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We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in an almost circular
orbit under the influence of a gravity gradient torque. The spacecraft is also subject to the
influence of three perturbations: the small eccentricity of the elliptical orbit, a small magnetic
torque due to the interaction with the Earth’s magnetic field, and a small aerodynamic viscous
drag generated by the action of the Earth’s atmosphere. Under these perturbations, we show
that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method.
This method gives us an analytical criterion for the existence of heteroclinic chaos in terms of the
system parameters. This analytical criterion is confirmed numerically with good agreement. In
spite of the chaos generated by the perturbations, we also find, by means of Poincaré surfaces of
section that some periodic pitch motions persist in the perturbed system with the same period
as the orbital motion of the spacecraft. Finally, we carry out a bifurcation analysis of these
periodic motions by numerical continuation of them in terms of the perturbation parameters.
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1. Introduction

The dynamics of rotating bodies is a very interest-
ing topic in astrodynamics and space engineering
because it is a useful model for studying, as a first
approximation, the attitude dynamics of spacecraft
[Hughes, 1986; Sidi, 1997]. Any spacecraft in orbit
is under the influence of the action of several kinds
of external disturbance torques, such as solar radi-
ation pressure, gravity gradient torque, magnetic
torque caused by the Earth’s magnetic field, or aero-
dynamic drag torque [Beletskii, 1966]. Although
all these external disturbances are not large com-
pared to the weight of the vehicle, their influence
on the real orientational motion of the vehicle may
be significant. Gravity gradient torque is related to
an interesting aspect of the attitude dynamics of
a spacecraft: the so-called pitch motion [Hughes,

1986]. In this paper, we study the pitch attitude
dynamics of an asymmetric magnetic spacecraft in
a polar, almost circular orbit under the influence of
gravity gradient torque. The spacecraft studied in
this work is also subject to the influence of three dif-
ferent perturbations: (i) the small eccentricity of the
elliptical orbit, (ii) a small magnetic torque due to
the interaction between the Earth’s magnetic field
and the magnetic moment of the spacecraft, and
(iii) a small aerodynamic viscous drag generated by
the action of the Earth’s atmosphere. In this study,
we ignore the coupling between the orbital and the
attitude motion of the spacecraft. Thus, we assume
that the orbit of the spacecraft is not affected by
the orientational motion.

Data obtained from the flight experiences of dif-
ferent satellites throughout aerospace history show
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that unexpected behaviors have arisen in the
attitude motion of several spacecrafts. These
undesirable or chaotic orientational motions were
frequently due to the action of external torques that
had not been taken into account in the spacecraft
design [NASA, 1969a, 1969b, 1971]. Chaotic atti-
tude motions have also been observed and studied
for natural satellites as Hyperion [Wisdom et al.,
1984]. These unexpected behaviors give cause for
study and theoretical understanding of the atti-
tude motion of spacecraft in different conditions,
in order to detect and prevent undesirable orienta-
tional motions in advance.

During the second part of the last century,
several authors studied the effects of gravity gra-
dient torque on the attitude motion of spacecrafts.
Klemperer and Baker [1956], Schindler [1959] and
Klemperer [1960], studied the librations of dumb-
bell and ellipsoid of revolution satellites in circular
orbit. Moran [1961] analyzed the effects of the pla-
nar librations on the orbital motion of an asymmet-
ric spacecraft. Modi and Brereton [1969a, 1969b]
investigated the libration periodic solutions of a
gravity-gradient oriented satellite in circular and
elliptic orbits. The magnetic torque is generated
by the interaction between the magnetic features
of the spacecraft and the magnetic field of the
Earth. The cases of Vanguard I and Tiros I satel-
lites can be cited as examples of the effects of
magnetic torques on the attitude motion of space-
crafts [Hughes, 1986; NASA, 1969a]. The strength
of the magnetic torque depends on the intrinsic
magnetic moment of the spacecraft, but it is usu-
ally smaller than one tenth of the gravity gradient
torque [Hughes, 1986; Bryson, 1994]. In relation to
the aerodynamic drag torque, it is worth noting that
there is a range of altitudes with operative satellites
at which aerodynamic drag is not only not negligible
but it may also be dominant [Hughes, 1986]. Several
authors, such as Wainwright [1927], Deimel [1952],
Gray [1959], and others cited by Leimanis [1965]
have studied the dynamics of a revolving symmetric
body under the influence of an aerodynamic drag.

During recent decades, numerous theoretical
studies have indicated the existence of chaotic atti-
tude behaviors in several kinds of satellites under
the action of different perturbations. In this way,
Tong and Rimrott [1991] numerically investigated
the planar libration of an asymmetric satellite in
elliptic orbit under gravity gradient torque. Teofi-
latto and Graziani [1996] have studied the same sys-
tem but considering the three-dimensional libration

motion of the spacecraft. Holmes and Marsden
[1983], Koiller [1984], and Peng and Liu [2000] have
analyzed free gyrostats with a slightly asymmet-
ric rotor. Karasopoulos and Richardson [1992, 1993]
have analytically and numerically studied the atti-
tude dynamics of a satellite under gravity gradi-
ent torque. Nixon and Misra [1993], Fujii and Ichiki
[1997] have numerically researched the orientational
motion of tethers. Tong et al. [1995] have also dis-
cussed the case of an asymmetric gyrostat under
a uniform gravitational field. Maciejewski [1995]
has analytically and numerically studied the pla-
nar oscillations of a rigid satellite under nongrav-
itational perturbations. Meehan and Asokanthan
[1997] and Gray et al. [1999] have analyzed the
attitude motion of satellites with internal dissipa-
tion of energy. Beletsky et al. [1999] have numeri-
cally treated the case of a magnetic spacecraft in
circular polar orbit subject only to geomagnetic
torque. Lanchares et al. [1998], Iñarrea and Lan-
chares [2000]; Iñarrea et al. [2003]; Iñarrea and
Lanchares [2006] have analytically and numerically
investigated the chaotic orientational motions of
several kinds of asymmetric spacecraft with time-
dependent moments of inertia in different external
conditions.

