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Abstract

The question of Lyapunov stability of stationary points around a central body has been
studied in the absence of resonances and in the case of resonances of order 3 and 4, by means
of the computation of the normal form up to second order. However, some special degenerate
cases are not covered, as it happens for resonances of order 5 and 6, when the free parameters
of the problem are chosen properly. In this article, we deal with these resonances and apply
appropriate results to establish the stability properties of the stationary points.

Introduction

Geostationary orbits are of great interest in astrodynamics, as they are the
optimal location for communication satellites and other scientific missions. Indeed,
the number of spacecraft in geostationary orbits has rapidly increased since the first
launch in 1963 [1].

Assuming the Earth is an oblate rigid body that rotates around the axis of
greatest inertia, and considering only the zonal and tesseral harmonics up to
second order, there are four equilibrium positions that correspond to geosta-
tionary orbits. Linear approximation shows that two of them are stable and the
other two unstable [2, 3]. The stable ones belong to the critical case in the
terminology of Lyapunov and higher order terms, in a Taylor series approxi-
mation around the equilibria, are needed to study their stability properties in the
nonlinear sense. For the Earth and Mars, the stable stationary points are also
nonlinearly stable [4].

The interest in new missions around other celestial bodies in the solar system
could find other interesting stationary orbits around them. Thus, the question of
stability of equilibrium solutions around a rotating central body must be solved.
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This was partially performed in [5], where the stability was established, in
terms of the harmonic coefficients of the potential function, except for some
resonant cases. In this sense, the main goal of this paper is to investigate these
resonant cases in order to get a complete chart of stable and unstable solutions.

This problem has much in common with the classical problem of determin-
ing the nonlinear stability of libration points, L4 and L5, in the restricted
three-body problem. In fact, the same techniques [6] can be used, especially in
the presence of resonances. However, besides resonances of third and fourth
order appearing in the restricted three body problem [7–11], we encounter
higher order resonances for stationary solutions around a rotating central body.
To deal with these higher order resonances and other degenerate cases, we will
use a very general result that gives stability criteria in almost all resonant
situations [12–14]. This result takes advantage of geometrical considerations of
phase flow after a normalization procedure and, in some sense, constitutes an
adaptation of ideas developed for the cases of third and fourth order resonances
in the restricted three-body problem.

The article is organized as follows, first, we briefly describe some results on
stability, mainly concerning resonances together with the introduction of some
sets of canonical variables that we shall use to obtain the normal form and also
for the stability criteria. Next, we formulate the problem of a particle around a
non-spherical central body, we find the equilibria and their linear stability.
Finally, the last section is devoted to the analysis of the stability in the presence
of resonances.

On Stability Criteria

Let us consider an autonomous Hamiltonian system of two degrees of freedom,
and that the origin is an isolated equilibrium point. It is assumed that the
Hamiltonian is an analytic function in the neighborhood of the origin, thus, the
Hamiltonian can be expanded in a power series

� � �2 � �
n � 2

�n

where each term �j is a homogeneous polynomial of degree j.
The linear term �2 not only provides information about the linear stability, but

much more, because if the origin is unstable in the linear sense, and there is at least
a characteristic exponent with positive real part, then it is also Lyapunov unstable.
On the contrary, if the origin is linearly stable, it may be Lyapunov unstable,
because the rest of the terms may contribute to the instability. If the quadratic form
given by �2 is a definite quadratic form, a result of Dirichlet [15] ensures the
stability of the origin for the whole Hamiltonian (see [16]). However, if �2 is not
sign-defined there are several methods to determine the global stability. One of the
most useful is based on the following result of Arnold [17] that, as it appears in
[18], reads:

Theorem 1 (Arnold) Let us consider a two degree of freedom Hamiltonian
system � expressed, in the real action-and-angle canonical coordinates (�1, �2,
�1, �2), as

� � �2 � �4 � · · · � �2N � �̃

where:
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1. � is real analytic in a neighborhood of the origin in �4,
2. �2k, 1 � k � N, is a homogeneous polynomial of degree k in �i, with real

coefficients. In particular,

�2 � �1�1 � �2�2, 0 � �1, 0 � �2

�4 �
1

2
(A� 1

2 � 2B�1�2 � C� 2
2)

3. �� has a power expansion in �i, which starts with terms at least of order
2N � 1.

