K that is divided into two components by the
TS. All reactive trajectories start in one component, cross the
TS and enter the other component.

H

θ

H

H

r1

r2

FIG. 1. Coordinates of the H2 + H exchange reaction.

III. THE COLLINEAR H2 + H REACTION

Now we apply the theory outlined in Sec. II to the
H2 + H exchange reaction. For zero total angular momen-
tum, the classical three-degrees of freedom Hamiltonian
describing this reaction is given by

H = p2
r1

+ p2
r2

− pr1 pr2 cos θ

mH
+ pθ sin θ

mH

(
pr1

r1
+ pr2

r2

)

+ p2
θ

mH

(
1

r2
1

+ 1

r2
2

+ cos θ

r1r2

)
+ V (r1, r2, θ ), (4)

where mH is the hydrogen mass, (r1, r2) are the two relative
distances between the three hydrogen atoms and θ is the
bending angle (see Fig. 1). The term V (r1, r2, θ ) is the
potential energy surface (PES) governing the dynamics of
the reaction. Throughout the paper atomic units are used.
Because the H2 + H reaction is a paradigm in chemical
reaction dynamics, there are several options in the choice
of V (r1, r2, θ ). In this work we use two different models:
the classical Porter–Karplus (PK) energy surface24 and the
more modern and accurate energy surface by Boothroyd,
Keogh, Martin, and Peterson (BKMP).25 Although at slightly
different positions and energy values, both surfaces present a
unique critical point, namely a saddle point at r1s = r2s = rs

in the collinear direction θ = 0 (see Fig. 2 and Table I).
It is easy to check in the equations of motion arising

from Eq. (4) that the phase point made of the critical point
r1s = r2s = rs in the collinear direction (θ = 0 or θ = π ), to-
gether with the conditions pr1 = pr2 = pθ = 0, is a saddle
point of the Hamiltonian flow. Moreover, if we consider initial
conditions along the collinear direction (θ = pθ = 0), we get
θ̇ = ṗθ = 0, meaning that the collinear direction is invariant
under the Hamiltonian flow. Then, we reduce out this direc-
tion in order to manage a two degrees of freedom Hamiltonian
system.

We apply the transition state theory in the collinear
case as follows. First, by means of a linear change in
Hamiltonian (4), we move the saddle point to the origin.
After the translation, we prepare the resulting Hamiltonian
for its transformation into normal form. Indeed, we express
the Hamiltonian in the form given by Eq. (1) by performing a
Taylor expansion around the origin (i.e., Ps). Using the sym-
bolic manipulator MATHEMATICA, we compute the normal
form K of the expanded Hamiltonian up to degree N = 14
and drop higher degree terms. At this point it is important to
understand that K is expressed as a function of the normal
form coordinates denoted as (q1, q2, p1, p2) and that K
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FIG. 2. Equipotential curves of the PK and BKMP potential energy surfaces
of the collinear H2 + H exchange reaction. In both figures, besides the sad-
dle point energy equipotential, they are represented the equipotential curves
corresponding to the energies of 0.014, 0.016, 0.020, 0.025, and 0.030 a.u.

is integrable because the quantities J = (p2
1 + ω2

1q2
1 )/2 and

I = (p2
2 − ω2

2q2
2 )/2 are the new (approximate) integrals.

Then, the normal form is expressed as

K = K(J, I) = Es + J + I +
N∑

i=2

Ki (J, I), (5)

where Ki are homogeneous polynomials of degree i/2 ≥ 2
in J and I. Once the normal form is computed, we obtain

TABLE I. Properties of the saddle point of the PK and BKMP potential
energy surface models. All values are in a.u.

PES model Saddle position (r1s = r2s ) Energy Es of the saddle

PK 1.70083 0.014557
BKMP 1.75700 0.015203

the NHIM, the TS, Ws , and Wu by setting in K, respectively,
q2 = p2 = 0, q2 = 0, p2 = −q2, and p2 = q2.