This study is a continuation of the author’s pre-
vious works. We have considered that the space-
craft is affected by several kinds of perturbations,
such as magnetic torque and the eccentricity of the
elliptic orbit. We have studied the effects of the per-
turbations on the attitude dynamics of the vehi-
cle. To this end, we have made use of analytical
and numerical tools already applied in the author’s
former papers, such as the Melnikov method and
Poincaré surfaces of section. Moreover, we have
also performed a bifurcation analysis by numeri-
cal continuation of periodic attitude motions of the
spacecraft. It is worth noting that this technique
had not been used by the author in his previous
works [Iñarrea & Lanchares, 2000; Iñarrea et al.,
2003; Iñarrea & Lanchares, 2006]. In this way, we
have found that, although the perturbations gener-
ate chaotic behaviors in the orientational dynam-
ics, regular periodic motions persist with the same
period of the orbital motion of the spacecraft.

The present paper is organized in the follow-
ing way. In Sec. 2, we describe the perturbed sys-
tem and express the equation of the spacecraft
pitch motion. In Sec. 3, we calculate the Melnikov
function of the perturbed spacecraft obtaining an
analytical criterion for the existence of chaos.
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The validity of this criterion is numerically con-
firmed. In Sec. 4, we study the persistency of pe-
riodic pitch motions with the same period of the
orbital motion. Finally, in Sec. 5, we perform a
bifurcation analysis of these periodic motions by a
numerical continuation of them.

2. Description of the System and
Equations of Motion

We consider an asymmetric magnetic spacecraft in
an almost circular polar orbit in the Earth’s gravi-
tational and magnetic fields subject to the viscous
aerodynamic drag due the Earth’s atmosphere. The
spacecraft has its own magnetic moment generated
by permanent magnets or electric current loops. We
assume that the aerodynamic drag only affects the
attitude motion of the spacecraft. Therefore, we
neglect any decay or rise in the orbit followed by
the spacecraft and we focus the analysis on the sys-
tem attitude dynamics.

In this study, three different right oriented
orthonormal reference frames are used:

• The inertial geocentric frame E{OE ,XE , YE, ZE}
with the origin OE at the center of mass of the
Earth, the XEYE plane coincident with the equa-
torial plane, the XE axis passing through the
ascending node N , and the ZE axis aligned with
the Earth’s rotation axis.

• The orbital frame R{O,X, Y,Z} with origin O
at the mass center of the spacecraft, the Z axis
along the local vertical pointing to the mass cen-
ter of the Earth OE , the Y axis is normal to the
orbital plane and the X axis is in the orbital
plane but it does not coincide exactly with the
velocity vector of the spacecraft due to the eccen-
tricity of the orbit. See Fig. 1. In the usual air-
craft and spacecraft terminology, the X,Y,Z axes
are called respectively roll, pitch and yaw axes
[Hughes, 1986; Sidi, 1997].

• The body frame B{O,x, y, z}, is established with
the directions of the axes coincident with the
principal axes of the spacecraft.

As it is well known, the relative orienta-
tion between the last two reference frames results
by means of three consecutive rotations involv-
ing the Euler angles (ψ, θ, φ). To move from the
orbital axes {X,Y,Z} to the body axes {x, y, z},
the first rotation is about the Z axis through
an angle ψ (yaw). The second rotation is about

XE

YE

Earth's rotational axis

N

R

ZEX

Z

O Y

OE

Fig. 1. The inertial geocentric frame E and the orbital
reference frame R.

the new axis Y ′ by an angle θ (pitch). Finally,
the third rotation is about the new axis x through
an angle φ (roll), reaching the body axes {x, y, z}.
This particular set of Euler angles is commonly
used in aircraft and spacecraft attitude and they
are also known as Tait–Bryan or Cardan angles
[Hughes, 1986; Hale, 1994; Wiesel, 1997]. We
do not use the classical Euler angles [Goldstein
et al., 2002] because they have a singularity in
the particular orientation that is studied in this
paper.

The attitude dynamics of the spacecraft is
governed by three different torques: (i) the one
provided by the gravity gradient, (ii) the mag-
netic torque generated by the interaction between
the spacecraft and the Earth’s magnetic field, and
(iii) the aerodynamic drag caused by the Earth’s
atmosphere. Taking these torques into account, the
classical theorem of angular momentum about the
mass center O of the spacecraft, expressed in the
noninertial body frame B, is

I
dωT

dt
+ ωT × I ωT = Ng + Nm + Nd, (1)

where ωT is the total angular velocity of the space-
craft about its mass center, Ng is the gravitational
torque, Nm is the magnetic torque, Nd is the drag
torque, and I is the tensor of inertia of the space-
craft. As it is expressed in the body frame B of
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the principal axes of the spacecraft, this tensor is
a diagonal one, that is, I = diag(Ix, Iy, Iz), where
Ix, Iy and Iz are the moments of inertia of the space-
craft. We assume an asymmetric spacecraft with
this specific relation Ix > Iy > Iz.

Taking into account that in the total angular
velocity ωT of the spacecraft there are two contri-
butions: one from the orbital motion and other from
the attitude motion, thus this total angular velocity
ωT can be written in the body frame B as

ωT = ω + CRB ωo. (2)

Here ω = (ωx, ωy, ωz) is the attitude angular
velocity of the body about its mass center O
in the body frame B. Besides, ωo = (0,−ν̇, 0)
is the orbital angular velocity of the spacecraft
expressed in the orbital frame R, where ν is the
true anomaly that gives us the angular position
of the spacecraft in its orbit. Finally, CRB is
the transformation matrix from the orbital frame
R to the body frame B, that is, the matrix of
the three consecutive rotations involving the Euler
angles (ψ, θ, φ).

Due to the gravity gradient and the finite
dimension of the spacecraft, it is under the action
of a gravitational torque Ng about the body mass
center O. The components of this torque Ng in the
body frame B are given in [Hughes, 1986; Sidi, 1997;
Wiesel, 1997]:



Ngx =
3µg

R3
(Iz − Iy) sinφ cosφ cos2 θ,

Ngy =
3µg

R3
(Iz − Ix) cosφ sin θ cos θ,

Ngz =
3µg

R3 (Ix − Iy) sinφ sin θ cos θ,

(3)

where µg = Gme = 3.986 · 1014 Nm2/kg is the
mass parameter of the Earth, and R is the dis-
tance between the mass centers of the spacecraft
and Earth.

As we consider that the spacecraft has its own
magnetic moment, it is also under the action of
another torque generated by the interaction with
the Earth’s magnetic field. We suppose that the ter-
restrial magnetic field B is generated by a perfect
dipole located at the mass center of the Earth and
aligned with its rotation axis [Hughes, 1986; Sidi,
1997; Wiesel, 1997]. In this way, the components of
the magnetic field B = (Bx, By, Bz) are expressed
in the orbital frame R in SI units as




Bx =
µo

4π
µm

R3
sin i cos(ν + Ω),

By = −µo

4π
µm

R3
cos i

Bz =
µo

4π
µm

R3 2 sin i sin(ν + Ω),

(4)

where µo is the magnetic permeability of free space,
µm ≈ 7.8 · 1022A ·m2 is the geomagnetic dipole
moment [Korte & Constable, 2005], and i and Ω
are the inclination and the argument of perigee of
the spacecraft orbit respectively.