Under these assumptions, the origin is stable provided that for some k, 2 � k �
N, �2 does not divide �2k or likewise, provided that D2k � �2k(�2, �1) � 0.

It is worth noting that there are several implicit assumptions in the above
theorem. On the one hand, because �2, . . . , �2N depends only on the actions �1

and �2, � is in normal form up to degree 2N. On the other hand, the frequencies
�1 and �2 do not satisfy a resonant condition of order less than or equal to 2N.

Let us recall that a Hamiltonian � � �2 � �k	3 �k, is said to be in normal
form [19] up to order N if {�k; �2} � 0, with 3 � k � N, where {–;–} stands for
the Poisson bracket.

Despite the simple definition, it is not an easy task to derive the normal form and
usually it is achieved by means of perturbation techniques [20]. Besides, it is
necessary to express the quadratic part as in Arnold’s Theorem or an equivalent
expression. Thus, some canonical transformations are needed. This theorem was
successfully applied to determine the stability of Lagrangian point L4 in the
Restricted Three Body Problem (RTBP) by Deprit and Deprit-Bartholomé [6] and,
later on, several authors followed their scheme to analyze the stability in other
problems.

In case of resonances among the frequencies �1 and �2, the above theorem
cannot be applied, and although there are several results dealing with specific
resonances (see e.g., Alfriend [7, 8], Markeev [9 –11]), it is not until the work
of Cabral and Meyer [21] that the analysis of the resonant cases is not treated
one by one for a specific given resonance. Later on, the authors [13] obtained
a different method, based on geometric aspects, which generalizes the work of
Cabral and Meyer. Because we will use the geometric method, let us briefly
describe it. For more details, the reader is referred to the original work
[13].

Let us assume that �2 is expressed as in Hypothesis 2 of Arnold’s Theorem, that
is to say, �2 � �1�1 - �2�2 and in addition �1 and �2 satisfy the resonant
condition n�1 � m�2, where n � m is said to be the order of the resonance. Let
us define a symplectic transformation

u1 � ��1e
i�1, u2 � ��2e

�i�2

U1 � � i��1e
�i�1, U2 � i��2e

i�2
(1)

With this, the quadratic part takes the form

�2 � i�1u1U1 � i�2u2U2 (2)

whereas each term �k is a homogeneous polynomial of degree k in the complex
variables u1, u2, U1 and U2.
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Proposition 1 The following four complex monomials I1 � u1U1, I2 � u2U2,
I3 � u 1

nU 2
m and I4 � U 1

nu 2
m are invariant with respect to the Hamiltonian flow

determined by �2.
Proof.-The Lie derivative operator of Hamiltonian equation (2) is

�2 � i�1�u1





u1
� U1





U1
� � i�2�u2





u2
� U2





U2
�

thus, the monomial u 1
m1U 1

n1u 2
m2U 2

n2 is an eigenvector of �2, because
�2�u 1

m1U 1
n1u 2

m2U 2
n2) � i[�1(m1 � n1) � �2(m2 � n2)]u 1

m1U 1
n1u 2

m2U 2
n2. Hence the above

monomial belongs to the normal form (equivalently, belongs to the kernel of �2)
if the following equation holds

�1(m1 � n1) � �2(m2 � n2) � 0

Thus, it is straightforward to check that monomials I1, I2, I3, and I4 are invariant.
It is worth noting that the invariants I1, I2, I3, and I4 are not independent, but

they are linked through the relation

I 1
nI 2

m � I3I4 (3)