Due to the fact that the normal form provides the di-
rect and inverse transformations between the normal form co-
ordinates and the original coordinates, we have the expres-
sions of the original coordinates (r1, r2, pr1 , pr2 ) as a func-
tion of the normal form coordinates (q1, q2, p1, p2). By in-
troducing in these (inverse) transformations the above condi-
tions q2 = p2 = 0, q2 = 0, p2 = −q2, and p2 = q2, we have
the parametric expressions of all the mentioned manifolds
in the original coordinates. These expressions can be used,
among other things, to visualize these structures. In partic-
ular, using the BKMP energy surface and the normal form
calculated for an energy H = E = 0.016 a.u., projections in
the original coordinates of the four structures are shown in
Fig. 3. We note that, because our system has two degrees
of freedom, the NHIM is an unstable periodic orbit whose
projection onto the configuration space bridges the corre-
sponding equipotential curves V (r1, r2, θ = 0) = 0.016 a.u.

(see Fig. 3). In fact, due to the symmetry of the reac-
tion, this projection is the bisector r1 = r2 of the (r1, r2)
plane.

IV. PHASE FLUX AND REACTION PROBABILITY

Usually, the calculation of the reaction probability of a
given chemical reaction is carried out by using expensive
brute force Monte Carlo methods. However, the theory out-
lined in Sec. II provides a “cheaper” method to calculate this
quantity. It was shown in Refs. 2 and 8 that, for a given en-
ergy E , the reaction probability P(E) can be calculated as the
fraction

P(E) = �T S

�T otal
,

where �T S is the reactive phase flux crossing the transition
state, and �T otal is the total incident phase flux. When the
Hamiltonian of the system is in normal form K, the �T S is
given by the flux crossing the forward dividing surface D f

T S
and it is obtained by means of the integral8, 26

�T S =
∫

DT S

�, with

� = dq1 ∧ dp1 + · · · + dqn−1 ∧ dpn−1

where (q1, . . . , qn, p1, . . . , pn) are the normal form coordi-
nates. Taking into account that D f

T S is limited by the NHIM,
and making use of the Stokes theorem, the flux �T S can be
directly computed as the action over the NHIM, namely,

�T S =
∮

NHIM
p1dq1 + · · · + pn−1dqn−1 = (2π )n−1S,

where S is the “area” enclosed by the contour KNHIM

= K(J1, . . . , Jn−1, 0) = E . Note that the proper geometric
object that controls the reaction (the dividing surface) is not
the (2n − 2)-dimensional sphere DT S but the NHIM. In fact,
the definition of the TS (the sphere DT S) is not unique.23

In our collinear reaction, �T S is readily obtained from
the normal form (5) by solving the equation K(J, 0) = E .
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FIG. 3. Projections in the original coordinates of the NHIM, the TS, and the
stable and unstable manifolds W s and W u for an energy E = 0.016 a.u.

To compute the total flux �T otal , we assume that one of
the hydrogen atoms is infinitely away (r2 → ∞) from
the H2 molecule. Thence, the PES does not depend on r2

because it is essentially the potential energy curve of the
H2 diatomic target. Then, for a given energy E , the total
flux �T otal is the flux across the two-dimensional (forward)
surface D f :

D f ≡ E = p2
1 + p2

2 − p1 p2

mH
+ V (r1, r2 → ∞, θ = 0).

(6)

Because the domain D f is limited by the closed curve C f ,

C f ≡ E = p2
1 + p2

2 − p1 p2

mH
+V (r1 = rmin, r2 →∞, θ = 0),

(7)
where rmin is the equilibrium distance of the H2 diatomic, we
use again the Stokes theorem to compute the total flux �T otal

as the action over C f .
The initial conditions (ro

1 , ro
2 , po

1, po
2) of the trajectories

for the Monte Carlo calculations are taken by considering that
ro

2 → ∞ and ṙ o
2 < 0. In our calculations we take ro

2 = 50 a.u.
As we said, under the condition ro

2 → ∞, the potential energy
surface does not depend on the value of r2. Then, if E is the
total energy of the system, the available values of ro

1 must hold
the condition

E > V (ro
1 , ro

2 → ∞, θ = 0).

For each value of ro
1 satisfying the above condition, the possi-

ble values of (po
1, po

2) are within the domain (7) with ṙ o
2 < 0.