The magnetic torque Nm acting over the space-
craft, calculated in the body frame B, is given by
the cross product,

Nm = M× CRBB, (5)

where M = (Mx,My,Mz) is the own mag-
netic moment of the spacecraft expressed in the
body frame B, and the geomagnetic field B =
(Bx, By, Bz) is expressed in the orbital frame (4).

On the other hand, we also consider that the
spacecraft is in a high enough orbit to consider the
Earth’s atmosphere as a lightly resisting medium
and its action on the rotating body is a small drag
torque Nd opposite to the attitude motion about
O. We also assume that the torque is directly pro-
portional to the total angular velocity ωT of the
spacecraft, that is,

Nd = −γ ωT = −γ(ω + CRB ωo), (6)

where γ > 0 is the coefficient of the viscous drag.
As it is well known, the components (ωx, ωy, ωz)

of the angular velocity ω in the body frame B, can
be written in terms of the Euler angles (ψ, θ, φ)
and their velocities (ψ̇, θ̇, φ̇) [Hughes, 1986; Hale,
1994; Sidi, 1997; Wiesel, 1997]. Making use of those
well known relations and applying Eqs. (2)–(6), the
equation of motion (1) could be explicitly written in
terms of the Euler angles (ψ, θ, φ), their velocities
(ψ̇, θ̇, φ̇) and their accelerations (ψ̈, θ̈, φ̈), resulting
in quite cumbersome expressions.

Nevertheless, in this paper we adopt the follow-
ing assumptions: (i) the spacecraft is tracing a polar
orbit, that is, its inclination is i = π/2; (ii) the mag-
netic moment M of the spacecraft keeps constant
and aligned with the principal axis z of the space-
craft, that is, M = (0, 0,M) in the body frame B;
and (iii) the roll and yaw motions are initially quies-
cent, that is, ψ(0) = ψ̇(0) = 0 and φ(0) = φ̇(0) = 0.
In this situation, roll and yaw motions are not
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excited by the pitch motion. The direction of the
principal axis y of the spacecraft is fixed in space
and it is always normal to the orbital plane. The
orientation of the spacecraft can be described with
only one angle θ, the pitch angle. Thus, there is only
one nontrivial equation of motion for the attitude
dynamics of the system,

d2θ

dt2
=
d2ν

dt2
− 3µg(Ix − Iz)

IyR3
sin θ cos θ

+
µoMµm

4πIyR3
[cos θ cos(ν + Ω)

− 2 sin θ sin(ν + Ω)]

+
γ

Iy

(
dν

dt
− dθ

dt

)
.

Now, performing a change of variable where time t
is replaced by the true anomaly ν as the indepen-
dent variable of the problem, and introducing the
following new dimensionless parameters

K =
3(Ix − Iz)

Iy
, β =

µoMµm

4πµgIy
, α =

p3/2γ

Iyµ
1/2
g

,

the equation of the pitch motion becomes

θ̈ = −K sin θ cos θ
1 + e cos ν

+
2e sin ν

1 + e cos ν
(θ̇ − 1)

+β
[cos θ cos(ν + Ω) − 2 sin θ sin(ν + Ω)]

1 + e cos ν

+
α

(1 + e cos ν)2
(1 − θ̇),

where ν is the independent variable, e is the eccen-
tricity and p = a(1−e2) is the parameter of the orbit
traced by the spacecraft. From this equation and in
the rest of the paper, the dot means derivation with
respect to the true anomaly ν. In this equation,
the first term on the right-hand side comes from
the gravity gradient, the second one arises from the
inertial Coriolis forces, the third one from the inter-
action with the Earth’s magnetic field, and the last
one from the aerodynamic drag.

Therefore, the attitude dynamics of the space-
craft depends on four parameters: K which
describes the spacecraft’s asymmetry, e the orbit
eccentricity, β which describes the strength of the
magnetic interaction, and α which describes the
strength of the aerodynamic drag.

As we consider that the spacecraft is tracing
an almost circular orbit, and we also assume that
the magnetic interaction and the aerodynamic drag
are much weaker than the gravitational interaction,
in this case we can suppose that the parameters
e, β and α are small, that is, e � 1, β � 1
and α � 1. Hence, making use of the expansion
(1 + e cos ν)−1 ≈ 1 − e cos ν, and omitting terms of
second order in the small parameters e, β and α,
the equation of the pitch motion results in

θ̈ = −K sin θ cos θ + Ke cos ν sin θ cos θ

+ 2e(θ̇ − 1) sin ν

+β[cos θ cos(ν + Ω) − 2 sin θ sin(ν + Ω)]

+α(1 − θ̇). (7)

The terms in e, β and α in this equation can be
considered as small perturbations. In this way, the
unperturbed system (e = β = α = 0) coincides with
an asymmetric spacecraft in circular orbit under
only the gravity gradient torque. Thus, the equa-
tion of motion of the unperturbed spacecraft may
be rewritten in the form of a system of two first
order differential equations as,{

θ̇ = ω = f1,

ω̇ = −K sin θ cos θ = f2.
(8)

As it can be seen, the unperturbed spacecraft is
a one-degree-of-freedom Hamiltonian system and,
therefore, it is integrable. In fact, Eqs. (8) are
those corresponding to a nonlinear pendulum tak-
ing 2θ as the angular variable. Therefore, it is
known that the system has unstable equilibria at
(θ, ω) = (±(2n + 1)π/2, 0), and stable equilibria
at (±nπ, 0). Figure 2 shows the main features of
the phase flow for the unperturbed system (8) for
K = 1. The two unstable equilibria, denoted by E1

and E2, are connected by four heteroclinic trajecto-
ries. These orbits are the separatrices of the phase
space, the thick continuous lines in Fig. 2.