Moreover, the normal form contains monomials, which are products of powers of
the four basic monomials. In this way, I1, I2, I3, and I4 generate the normal form
that, up to order N, can be expressed as

� � i�1I1 � i�2I2 ��
2(i � j) � (m � n)k � l

3 � l � N

(aijk I 3
k � bijk I 4

k)I 1
i I 2

j (4)

where we have taken into account the relation equation (3).
Note that if no resonant condition is satisfied, the normal form is generated only by

I1 and I2 and, consequently, the running index l in equation (4) reduces to even integers.
The use of these complex invariants results in an easier normalization, because

we only deal with polynomials, and the algebra involving them is simpler
and faster by computer than the algebra of trigonometric functions that appears
with Poincaré variables (�1, �2, �1, �2). By means of the symplectic transforma-
tion equation (1), we can express the normalized Hamiltonian in Poincaré vari-
ables as

� � �1�1 � �2�2 ��
2(i � j) � (m � n)k � l

3 � l � N

(aijk cos k� � bijk sin k�)� 1
i � nk/2� 2

j � mk/2 (5)

where � � n�1 � m�2.
As the only angular variable in the normal form in equation (5) is �, it is

convenient to introduce a new set of action-angle variables that incorporates the
angle � as one of the coordinates.

To this end, we use the Lissajous variables [22, 23] specially designed to handle
resonances. Lissajous variables are related with Poincaré variables through the
following equations, which define a symplectic transformation

�1 � m(�1 � �2), �1 � (�1 � �2)/(2m)
�2 � n(�1 � �2), �2 � (�1 � �2)/(2n)

In Lissajous variables, the normal form reads as
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� � ��2 ��
2(i � j) � (m � n)k � l

3 � l � N

(aijk cos 2nmk�1 � bijk sin 2nmk�1) (�1 � �2)
i�nk/2(�1 � �2)

j�mk/2

(6)

where � � �1/m � �2/n. Note that �2 is a first integral of the system, because �2

is cyclic in the Hamiltonian function (6).
Finally, we can recover a similar expression to equation (4) by introducing a

new set of generators (but now real functions) of the normal form given by

M1 �
1

2
�1

M2 �
1

2
�2

C � 2�(m � n)/2(�1 � �2)
m/2(�1 � �2)

n/2 cos 2nm�1 (7)

S � 2�(m � n)/2(�1 � �2)
m/2(�1 � �2)

n/2 sin 2nm�1

In terms of these generators, the normal form, up to order N, reads

� � 2�M2 ��
2(i � j)(n � m)(k � r) � �

3 � � � N

aijkrM 1
i M 2

j C kS r (8)

Moreover, the relation in equation (3) becomes

C2 � S2 � (M1 � M2)
n(M1 � M2)

m (9)

where M1 	 �M2 � , and equation (9) defines a surface of revolution at each

manifold M2 � constant.
With this, the authors [13] proved the following result, based on geometric

properties, and valid when the order of the resonance is greater than two
Theorem 2 Let us assume that �1 and �2 satisfy a resonant condition of order

s � 2. That is, there are two integers n and m such that

n�1 � m�2, n � m � s

Let us also suppose that the Hamiltonian function is normalized up to a certain
order N 	 s and expressed in terms of real generators as in equation (8), being �N

the first term does not vanish for M2 � 0.
Let us consider the two surfaces

�1 � {(C, S, M1) � �3; �N(C, S, M1, M2 � 0) � 0}

and

�2 � {(C, S, M1) � �3; C2 � S2 � M 1
s}

If the origin is an isolated point of intersection of both surfaces, then, the origin is stable.
In the other case, provided that the two surfaces are not tangent, the origin is unstable.