The integration of a given trajectory stops when: (a) the r1

coordinate crosses with ṙ1 > 0 the threshold value of 50 a.u.
(e.g., r1 → ∞) while r2 remains bounded; or (b) coordinate
r2 reaches again the initial value ro

2 = 50 a.u. with ṙ o
2 > 0 and

with bounded r1. In the first case the trajectory is taken to
be reactive, while in the second one it is considered as non-
reactive. These criteria do not include dissociation trajectories
because in the considered energy range, these outcomes are
not allowed.

For comparison, Fig. 4 shows the evolution with the
energy E of the reaction probabilities calculated with both
methods. The probability PN F (E) computed with the method
involving the normal form, and the probability PMC (E)
calculated by the standard trajectory Monte Carlo method.
Figure 4(a) corresponds to the reaction described by the
BKMP potential energy surface, whereas Fig. 4(b) stands for
the reaction portrayed by the PK potential energy surface.

From this figure, it is clear that for both potential energy
surfaces and for energies up to E ≈ 0.22 a.u., the probability
values calculated with both methods are in very good agree-
ment. Therefore, in these conditions it is correct to consider
DT S as the unique dividing surface that separates reactants
from products and that controls the reaction. Nevertheless,
for energies E > 0.22 a.u., the probability calculated with the
normal form PN F (E) presents a wrong monotonic increase
instead of the predicted falloff for high energies.2, 5

V. BIFURCATIONS OF THE NHIM

The results of Sec. IV indicate that for energies high
enough, the unstable periodic orbit given by the NHIM cannot
be longer regarded as the dividing surface that rules the reac-
tion. In this respect, several authors2, 20–22 have related this
fact to bifurcation phenomena suffered by the NHIM at high
energies. Then, we focus on the numerical detection of possi-
ble bifurcations of the NHIM as the system energy increases.
This study also allows us to identify the new families of peri-
odic orbits emanating from the NHIM.

With this in mind, and taking the energy E as the param-
eter, we make the bifurcation analysis of the original NHIM
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by means of the numerical continuation of the families of
periodic orbits emanating from it. We performed this study
for both potential energy surfaces. This numerical analysis
is carried out using the freely distributed software package
AUTO2007.27–29

In the case of the PK potential energy surface, Fig. 5
shows the bifurcation diagram of the different families of pe-
riodic orbits connected to the original NHIM (family F0) for
increasing energy E . The goal of this figure is to show in the
clearest way the sequence of bifurcations experienced by the
NHIM as the energy E increases and the different families
of periodic motions emanated from the NHIM. Therefore, for
the sake of clarity, the vertical axis of this figure does not
represent any quantitative magnitude or norm related to the
periodic solutions, that would result in a more confusing and
obscure bifurcation diagram. This also stands for Fig. 7. In
fact, the complete bifurcation diagram is made of this one and
its mirror reflection with respect to the energy axis, but for
the sake of simplicity, in the figure it is only represented one
half. The first two bifurcations of the system are of saddle-
node type, and they occur symmetrically at both sides of the
saddle point for an energy E ≈ 0.022 a.u. (see Fig. 5). From
these bifurcations two new families of periodic orbits arise
(one stable F2 and the other unstable F1, depicted by two blue
lines in the diagram). These new families, which correspond
to off-diagonal asymmetric stretching motions (that is, peri-
odic orbits whose projection on the configuration space is out

PMC

PMC

PNF

PNF

FIG. 4. Evolution of the reaction probabilities with the system energy E
computed by the standard Monte Carlo method (green points) and by the
method involving the normal form (red points). (a) PK potential energy sur-
face; (b) BKMP potential energy surface.
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FIG. 5. Bifurcation diagram of the families of periodic orbits connected to
the original NHIM (F0) for increasing energies E in the case of the PK po-
tential energy surface.

of the r1 = r2 diagonal), have already been reported by sev-
eral authors.2, 5, 22 Figure 6(a) shows the projections of these
periodic orbits and the original NHIM on the (r1, r2) plane
as well as the equipotential energy lines. As the energy of
the system increases, the two unstable periodic orbits F1 (the
dashed blue line) migrate away from the saddle point with-
out undergoing any further bifurcation. On the other hand, the
two stable periodic orbits F2 (the solid blue line) approach the
saddle point with increasing energy, and finally they collapse
with the original NHIM (the red line) in a symmetry breaking
bifurcation for an energy E ≈ 0.02654 a.u. In this bifurcation
scenario, the family F0 becomes stable for a short interval of
increasing energy.