The energy of the system corresponding to the
unstable equilibria and the separatrices is Esep =
K/2. These separatrices divide the phase space in
two different classes of pitch motion. On the one
hand, oscillations, the dotted lines inside the separa-
trices, when the energy of the spacecraft is E < Esep.
On the other hand, tumbling rotations, the dashed
lines outside the separatrices, when the energy of
the body is E > Esep. Likewise, the solutions
corresponding to the four asymptotic heteroclinic
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Fig. 2. The phase space of the unperturbed pitch motion of
an asymmetric spacecraft in circular orbit under the gravity
gradient torque for K = 1.

trajectories, are

[θ±(ν), ω±(ν)]

= {± arcsin[tanh(
√
Kν)],±

√
K sech(

√
Kν)},

(9)

subject to the initial conditions (θ±o (0), ω±
o (0)) =

(0,±√
K). The four heteroclinic trajectories form

the stable Ws(E1),Ws(E2) and unstable Wu(E1),
Wu(E2) manifolds corresponding to the two unsta-
ble equilibria, that join smoothly together. So it
holds that Ws(E1) = Wu(E2) and Wu(E1) =
Ws(E2). The positive (negative) solutions of (9)
form the upper (lower) branches of the invariant
manifolds.

3. Chaotic Pitch Motion. The
Melnikov Function

Let us consider the perturbed system. Now the
stable and unstable manifolds are not forced to
coincide and it is possible that they intersect
transversally in the corresponding Poincaré surface
of section, leading to an infinite number of new
heteroclinic points. Then, a heteroclinic tangle is
generated. In such a case, because of the perturba-
tions, the pitch motion of the spacecraft near the
unperturbed separatrices becomes extremely com-
plicated and chaotic in the sense that the system
exhibits Smale’s horseshoes and a stochastic layer
appears near the unperturbed separatrices. Inside
this chaotic layer, small isolated regions of regular
motion with periodic orbits can also appear.

The existence of heteroclinic intersections may
be proved, at first order, by means of the Melnikov

method [Melnikov, 1963; Guckenheimer & Holmes,
1983]. In order to apply the Melnikov method,
Eq. (7) can be expressed as the following system
of two differential equations of first order



θ̇ = ω = f1 + g1,

ω̇ = −K sin θ cos θ +Ke cos ν sin θ cos θ

+ 2e(ω − 1) sin ν

+β[cos θ cos(ν + Ω) − 2 sin θ sin(ν + Ω)]

+α(1 − ω) = f2 + g2,

(10)

where g1 = 0 and g2 = Ke cos ν sin θ cos θ +
2e sin ν(ω − 1) + β[cos θ cos(ν + Ω) − 2 sin θ sin(ν +
Ω)] + α(1 − ω).

The Melnikov function, M±(ν0), for the sys-
tem (10) is given by

M±(ν0) =
∫ ∞

−∞
f [z±(ν)] ∧ g[z±(ν), ν + ν0] dν

=
∫ ∞

−∞
{f1[z±(ν)] g2[z±(ν), ν + ν0]

− f2[z±(ν)]g1[z±(ν), ν + ν0]} dν

=
∫ ∞

−∞
f1[z±(ν)]g2[z±(ν), ν + ν0] dν

=
∫ ∞

−∞
ω±(ν){Ke cos(ν + ν0)

× sin θ±(ν) cos θ±(ν)

+ 2e(ω±(ν) − 1) sin(ν + ν0)

+β[cos θ±(ν) cos(ν + ν0 + Ω)

− 2 sin θ±(ν) sin(ν + ν0 + Ω)]

+α(1 − ω±(ν))} dν, (11)

where z±(ν) = (θ±(ν), ω±(ν)) are the solutions of
the unperturbed heteroclinic orbits (9).

The Melnikov function M±(ν0) gives us a mea-
sure of the distance between the stable and unstable
manifolds of the perturbed hyperbolic fixed points.
Thus, if M±(ν0) has simple zeroes, there are trans-
verse intersections between the stable and unstable
manifolds in the corresponding Poincaré surface of
section.

Now, by substitution of the positive solutions
(θ+(ν), ω+(ν)) of Eq. (9) into (11) we obtain
the Melnikov function M+(ν0) for the upper
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branches of the invariant manifolds of the hyperbolic equilibria

M+(ν0) = M+
1 +M+

2 +M+
3 +M+

4

= K3/2e

∫ ∞

−∞
sech2(

√
Kν) tanh(

√
Kν) cos(ν + ν0)dν

+ 2e
√
K

∫ ∞

−∞
sech(

√
Kν)[

√
Ksech(

√
Kν) − 1] sin(ν + ν0) dν

+β
√
K

∫ ∞

−∞

[
sech2(

√
Kν) cos(ν + ν0 + Ω) − 2

sinh(
√
Kν)

cosh2(
√
Kν)

sin(ν + ν0 + Ω)

]
dν

+α
√
K

∫ ∞

−∞
sech(

√
Kν)[1 −

√
Ksech(

√
Kν)]dν, (12)

M+
1 and M+

2 being the Melnikov function
corresponding to the perturbation coming from the
elliptic orbit, M+

3 the one arising from the mag-
netic interaction, and M+

4 the one coming from the
aerodynamic drag.

These four integrals, M+
i can be calculated

integrating them by parts and arriving at other sim-
pler integrals tabulated by Gradshteyn and Ryzhik
[1980]. In this way, we obtain

M+
1 = −πe

2
cosech

(
π

2
√
K

)
sin(ν0),

M+
2 = 2πe

[
cosech

(
π

2
√
K

)
− sech

(
π

2
√
K

)]
sin(ν0),

M+
3 =

πβ√
K

[
cosech

(
π

2
√
K

)
− 2sech

(
π

2
√
K

)]

× cos(ν0 + Ω),

M+
4 = α(π − 2

√
K).

(13)

Thus, the complete Melnikov function M+(ν0)
results in

M+(ν0) = M+
A(ν0) +M+

B(ν0) +M+
C

= C+
A sin(ν0) + C+

B cos(ν0 + Ω)

+α(π − 2
√
K), (14)

where the coefficients C+
A and C+

B , which depends
on the system parameters K, e and β, are given by

C+
A (K, e)

= πe

[
3
2
cosech

(
π

2
√
K

)
− 2sech

(
π

2
√
K

)]
,

C+
B (K,β)

=
πβ√
K

[
cosech

(
π

2
√
K

)
− 2sech

(
π

2
√
K

)]
.