With this theorem, we need to carry out the normalization for the different
resonances, and check how the two surfaces cut each other to determine the
stability of the equilibrium point.
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Hamiltonian and Equilibrium Positions

To describe the motion of a satellite around a planet, we consider a synodic
reference frame that rotates with the planet around its greatest axis of inertia with
constant velocity �. We suppose that the origin of the frame is the center of mass
of the planet and the axes are the principal axes of inertia. With these assumptions,
the problem can be modeled by the Hamiltonian

� �
1

2
(X2 � Y2 � Z2) � �(xY � yX) � �(x, y, z) (10)

where ��x,y,z) is the potential function

� �


r�1 � �R

r�
2�3G2,2

x2 � y2

r2 �
1

2
G2,0�1 � 3

z2

r2��	 (11)

expanded up to second order. Here,  stands for the Gaussian constant,
r � �x2 � y2 � z2 is the radial distance to the satellite, R is the planet’s equatorial
radius and G2,0, G2,2 are the harmonic coefficients. They satisfy the condition
G2,0 	 0 	 G2,2. Due to the choice of the reference frame, they do not coincide
with the classical spherical harmonics, although they are related with them by
G2,0 � C2,0 and G2,2 � �C 2,2

2 � S 2,2
2 .

The stationary points of the dynamical system defined by the Hamiltonian
function (10) are obtained by solving the nonlinear system that results from zeroing
the equations of motion

ẋ �

�


X
� X � �y, Ẋ � �


�


x
� �Y �


�


x

ẏ �

�


Y
� Y � �x, Ẏ � �


�


y
� ��X �


�


y

ż �

�


Z
� Z, Ż � �


�


z

(12)

Thus, for a stationary solution it must be X � 
�y, Y � �x, Z � 0, and the
coordinates (x, y, z) must satisfy

�2x �

�


x
� 0, �2y �


�


y
� 0,


�


z
� 0

A detailed discussion of equilibrium solutions can be found in the work of
Howard [24]. Here, as it is made in [4, 5], we will restrict ourselves to the
invariant manifold z � Z � 0, and we are left with the planar equatorial
solutions for a two degree of freedom system. The equilibria located in the
equatorial plane satisfy x � 0 or y � 0. In the first case, from equations (11)
and (12), the y coordinate is a root of the polynomial equation

�2 �y � 5 �  �y � 2 � 3R2�1

2
G2,0 � 3G2,2� � 0 (13)

Similarly, in the second case, when y � z � 0, x is a root of the equation

�2 �x � 5 �  �x � 2 � 3R2�1

2
G2,0 � 3G2,2� � 0 (14)
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From equations (13) and (14), it follows that equilibria appear by pairs,
symmetrically located with respect to the origin along the x- and y-axes. Taking
this into account, and restricting ourselves to the equatorial plane (that is z � Z �
0), we have the following results:

Proposition 2 There are two equilibrium points along the x-axis

Proof. -It is enough to demonstrate that equation (14) has a unique positive real
root. This is a consequence of Descartes’ rule of signs and the fact that
1/2G2,0 
 3G2,2 is negative. If r1 is the positive real root, then there are two
equilibrium points on the x-axis with coordinates (�r1, 0), which will be
denoted by E1.

Proposition 3 The number of equilibrium points along the y-axis is

� two, if
1

2
G2,0 � 3G2,2 � 0.

� four, if 0 � �1

2
G2,0 � 3G2,2�3

�
42

3125R6�4.

� zero, if �1

2
G2,0 � 3G2,2�3

�
42

3125R6�4.

Proof. -It follows from the discriminant of the polynomial in equation (13),
namely

814R2�4�1

2
G2,0 � 3G2,2� � � 42 � 3125R6�4�1

2
G2,0 � 3G2,2�3�

In this case, if r2 is the greatest real root, and r�2 (when it exists) the other
possible real root, satisfying 0 	 r�2 	 r2, we can have at most four equilibrium
points on the y-axis with coordinates (0, �r2) and (0, �r�2). We denote these points
by E2 and E�2 respectively.