In the migration of F2 (the blue line) toward the saddle
point, it undergoes a period-doubling bifurcation for E
≈ 0.02207 a.u., from which two new families of periodic or-
bits appear (magenta lines F21 and F22). These new periodic
motions are the unfolding of the parent F2. In this sense, the
shapes of their projections in the (r1, r2) plane resemble two
deformed bells, see Fig. 6(b). These new periodic motions
have a transient existence with increasing energy, although
they experience a quite complicate evolution, depicted in the
inset of Fig. 5, with a chain of consecutive period-doubling
bifurcations. Finally, these families collapse again with
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FIG. 6. Projections on the (r1, r2) plane of the different periodic motions involved in the bifurcations diagram of Fig. 5. Besides the equipotential curves
corresponding to the energies of the four panels, they are also plotted the equipotential lines of the saddle point energy and the energy E = 0.03 a.u.

the F2 family (the blue line) in an inverse period-doubling
bifurcation for E ≈ 0.02651 a.u.

Coming back to the evolution of the original NHIM
(family F0, red line), it suffers a second bifurcation for E
≈ 0.02661 a.u. This is a period-doubling bifurcation in which
two new families of unstable periodic orbits emerge (the green
line F4). The projection of these new unstable motions on the
(r1, r2) plane has a bell shape symmetric with respect to the
diagonal, see Fig. 6(c), as it arises from the unfolding of the
symmetric stretching F0. This new family of unstable peri-
odic motions evolves for decreasing energy, and its bell shape
gets wider as the energy decreases. The origin of this fam-
ily is in a saddle-noddle bifurcation that occurs for an energy
E ≈ 0.02254 a.u. In fact, two families of bell-shaped peri-
odic motions come up from this saddle-noddle bifurcation.
One of them is the unstable family F4 that collapses with F0,
while the other family F3 corresponds to stable bell shaped
motions that gets wider as the energy increases. For an en-
ergy E ≈ 0.022561 a.u., this family undergoes a symmetry
breaking bifurcation in which it becomes unstable and two
new families of stable periodic motions appear (the orange
and brown lines F32 and F31). Figure 6(d) shows the projec-
tion of these new stable motions on the (r1, r2) plane.

Figure 7 shows the bifurcation diagram of the families of
periodic orbits connected to the original NHIM for increasing

energy E in the case of the BKMP potential energy surface.
This bifurcation diagram is completely different from the pre-
vious one corresponding to the PK potential energy surface.
In this case, the new families of periodic orbits emanate from
the original NHIM (family F0) in a more ordered sequence of
bifurcations as the system energy increases. Besides, this se-
quence of bifurcations takes place in a much shorter interval
of energies than in the case of the PK model. It is worth not-
ing that in this case all the bifurcations that take place are of
period doubling or symmetry breaking type, while there are
no saddle-node bifurcations. We will go back to this question
at the end of this section.

The first bifurcation experienced by the original NHIM
is of symmetry breaking type for E ≈ 0.01985 a.u. In this
bifurcation, two new families of unstable periodic motions
(the dark blue dashed lines F01) emanate from the original
unstable F0 family (the red line), that becomes a stable peri-
odic motion for a short interval of energies. These new peri-
odic orbits consist of two unstable off-diagonal asymmetric
stretchings that migrate away from the saddle point as the en-
ergy increases without experiencing any further bifurcation,
see Fig. 8(a). For an energy E ≈ 0.0200 a.u., the original
NHIM (family F0) undergoes a period-doubling bifurcation
in which two new families of stable periodic orbits emerge
(the green lines F02 in Fig. 7). These new periodic motions
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FIG. 7. Bifurcation diagram of the families of periodic orbits connected to
the original NHIM (F0) for increasing energies E in the case of the BKMP
potential energy surface.

are asymmetric stretchings with the shape of a bell centered
in the diagonal of the (r1, r2) plane, see Fig. 8(b). As the

energy increases, these bell shaped orbits get wider. After this
bifurcation the F0 family becomes again an unstable periodic
motion, without undergoing any further bifurcation for higher
energies.