(15)

In the same way, using the negative solutions
(θ−(ν), ω−(ν)) of Eq. (9) in (11) we obtain the Mel-
nikov function M−(ν0) for the lower branches of the
invariant manifolds of the hyperbolic fixed points
E1 and E2

M−(ν0) = M−
A (ν0) +M−

B (ν0) +M−
C

= C−
A sin(ν0) + C−

B cos(ν0 + Ω)

−α(π + 2
√
K), (16)

where the coefficients C−
A and C−

B are given by

C−
A (K, e)

= πe

[
3
2
cosech

(
π

2
√
K

)
+ 2sech

(
π

2
√
K

)]
,

C−
B (K,β)

= − πβ√
K

[
cosech

(
π

2
√
K

)
+ 2sech

(
π

2
√
K

)]
.

(17)

It is important to note that Eqs. (14) and (16)
give us analytical criterions for the existence of het-
eroclinic chaos in terms of the system parameters.
Indeed, the first two terms M±

A and M±
B of the Mel-

nikov functions (14) and (16) form bounded func-
tions M±

AB (ν0) = M±
A (ν0) + M±

B (ν0). It is easy to
obtain that the extreme values of these functions
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M±
AB (ν0) are given by

M±
ABext = ±

√
(C±

A )2 + (C±
B )2 − 2C±

AC
±
B sinΩ.

Therefore, as the drag parameter is positive
defined (α > 0), it is straightforward to conclude
that the positive Melnikov function M+(ν0) has

simple zeroes for

α < α+
c =

M+
ABext

π − 2
√
K

=

√
(C+

A )2 + (C+
B )2 − 2C+

AC
+
B sin Ω

π − 2
√
K

,

(18)
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Fig. 3. Evolution of the stable and unstable manifolds Ws(E2) and Wu(E1) of the saddle fixed points Ei in the ν = 2π
Poincare map as a function of the drag parameter α for K = 1, ε = β = 0.03, Ω = π/2.
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and that the negative Melnikov function M−(ν0)
has simple zeroes for

α < α−
c =

M−
ABext

−(π + 2
√
K)

=

√
(C−

A )2 + (C−
B )2 − 2C−

AC
−
B sinΩ

π + 2
√
K

.

(19)

Hence, for α < max(α±
c ) the perturbations pro-

duce heteroclinic intersections between the stable
and unstable manifolds of the hyperbolic equilib-
ria E1 and E2 in the corresponding Poincaré sur-
face of section. Therefore the perturbed spacecraft
shows chaotic pitch motions near the unperturbed
separatrices. On the other hand, for α > max(α±

c ),
the Melnikov functions M±(ν0) are bounded away
from zero, and thus there are no heteroclinic inter-
sections and no chaos in the pitch motion of the
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Fig. 4. Evolution of the stable and unstable manifolds Ws(E1) and Wu(E2) of the saddle fixed points Ei in the ν = 2π
Poincare map as a function of the drag parameter α for K = 1, ε = β = 0.03, Ω = π/2.
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perturbed spacecraft. From Eqs. (15) and (17)–(19),
it is clear that the critical values α±

c of the aerody-
namic drag parameter, which state the existence of
chaotic behavior, depends on the rest of the system
parameters K, e, β and Ω.

In order to check the validity of the analyti-
cal criteria (18) and (19) given by the Melnikov
method, we have numerically calculated the stable
Ws(Ei) and unstable Wu(Ei) manifolds associated
to the saddle fixed points E1, E2 of the Poincaré
map. The Poincaré surface of section consists of sec-
tions ν = cte.(mod 2π) of the three-dimensional
(θ, ω, ν) extended phase space, that is, we have
the Poincaré sections in the ν variable with the
angular period of the orbital motion of the space-
craft. This computation was carried out by means
of the commercial software DYNAMICS [Nusse &
Yorke, 1998], integrating numerically the equations
of motion (10) by means of a Runge–Kutta algo-
rithm of fifth order with fixed step.

We have focused on the evolution of the invari-
ant manifolds Ws/u(Ei) as a function of the drag
parameter α, for fixed parameters K = 1, e = β =
0.03 and Ω = π/2. For these parameter values, the
analytical criteria (18) and (19) give us the crit-
ical values of the drag parameter α+

c ≈ 0.01793
and α−

c ≈ 0.04913. We have tuned α from values
less than α±

c to greater ones. In Figs. 3(a)–3(c),
we show the evolution of the upper branches of
the invariant manifolds of the fixed points Ei, that
is, Wu(E1) and Ws(E2). It can be observed clearly
that, for α < α+

c , (α = 0.005), the stable and unsta-
ble manifolds transversally intersect each other
[Fig. 3(a)]. However, when α > α+

c (α = 0.032),
the invariant manifolds do not intersect [Fig. 3(c)].
Finally, Fig. 3(b) shows just the situation for the
critical value α+

c , where the tangency of the stable
and unstable manifolds can be seen.

In the same way, Figs. 4(a)–4(c) show the
evolution of the lower branches of the invariant
manifolds, that is, Ws(E1) and Wu(E2). For α <
α−

c , [Fig. 4(a), α = 0.04] the stable and unstable
manifolds suffer heteroclinic intersections with each
other, whereas for α > α−

c , [Fig. 4(c), α = 0.055]
both manifolds do not intersect. In the critical case
α−

c ≈ 0.04913 [Fig. 4(b)], the manifolds are just
tangents of each other.

These evolutions of the invariant manifolds,
based on numerical calculations for specific param-
eter values, confirm with very good agreement the
analytical results (18) and (19) obtained with the
Melnikov method. Therefore, both numerical and

analytical studies show, in good accordance, that
the perturbations of the system generate hetero-
clinic intersections between the invariant manifolds,
and hence, the arise of chaotic behavior in the pitch
motion of the spacecraft.

4. Poincaré Surfaces of Sections

In order to globally visualize the effect of the pertur-
bations on the pitch motion dynamics of the space-
craft, we have generated Poincaré surfaces of section
of the three-dimensional (θ, ω, ν) extended phase
space of the perturbed system. To this end, we have
made use of the appropriate algorithm [Weisstein,
2008] implemented with the symbolic manipulator
MATHEMATICA [Wolfram, 2003].

As we are interested in the existence of periodic
pitch motions with the same period as the orbital
motion of the spacecraft, the Poincaré surfaces of
sections consist of sections (θ, ω) in the independent
angular variable ν, the true anomaly of the orbit,
with ν = cte.(mod 2π).

Figure 5 shows three surfaces of sections corre-
sponding to a spacecraft with K = 1, Ω = π/2,
and different values of the perturbation parame-
ters e and β, and in the absence of aerodynamic
drag (α = 0). Figure 5(a) stands for a nonmag-
netic spacecraft (β = 0) in a slightly elliptic orbit
(e = 0.02), Fig. 5(b) corresponds to a magnetic
spacecraft (β = 0.02) in circular orbit (e = 0), and
finally, Fig. 5(b) is the one corresponding to a mag-
netic spacecraft in elliptic orbit (e = β = 0.02).