Linear Stability

On obtaining the equilibrium points, we are interested in their stability proper-
ties with respect to perturbations in the equatorial plane. As said before, the linear
stability analysis of the equilibria gives a lot of information, because on the one
hand, if there are characteristic exponents with positive real part, the point is not
only linearly unstable, but also is unstable in the nonlinear sense. On the other
hand, inasmuch as the eigenvalues of the linearized Hamiltonian appear in pairs
��, to have linear stability it is necessary that all the eigenvalues of the linearized
system have zero real part. This is also a necessary condition for nonlinear stability.

Let us consider an equilibrium point with coordinates (x0, y0, X0, Y0). After a
symplectic canonical change of variables given by

� � x � x0, � � y � y0,  � X � X0, H � Y � Y0

to shift the origin to the critical point, the linearized system is derived from the
second term of the Taylor series expansion of the Hamiltonian function around the
origin. This term can be written in the new variational variables (�, �, , H) as
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�2 �
1

2
(2 � H2) � �(�H � �) �

1

2
�2(��2 � ��2) (15)

where � and � depend on the parameters of the problem and are different at each
critical point. In our case we have

�j � 1 � 12(�1)j G2,2

R2

�2r j
5, �j � 2� 

�2r j
3 � 2�

where j corresponds to the subscript of the critical points, E1, E2 and E�2.
The characteristic exponents of the linear system defined by equation (15) are

the eigenvalues of the matrix

B � 

0 � 1 0

�� 0 0 1
��2� 0 0 �

0 ��2� �� 0
�

Thus, they are the solutions of the characteristic equation

�4 � �2(� � � � 2)�2 � �4(1 � �)(1 � �) � 0

and they are given by

�2 �
�2

2
��(� � � � 2) � �(� � �)2 � 8(� � �)�

Therefore, a necessary condition to have linear stability is �2 � 0. Let �i�1,
�i�2, with �1, �2 	 0, be the characteristic exponents in the case of linear
stability, with

� 1
2 �

�2

2
�(� � � � 2) � �(� � �)2 � 8(� � �)�

� 2
2 �

�2

2
[(� � � � 2) � �(� � �)2 � 8(� � �)] (16)

These expressions define, in the plane (�, �), the following two regions

RI � {(�, �) � �2��, � � 1}

RII � {(�, �) � �2� � 3 � �, � � 1, (� � �)2 � 8(� � �) � 0}

in such a way that if (�, �) � RI � RII the corresponding equilibrium point is
linearly stable. In our case we have (see [4] for details)

Proposition 4 For the points E1 and E�2, parameters (�, �) �R� I � R� II. Then,
these equilibria are always unstable.

Proposition 5 The points E2, when they exist, are linearly stable if G2,0 and G2,2

belong to the bounded region defined by:

G2,2 � 0, G2,0 � 6G2,2 � 0
322 � 3125(G2,0 � 6G2,2)

3R6�4 � 0
�(p1, p2) � 0
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where �(p1, p2) is the discriminant of the polynomials

p1(r2) � �4r 2
10 � 4r 2

5�2(54G2,2R
2 � r 2

2) � 42(6G2,2R
2 � r 2

2)2

and

p2(r2) � 2�2r 2
5 � 2r 2

2 � R2(3G2,0 � 18G2,2)

Moreover, the above conditions imply (�, �) � RII.
From the above propositions it follows that only E2 can be linearly stable, as it

happens in the cases of the Earth and Mars, for example. However, we need to
solve whether these points are stable in the Lyapunov sense. The solution would be
positive if parameters � and � lie in the interior of region RI. In this situation, the
quadratic part of the Hamiltonian function �2 is sign defined in a neighborhood of
the origin and, from Dirichlet’s theorem [15], the origin is stable. Nevertheless, �
and � belong to region RII and nonlinear stability properties need specialized
theorems.

Normal Form and Nonlinear Stability

As it was described in a preceding section, results about non-linear stability
require the Hamiltonian function to be in normal form in a neighborhood of the
equilibrium position.