On the other hand, the F02 families undergo a symmetry
breaking bifurcation for an energy E ≈ 0.0202 a.u. becoming
unstable and two new families of stable periodic orbits appear
(the orange and brown lines F021 and F022). These periodic
motions consist of asymmetric stretchings with the shape of
a bell displaced from the diagonal of the (r1, r2) plane, see
Fig. 8(c). For higher energies, these two families experience a
cascade of period-doubling bifurcations with consecutive ex-
changes of stability and the emergence of new families of
periodic motions of increasing period. Figure 8(c) shows in
the (r1, r2) plane the periodic orbits corresponding to the new
families (the light blue and magenta lines F0211, F0212, F0221,
and F0222) that emanate from the first of these period-doubling
bifurcations.

We already noted the big difference between the bifurca-
tion diagrams in Figs. 5 and 7 corresponding to the PK and the
BKMP potential energy surfaces. This is a surprising fact be-
cause, obviously both surfaces are built to describe the same
chemical reaction. Although there are no major quantitative
differences between them, as we can observe in Fig. 2 and
in Table I, it is quite intriguing that, at least near the saddle
point region, they provide very different descriptions of the
dynamics.
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However, despite the very different dynamical behavior,
the reaction probability behaves essentially in the same way
in both cases and it does not appear to be affected by the par-
ticular dynamics generated by the potential energy surface.

VI. BREAKDOWN OF THE DYNAMICAL TRANSITION
STATE THEORY

Li and co-workers22 have studied analytically the bi-
furcations of the non-return transition state of the classical
H2 + H exchange reaction using the PK potential energy sur-
face. They have performed this study by calculating the par-
tial normal form of the system Hamiltonian in the vicinity
of the saddle point. In the collinear case, these authors have
detected the occurrence of two symmetric saddle-node bifur-
cations located at both sides of the saddle point, similarly to
those we have found in this study. However, after detecting
this first bifurcation, the partial normal form is unable to de-
tect the successive bifurcations experienced by the system in
a short energy range. In this way, neither the normal form nor
the partial normal form can predict the complex dynamics of
the system and this results in the inability to localize and/or
define the existence of a non-return TS.

In order to verify this fact, we calculate the reaction prob-
ability given by the reactive flux across the unstable asym-
metric stretchings F1 and F01 depicted by dashed blue lines in
Figs. 6(a) and 8(a) (see also the bifurcation diagrams in Figs. 5
and 7). We name this reaction probability as PV T ST (E) be-
cause, according to variational transition state theory,2, 5 the
periodic orbits F1 and F01 are transition states of minimum
flux that provide an upper bound for the reaction probabil-
ity. Thence, Fig. 9(a) shows the evolution of PV T ST (E) (the
blue points), as well as the evolutions of PMC (E) (the green
points) and PN F (E) (the red points), in the case of the PK
potential energy surface. Figure 9(b) shows the evolutions
of the same reaction probabilities in the case of the BKMP
model.

As expected, in both potential models the evolution of
the probability PV T ST (E) is not in agreement with the falloff
predicted by PMC (E) for high energies. PV T ST (E) presents
a wrong monotonic increase, although due to the minimum
flux property, it is slower than the faster growth suffered by
the PN F (E). Note that for both potential models, the dis-
agreements begin after the first bifurcation takes place: for
energies E > 0.022 a.u. in the PK surface and for energies
E > 0.02 a.u. in the BKMP one. In particular, the critical
value E > 0.022 a.u. for the PK surface is very similar to
the energy limit value for the validity of the TST found by
Sverdlik and Koeppl.19

Furthermore, we have performed similar computations of
P(E) with several of the new unstable periodic orbits emerg-
ing from the other bifurcations, and none of them are in agree-
ment with PMC (E).