These figures confirm that both perturba-
tions, those coming from the elliptic orbit and
the magnetic interaction, separately or together,
cause the appearance of chaotic attitude motions.
These irregular motions appear as a cloud of disor-
dered points located at a stochastic layer around
the unperturbed separatrix, where the transver-
sal heteroclinic intersections between the invariant
manifolds Wu(Ei) and Ws(Ei) take place. Out of
this stochastic layer, regular pitch motions, such as
oscillations and tumbling rotations, persist in spite
of the perturbations. These regular motions appear
as invariant curves for quasiperiodic motions, or
as fixed points (centers or saddles) for periodic
motions with the same period 2π as the orbital
motion.

Figure 5(a) (e = 0.02, β = 0), shows the
presence of four center points labeled with let-
ters A–D, as well as two saddle points labeled
with letters E–F. As it is well known, the center
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Fig. 5. ν = 2π Poincaré surfaces of section of a space-
craft with K = 1 and Ω = π/2 in the absence of vis-
cous drag (α = 0). (a) Perturbed only by the elliptic orbit
(e = 0.02, β = 0). (b) Perturbed only by the magnetic inter-
action (e = 0, β = 0.02). (c) Affected by both perturbations
(e = 0.02, β = 0.02).

points correspond to stable periodic motions, and
the saddle points correspond to unstable periodic
ones. In Fig. 5(b) (e = 0, β = 0.02), it seems that
the center point D has disappeared, whereas a new
center point and a new saddle point have arisen in
the surface of section. We have labeled these new
fixed points as G and H respectively. The previous
saddle points E and F have also disappeared or per-
haps, persist inside the stochastic layer of chaotic
motions. When both perturbations go into action
simultaneously, Fig. 5(c) (e = β = 0.02) shows
that, apart from the stochastic region increase, the
surface of section exhibits the same basic features
as that corresponding to the magnetic perturbation
alone.

To make visible the effect of the viscous drag
perturbation on the dynamical attitude behavior
of the spacecraft, in Fig. 6 we have plotted three
Poincaré surfaces of section of the same spacecraft
(K = 1,Ω = π/2) for increasing values of the
drag parameter α, keeping the other two pertur-
bations constant (e = β = 0.02). As it is well
known, the main contribution of the viscous drag in
a dynamical system is the opposing motion. There-
fore, in this case it could be expected that, it does
not matter what the initial conditions, the oscilla-
tions and rotations of the pitch motion would decay,
and the final state of the perturbed spacecraft would
be a constant pitch angle θ = 0 or θ = π. That is to
say, the two fixed equilibria located at (θ, ω) = (0, 0)
or (π, 0) in the unperturbed phase space (Fig. 2)
would be the only two sinks for the system affected
by the aerodynamic drag. In this sense, the action
of the drag on the spacecraft destroys the regular
structures of the previous surfaces shown in Fig. 5.
But nevertheless, Fig. 6 shows us that, under the
viscous drag, the system does not exhibit the two
aforementioned sinks, but another four sinks si-
tuated at different locations. We have labeled these
sinks by A, B, C and G, the same letters as the
center fixed points located near these sinks in the
previous surfaces of section of the spacecraft with-
out drag. In fact, as we will see in the next section,
these four sinks correspond to four stable periodic
pitch motions with the same period as the orbital
motion, ν = 2π. That is, the system with aerody-
namic drag exhibits four limit cycles.

At first, the existence of these periodic pitch
motions under a viscous drag may seem paradoxi-
cal, as the drag produces a dissipation of the kinetic
energy related to the attitude motion. However,
the other two perturbations on the spacecraft, the



July 28, 2011 11:0 WSPC/S0218-1274 02956

1970 M. Iñarrea
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Fig. 6. ν = 2π Poincaré surfaces of section of a spacecraft
with K = 1 and Ω = π/2 for increasing values of the drag
parameter, (a) α = 0.002, (b) α = 0.01 and (c) α = 0.02,
keeping constant the other two perturbations: the elliptic
orbit (e = 0.02) and the magnetic interaction (β = 0.02).

magnetic interaction and the elliptic orbit, may
work as sources of energy for the system, depending
on the initial conditions, the parameter values and
the frequency of the pitch motion. These sources
of energy are due, on one hand to the action of the
geomagnetic field, and on the other hand to the cou-
pling between the attitude motion of the spacecraft
and its orbital motion through the gravity gradient
torque. In this way, those periodic limit cycles A–C
and G, that persist under the action of the drag,
are determined by a balance between the energy
added by the elliptic and magnetic perturbations,
and the energy dissipated by the drag. This phe-
nomenon of the existence of periodic motions under
viscous drag also appears in other systems like the
well known problem of the driven damped simple
pendulum [Giordano, 1997], or in the pitch motion
of a nonrigid spacecraft with drag in circular orbit
[Iñarrea & Lanchares, 2006].

The three surfaces of section have been
generated with the same initial conditions and
with the same integration time of the equations of
motion (10). As it is expected, for small values of
the drag parameter α, most of the surface of sec-
tion is covered by a dense cloud of disordered points
[Fig. 6(a)], whereas for bigger drag, the points are
much more concentrated around the sinks, in such
a way the surface of section shows a clearer aspect
[Fig. 6(c)]. For small values of α, most of the pitch
motions with initial conditions outside or around
the unperturbed separatrix exhibit a long transient
chaotic regime previous to reaching the correspond-
ing limit cycle. See Fig. 7(a), which shows the time
evolution of the pitch angle θ of a slightly dragged
attitude motion with α = 0.003. On the other
hand, the bigger the drag the shorter that tran-
sient chaotic regime. In this way, for big drags, the
pitch motion becomes a regular one decaying more
quickly to one of the limit cycles. See Fig. 7(b),
where the time evolution of the pitch angle θ of a
motion is plotted with same initial conditions as of
Fig. 7(a) for a bigger drag α = 0.035.