To begin with, let us suppose that the Hamiltonian function has been developed
in Taylor series around the equilibrium position where �2 is given by equation (15)
and �k are homogeneous polynomials of degree k in the variables � and �. Now,
a linear symplectic change of variables is introduced in order to transform the
quadratic part of the Hamiltonian as in (2), to perform the normalization in a fast
way. To this end, we introduce the complex variables w � (u1, u2, U1, U2) related
to the old ones � � (�, �, , H) by the symplectic transformation

� � �w

where � is the matrix

� � 

ia1 �ia2 a1 a2

�b1 b2 �ib1 �ib2

b1� � a1�1 a2�2 � b2� �i(a1�1 � b1�) �i(a2�2 � b2�)
i(a1� � b1�1) �i(a2� � b2�2) a1� � b1�1 a2� � b2�2

�
and coefficients a1, a2, b1, b2 given by

a 1
2 �

� 1
2 � �2(1 � �)

2�1(� 1
2 � � 2

2)
, b 1

2 �
� 1

2 � �2(1 � �)

2�1(� 1
2 � � 2

2)
(17)

a 2
2 �

� 2
2 � �2(1 � �)

2�2(� 1
2 � � 2

2)
, b 2

2 �
� 2

2 � �2(1 � �)

2�2(� 1
2 � � 2

2)

After that, the Hamiltonian function becomes

� � i�1u1U1 � i�2u2U2 � �
k 	 3

�k

whereas each term �k is a homogeneous polynomial of degree k in the complex
variables u1, u2, U1 and U2.
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To arrive at the desired normal form, up to a suitable order N, a sequence of near
identity canonical changes of variables is performed. This is done step by step by
means of Lie transforms [20] deriving a new Hamiltonian

� � �2 � �
j�3

N

�j

where each �j is a homogeneous polynomial of j degree in the complex variables
satisfying

{�2, �j} � 0 (18)

We do not enter here into details on how the Lie transforms are implemented in
an algebraic manipulator in order to satisfy equation (18). For details, see the work
of Deprit and López-Moratalla [4].

By applying Theorem 1, it was proved [4, 5] that points E2 are Lyapunov stable
almost everywhere in the interior of region RII. The result follows from the
computation of the discriminant D4 appearing in Theorem 1, which in terms of �
and � reads

D4 �
N(�, �)

24(1 � �)2D(�, �)

�2

r 2
2 (19)

where

N(�, �) � �48�7 � 100��6 � 532�6 � 602�2�5 � 1956��5

� 346�5 � 1476�3�4 � 5608�2�4 � 18724��4

� 15504�4 � 986�4�3 � 1404�3�3 � 7153�2�3

� 93886��3 � 88807�3 � 164�5�2 � 11452�4�2

� 77946�3�2 � 195053�2�2 � 60780��2 � 188207�2

� 1168�5� � 35711�4� � 186420�3� � 92485�2�
� 105514�� � 130032� � 5504�5 � 74745�4

� 80454�3 � 31175�2 � 191232� � 57816

and

D(�, �) � �(� � �)2 � 8(� � �)��4(� � �)2 � 9(1 � ��) � 41(� � �)�

In fact, if there is not a resonance condition of order less than five, E2 is stable
provided D4 � 0. However, if D4 � 0 or if the frequencies satisfy a third or fourth
order resonance, further analysis is needed. Moreover, by going to higher order in
the normal form, the computation of D6 reveals the stability of E2 if no resonances
of order less than seven are satisfied [5]. The only cases left to study, and may be
unstable cases, are precisely the resonant ones. Although the 1:2 and 1:3 reso-
nances were also treated in [5], for the sake of completeness we will perform a case
study of all resonances up to sixth order.