Therefore, these results show that, after the first bifurca-
tion, neither the original NHIM nor any of the new unstable
periodic orbits emanating from the consecutive bifurcations
can be considered as the limit of a dividing surface that de-
termines the reaction probability of the system. The origin of
this behavior is that, as the energy increases, the bottleneck

PMC

PMC

PNF

PNF

PVTST

PVTST

FIG. 9. Evolution of the reaction probabilities with the system energy E
computed by different methods. (a) PK potential energy surface. (b) BKMP
potential energy surface.

property is lost, being the cascade of bifurcations suffered by
the system in the saddle region the mechanism through which
this loss takes place. Then, the new periodic motions along
with the original NHIM behave as multiple dynamical barri-
ers that prevent the existence of a unique non-return transition
state. Therefore, for high energies, the transition state theory
suffers a sudden breakdown and it cannot be longer applied in
order to compute the reaction rates.

VII. CONCLUSIONS

In the present work we have studied the bifurcations of
the unstable periodic orbit (NHIM) associated to the non-
return transition state of the classical H2 + H exchange reac-
tion in the collinear case. We also study their effects on the
evolution of the reaction probability with the system energy.
In this work we have made use of two different models for the
potential energy of the reaction: the classical Porter–Karplus
(PK) energy surface and the more modern Boothroyd, Keogh,
Martin, and Peterson (BKMP) energy surface.

We have computed the normal form of the Hamiltonian in
the neighborhood of the saddle point. From the Hamiltonian
normal form we have obtained explicit expressions of the dy-
namical structures that organize the phase space and rule the
reaction: the non-return transition state, its associate NHIM
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and the stable and unstable manifolds. These expressions
have allowed us to visualize these four relevant dynamical
structures as projections in the space of the original coordi-
nates of the system.

We have taken advantage of the features of the NHIM in
order to calculate the reaction probability as a function of the
system energy in a more efficient way than with the Monte
Carlo method. Under the two potential energy models consid-
ered, the evolution of the reaction probability computed with
both methods are in very good agreement for low energies.
Nevertheless, for higher energies in both models the reaction
probability values calculated through the normal form present
a wrong monotonic increase instead of the well known falloff.

This disagreement has moved us to focus on the analy-
sis of the sequence of bifurcations suffered by the NHIM by
means of the numerical continuation of the families of peri-
odic orbits emanating from it. We found that the bifurcation
diagrams calculated for both potential energy models are quite
different. In the case of the PK potential energy surface, the
sequence of bifurcations is quite complicate and rich and in-
cludes saddle-node, symmetry-breaking, and period-doubling
bifurcations. On the other hand, in the case of the BKMP
model, we detect a faster and more ordered sequence of bifur-
cations basically organized as a cascade of period-doubling
bifurcations.

We also found that, in both potential energy models, the
reaction probabilities computed by the phase flux through the
NHIM and by the Monte Carlo method begin to be in dis-
agreement when the original NHIM experiences the first bi-
furcation.

In order to determine if any of the new unstable periodic
orbits emerging from the original NHIM replace to it in the
role of defining the dividing surface, we have obtained new
values of the reaction probability by calculating the phase re-
active flow across these new unstable periodic orbits. For high
energies, none of these new values of the reaction probability
are in agreement with the behavior predicted by the Monte
Carlo method. Therefore, these results show that for high en-
ergies none of the unstable periodic orbits emanating from the
original NHIM can be regarded as the invariant object of the
new TS ruling the reaction.

The bottleneck property can be regarded as the key in this
study. For low energies the NHIM is the only one periodic or-
bit around the saddle point and the bottleneck property pre-
serves. Nevertheless, as the energy increases the system be-
gins to undergo different bifurcations in which new periodic
orbits appear around the saddle. These new periodic orbits
create dynamical barriers that remove the bottleneck feature.
Then, they prevent the existence of a unique non-return tran-
sition state in the system. Therefore, for high energies, tran-
sition state theory is no longer valid because it is not able to

provide a unique dividing surface and then it cannot be ap-
plied to calculate the reaction probability.
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