This feature is not only a consequence of the
well known relation between the drag strength and
the decay time in a damped system, but also a con-
sequence of the previously studied dependence of
the chaotic behavior of this system on the drag
parameter α. Indeed, for small drags, α < α±

c ,
when the trajectories of the pitch motion reach
the region surrounding the unperturbed separatrix,
where the heteroclinic intersections between the
invariant manifolds Wu(Ei) and Ws(Ei) take place,
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(a)

(b)

Fig. 7. Time evolution of the pitch angle θ of the spacecraft
attitude motion for K = 1, Ω = π/2, e = β = 0.02 and for
the same initial condition (θo, ωo) = (π/2, 0). (a) Under small
drag α = 0.003. (b) Under bigger drag α = 0.035.

the attitude motions suffer a long transient chaotic
regime until they leave that chaotic region and
decay to one of the limit cycles [see Fig. 7(a)].
Nevertheless, for bigger drags, α > α+

c , the tra-
jectories of the pitch motions are regular decays to
the limit cycles without any transient chaotic phase
[see Fig. 7(b)].

Therefore, for fixed parameters K,Ω, e and
β, the dynamical behavior of the spacecraft near
the unperturbed separatrix suffers a transition
from a chaotic regime to a regular one, when
the viscous drag parameter α is increased. This
transition from chaos to order is in a qualita-
tive good agreement not only with the analytical
criterions (18), (19) obtained from the Melnikov
method, but also with the numerical study of
the heteroclinic intersections between the invariant

manifolds Wu(Ei) and Ws(Ei) explained in a previ-
ous section.

It is also important to note that, as Fig. 6(c)
points out, for a value of the drag parameter α =
0.02, the limit cycle labeled with C has disappeared,
and only the other three limit cycles persist. This
situation continues even for stronger drags. Thus,
there must be a critical value of α for which the C
limit cycle is destroyed in some kind of bifurcation.

5. Periodic Pitch Motions and
Bifurcations

In the previous section we have seen by the ν = 2π-
Poincaré surfaces of section, that despite not only
the chaotic behavior generated by the elliptic orbit
and magnetic perturbations, but also the kinetic
energy dissipation produced by the viscous drag,
some periodic pitch motions persist with the same
period as the orbital motion, that is, ν = 2π.

In the surface of section of Fig. 5(a) (e =
0.02, β = α = 0), we have detected six different
ν = 2π-periodic attitude motions. The two center
points labeled with letters A and B correspond to
periodic oscillations. In motion A, the positive z
axis of the spacecraft is oscillating pointing towards
Earth, whereas in motion B, the positive z axis is
oscillating pointing away from Earth. The two other
center points labeled C and D, as well as the sad-
dle points E and F, correspond to periodic tumbling
rotations, all of them with the same direction. As
it is well known, as the motions C and D appear
as center points, they are stable rotations, whereas
motions E and F are unstable rotations, because
they appear as saddle points.

On the other hand, in Figs. 5(b) (β = 0.02, e =
α = 0) and 5(c) (e = β = 0.02, α = 0), two other
ν = 2π-periodic pitch motions have been found.
The center point labeled G, corresponds to a stable
periodic tumbling rotation, while the saddle point
labeled H, corresponds to an unstable periodic tum-
bling rotation. In these two attitude motions the
spacecraft rotates with a direction opposite to the
aforementioned C–F rotations. However, it seems
that in these two surfaces of section, neither the
stable periodic rotation (center point) D, nor the
unstable periodic rotations (saddle points) E and F
appear.

When the aerodynamic drag goes into action
(α �= 0), see Fig. 6, the unstable periodic rotation H
does not appear, whereas for small drags, the two
stable periodic oscillations A and B, and also the
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two stable periodic rotations C and G, all continue
as limit cycles in the damped system. Nevertheless,
as we have already mentioned above, when the drag
increases, only the periodic motions A, B and G per-
sist, while the limit cycle C disappears, see Fig. 6(c).

It is worth noting that the persistence of these
periodic motions may be useful for practical pur-
poses in the control of spacecraft orientation. As it
is well known, many satellites are intended to main-
tain a particular fixed orientation with respect to
Earth. In this sense, we have found periodic oscil-
lations (motions A and B) with small amplitudes
around the local vertical. In these periodic motions
the spacecraft orientation does not suffer large vari-
ations. In such a way, the z axis of the vehicle keeps
pointing around the local vertical all over the orbit.
Therefore, these oscillations could be considered as
target attitude motions for a suitable active control
method that could be applied in order to eliminate
the initially chaotic motion of the spacecraft. With
respect to the periodic tumbling rotations, although
the vehicle orientation is not fixed in these attitude
motions, at least they are regular ones and thus,
it is possible to know the future orientation of the
spacecraft along the orbit.

In order to understand and get a more precise
view of the evolution of these periodic pitch motions
with the values of the perturbation parameters, we
have made a numerical bifurcation analysis of these
periodic motions by means of the freely distributed
software package AUTO2007 [Doedel et al., 2002;
Kamthan, 2008]. This software carries out the con-
tinuation of solutions of systems of differential equa-
tions with respect to the parameters of the problem.
We have performed the bifurcation analysis in the
interval [0, 0.04] for the perturbation parameters
e, β and α, and we have found the following results.

The periodic oscillations A and B, as well as
the periodic rotation G, are always stable attitude
motions for all values of e, β and α in the interval
considered. When the spacecraft is under the action
of the drag (α �= 0), all these stable motions trans-
form into limit cycles.

The periodic rotation H is a stable motion as
long as the system is only affected by the elliptic
orbit perturbation (e �= 0, β = α = 0). Neverthe-
less, the magnetic perturbation (β �= 0) convert
this rotation into an unstable motion, see Fig. 5(b).
The drag perturbation (α �= 0) does not change the
unstable nature of this pitch motion.

With regard to the periodic rotations E and F,
both always exist as unstable motions in the interval

studied for (e �= 0, β = α = 0). However, when the
magnetic interaction goes into action, (β �= 0),
both motions suffer a subcritical symmetry break-
ing bifurcation [Nayfeh & Balachandran, 1995],
when they meet together with the periodic rotation
D. In the bifurcation point, the asymmetric periodic
motions E and F disappear, and the symmetric and
previously stable rotation D persists being trans-
formed into unstable one, which is absorbed by the
stochastic layer of chaotic motions, see Fig. 5(b).
The diagram of this bifurcation is shown in Fig. 8.
As a measure of the periodic motions, we have
used the L2-norm of the corresponding orbit in the
extended phase space (θ, ω, ν). In this figure, the L2-
norm of the periodic rotations E, F and D is plotted
versus the parameter β, for e = 0.02 and α = 0.
Solid and dashed lines denote the branches of stable
and unstable periodic pitch motions respectively.
The bifurcation point takes place for β≈ 2.59 · 10−3.