First of all, note that the normal form depends on two free parameters, � and
�, or equivalently, �1, �2 or G2,0, G2,2, because appropriate units of time, mass
and length can be chosen in order to set �,  and R equal to one. In this way,
several situations must be taken into account depending on the order of the
resonance.
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Third Order Resonance

For third and fourth order resonances the normal form is no longer as it was
computed in the general case from which D4 was obtained. Now, with resonances,
the normal form is as given either in equation (4) or equation (8). Specifically, for
the case �1 � 2�2, the third order term in the normal form is not zero and it is
given by the following expression

�3 � a1002u1U 2
2 � a0120U1u 2

2

with a1002 � i a0120. In terms of generators M1, M2, S, and C given in equation (7),
it is expressed as

�3 �
�2

2r2
�C

with

� � a 2
2b1(4 � 5� � �) � 2a1a2b2(5� � � � 4) � b1b 2

2(8 � 7�)

and a1, a2, b1 and b2 given by equation (17).
From Theorem 2, we only need to see how the two surfaces �1 and �2 cut each

other. In this case, if � � 0, the intersection of both surfaces is the planar curve
{M1 � S2/3, C � 0}. Then, E2 is unstable.

When � � 0, i.e., for

� � 0.9823588648575125, � � �2.3725645031237670 (20)

�3(M2 � 0)' 0, then, we need to push forward the normalization up to the fourth
order to conclude any result about the stability. With order four, we have

�4(M2 � 0) �
5.69311

r 2
2 M 1

2

and, the only common point of �1 and �2 is the origin. Hence, from Theorem 2,
the point E2 is stable when � and � are of those values in equation (20).

Fourth Order Resonance

If �1 � 3�2, the fourth order term in the normal form can be written as

�4 � a2200u 1
2U 1

2 � a1111u1U1u2U2 � a0022u 2
2U 2

2 � a1003u1U 2
3 � a0130U1u 2

3

where the coefficients are complex numbers. Introducing the generators M1, M2, S
and C, and setting M2 � 0, there results

�4(M2 � 0) � �4M 1
2 � �C � �S

where, �4, �, � are now real coefficients. From Theorem 2 it is deduced that E2 is
stable if � 4

2 � �2 � �2. On the contrary, if � 4
2 � �2 � �2, the origin is unstable. The

case � 4
2 � �2 � �2 is a degenerate one and higher order terms in the normal form

are needed to decide the stability. Indeed, the degenerate situation takes place when
the two surfaces �1 and �2 are tangent and the influence of higher order terms is
decisive in order to establish the final disposition of the two surfaces. If the origin
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is an isolated intersection point, there will be stability and otherwise the origin will
be unstable.

Taking into account the above considerations and equation (16), we proceed to
evaluate � 4

2/(�2 � �2) in terms of �, provided the resonance condition (�1 � 3�2)
is satisfied, that is

� �
1

9
�20�4�2 � 17� � 13 � 14� � 68�

Depicting � 4
2/(�2 � �2) versus � we obtain the plot in Fig. 1. It can be seen that

when � approaches the unit, there is a transition stability-instability as
� 4

2/(�2 � �2) takes a value greater or less than one respectively.
The value of � at which � 4

2 � �2 � �2 can be computed by solving the
corresponding equation and there results that

� � 0.9997387586999709 (21)

Thus, the critical point is stable if 
3 	 � 	 0.9997387586999709 and unstable
if 0.9997387586999709 	 � 	 1.

For the critical value � � 0.9997387586999709 as given in equation (21), it is
necessary to push forward the normalization up to sixth order to determine the
stability. However, this case is not covered by Theorem 2 and a specialized result
due to Markeev [10, 11] is needed. After applying Markeev’s result, it can be
concluded that E2 is unstable for the critical value of �.

Note also that this value of �, so close to unity, was not detected in [5].

Higher Order Resonances

Under the name of higher order resonances, we include those of order greater
than four. These resonances are problematic in the case D4 � 0, with D4 the
discriminant given in equation (19). However, from the results in [5], only
resonances of order five and six must be taken into account. Thus, the first task is
to establish the circumstances of occurrence of a higher order resonance and a zero
discriminant. To this end, we pay attention to the curves defined by

D(�, �) � D4(�, �) � 0 (22)

Fig. 1. Evolution of the quotient � 4
2/(�2 � �2) as a function of �. If it is less than one there is instability.
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and

R(�, �; p) � p�1 � �2 � 0 (23)

Every intersection point of these two curves, for p � n/m an irreducible fraction
and 4 	 m � n 	 7, must be considered in detail. It is interesting to see how
equation (22) and equation (23) intersect each other for arbitrary values of p with
p � (0, 1); (p3 0 means that the order of the resonance tends to infinity, whereas
p � 1 means a 1:1 resonance). By computing the resultant of the two polynomials
in equation (22) and equation (23), both in � and �, we obtain the following results,
which are illustrated in Fig. 2.

- If p � 1/2 there is no intersection point between D(�, �) and R(�, �; p).
- If p � 1/2 the two curves are tangent.
- If 0.4367852314804508 	 p 	 1/2 the curves intersect twice.
- If 0.4332607423893368 	 p 	 0.4367852314804508 there are four intersec-

tion points.
- If 0.42642213099660087 	 p 	 0.4332607423893368 there are three inter-

section points.
- If 0 	 p 	 0.42642213099660087 the two curves intersect once.

It is worth noting the role played by p � 1/2, associated with the 1:2 resonance.
It separates the resonances with p � 1/2, which are stable, from the rest. Is this a
general property of equilibrium positions or it is merely a coincidence for this
problem?

Taking into account the above discussion, for the 2:3 resonance (a fifth order
resonance), we have stability because 2/3 � 1/2, and then D4 � 0. For the other
fifth order resonance, �1 � 4�2, we have 1/4 	 0.42642213099660087 and there
is a unique pair (�, �) with vanishing D4. This pair occurs for the following values
of � and �

� � 0.9999970158240907, � � �2.9853403950624809

For these particular values of the parameters we have to perform the normal-
ization up to the fifth order in order to apply Theorem 2. In this case, the surface
�1 is defined by

Fig. 2. The Number of Intersection Points Between D(�, �) and R(�, �; p).
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�1 � �5(M2 � 0) �
46814.737737301

r 2
3 S � 0

Consequently, it cuts the surface �2 � C2 � S2 � M1
5 along the curve (see Fig. 3)

S � 0, C2 � M 1
5

that is,

�1 � �2 � {(C, S, M1) � �3; C � M 1
5/2, S � 0}

hence, the equilibrium is unstable.
The other higher order resonance is a sixth order one, namely the 1:5 resonance

(�1 � 5�2). As in the above case (1/5 	 0.42642213099660087), we find a
degenerate case because for

� � 0.999999318343538, � � �2.9914220312235576

the discriminant D4 � 0.

Fig. 4. Intersection between the surfaces �1 and �2 for the case of 1:5 resonance. The origin is the
only common point.

Fig. 3. Intersection Between the Surfaces �1 and �2 for the Case of 1:4 Resonance.
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Now, the normalization process must be carried out up to the sixth order,
provided �5 � 0. In so doing, the two surfaces in Theorem 2 are

�1 �
2.041547 � 1011

r 2
4 M 1

3 �
4.241584 � 107

r 2
4 C � 0

�2 � C2 � S2 � M 1
6

It is not difficult to see that they have the origin as the unique common point.
In fact, surface �1 can be roughly approximated by M1 � 0, in view of the size
of the coefficients of M 1

3 and C. Consequently, (0, 0, 0) is the unique
intersection point (see Fig. 4) and, according to Theorem 2, the equilibrium
point is stable.

Conclusions

By means of a theorem based on geometrical aspects of the normalized
Hamiltonian and valid for resonances, we characterize the stability of the stationary
points of a non-spherical central body, in particular for high order resonances
which remained unanalyzed. The algebra has been constructed symbolically and
can be applied to bodies with shape different from the Earth.
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