In relation to the periodic rotation C, it is
always a stable motion for any value of e and β when
there is no drag perturbation (α = 0). When the
drag is added to the system dynamics, this rotation
becomes a stable limit cycle. In contrast to rota-
tions G and H, which persist as the drag parameter
is increased, this rotation C finally suffers a cyclic-
fold bifurcation [Nayfeh & Balachandran, 1995],
when it coalesces with the unstable periodic rota-
tion D. In this bifurcation, both motions C and D
obliterate each other, and therefore one of the sinks
of the damped system disappears, as is observed
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Fig. 8. Diagram of the symmetry breaking bifurcation
involving the periodic rotations D, E and F as a function of
β, for K = 1, Ω = π/2, e = 0.02 and α = 0. Solid and dashed
lines stand for stable and unstable motions respectively.



July 28, 2011 11:0 WSPC/S0218-1274 02956

Chaotic Pitch Motion of a Magnetic Spacecraft with Viscous Drag 1973

0 0.005 0.010 0.015 0.020
3.70

3.72

3.74

3.76

3.78

3.80

L
2-

no
rm

D

α

C

Fig. 9. Diagram of the cyclic-fold bifurcation involving the
periodic rotations C and D as a function of α, for K = 1, Ω =
π/2 and e = β = 0.02. Solid and dashed lines stand for stable
and unstable motions respectively.

in Fig. 6(c). In Fig. 9, we show the corresponding
diagram of this bifurcation, where the L2-norm of
the periodic motions C and D is, in this case, plotted
versus the drag parameter α for e = β = 0.02. The
bifurcation point takes place for α ≈ 1.44 · 10−2.

All these results provided by the bifurcation
analysis are in very good agreement with the evo-
lution of the Poincaré surfaces of section shown
in Figs. 5 and 6. In the same way, these results
explain the disappearances of periodic motions
(center points, saddle points and sinks) detected in
the evolution of those surfaces of section.

6. Conclusions

The pitch attitude motion dynamics of an asymme-
tric magnetic spacecraft in an almost circular polar
orbit under the action of a gravity gradient torque
has been investigated. The system is also subject to
the influence of three different perturbations: (i) the
small eccentricity of the elliptic orbit, (ii) a small
magnetic torque due to the interaction between the
Earth’s magnetic field and the magnetic moment of
the spacecraft, and (iii) a small aerodynamic vis-
cous drag generated by the action of the Earth’s
atmosphere.

By means of the Melnikov method, we have
analytically proved that the perturbations generate
transient heteroclinic chaotic behaviors in the pitch
motion of the spacecraft. Additionally, this method
has provided us with an analytical criterion for the
existence of chaotic attitude motions in terms of

the system parameters. We have found that system
dynamics suffers a transition from chaos to order
when the viscous drag is increased, as the transient
chaotic motions disappear for big drags.

Moreover, we have also numerically studied the
pitch dynamics of the spacecraft making use of
several tools based on computer simulation of the
attitude motions, including time history, Poincaré
surfaces of section and bifurcation analysis of peri-
odic motions. This numerical research has con-
firmed with very good agreement the analytical
results provided by the Melnikov method. In spite of
the chaos generated by both, the small eccentricity
of the spacecraft orbit and the magnetic perturba-
tion, we have found, by means of Poincaré surfaces
of section that some periodic pitch motions persist
in the perturbed system with the same period as the
orbital motion of the spacecraft. In addition, when
the viscous drag goes into action, despite its damp-
ing effect, these persistent periodic motions still
continue as limit cycles. This persistency may be
understood as a consequence of a balance between
the addition and dissipation of energy produced
by the three perturbations. Some of these persis-
tent periodic motions could be considered as target
motions for a suitable control method to remove
chaotic behaviors from the attitude dynamics of the
spacecraft.

Finally, the numerical continuation of these
periodic pitch motions, as functions of the pertur-
bations parameters, has revealed to us that some of
the periodic rotations suffer two different kinds of
bifurcations. On the one hand, when the magnetic
interaction is increased without drag, one of the
stable periodic rotations becomes unstable through
a symmetry breaking bifurcation. On the other
hand, when the aerodynamic drag becomes greater,
one of the limit cycles disappears in a cyclic-fold
bifurcation.
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Beletsky, V. V., Lopes, R. V. F. & Pivovarov, M. L.
[1999] “Chaos in spacecraft attitude motion in earth’s
magnetic field,” Chaos 9, 493–498.

Bryson, A. E. [1994] Control of Spacecraft and Aircraft
(Princeton University Press, Princeton).

Deimel, R. F. [1952] Mechanics of the Gyroscope. The
Dynamics of Rotation (Dover, NY).

Doedel, E., Paffenroth, R., Champneys, A. R., Fair-
grieve, T. F., Kuznetsov, Y. A., Oldman, B. E.,
Sandstede, B. & Wang, X. [2002] AUTO 2000:
Continuation and Bifurcation Software for Ordinary
Differential Equations with HomCont (Concordia
University, Montreal).

Fujii, H. A. & Ichiki, W. [1997] “Nonlinear dynamics of
the tethered subsatellite system in the station keeping
phase,” J. Guid. Contr. Dyn. 20, 403–406.

Giordano, N. J. [1997] Computational Physics (Prentice
Hall, Upper Saddle River).

Goldstein, H., Poole, C. P. & Safko, J. L. [2002] Classical
Mechanics (Addison-Wesley, San Francisco).

Gradshteyn, I. S. & Ryzhik, I. M. [1980] Table of
Integrals, Series and Products (Academic Press, San
Diego).

Gray, A. [1959] A Treatise on Gyrostatics and Rotational
Motion (Dover, NY).

Gray, G. L., Kammer, D. C., Dobson, I. & Miller,
A. J. [1999] “Heteroclinic bifurcations in rigid
bodies containing internally moving parts and a
viscous damper,” J. Appl. Mech.-T. ASME 66,
720–728.

Guckenheimer, J. & Holmes, P. [1983] Nonlinear Oscilla-
tions, Dynamical Systems and Bifurcations of Vector
Fields (Springer-Verlag, NY).

Hale, F. J. [1994] Introduction to Space Flight (Prentice-
Hall, Englewood Cliffs).

Holmes, P. J. & Marsden, J. E. [1983] “Horseshoes
and arnold diffusion for hamiltonian systems on lie
groups,” Indiana Univ. Math. J. 32, 273–309.

Hughes, P. C. [1986] Spacecraft Attitude Dynamics (John
Wiley & Sons, NY).
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